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Abstract: 

Primates have an unparalleled ability to produce a wide range of dexterous movements, each 

sensitive to context and robust to perturbation. Recent progress in understanding the neural basis 

of movement generation comes from two largely independent ideas, “Optimal Feedback 

Control” and “Neural Dynamical Systems”. The optimal control framework was largely inspired 

by research programs from the ‘80s showing that the brain doesn’t seem to plan a simple desired 

movement trajectory, but instead produces movements by transforming sensory information into 

motor output that satisfies an optimality criterion. The more recent idea that the motor cortex 

acts as a dynamical system came about only as it became possible to analyze large numbers of 

simultaneously recorded single neurons. These two framings of the motor system have been 

largely incommensurate, neither able to contribute much to the understanding of the other. In 

this review, we reconcile these two views into a single model we call “Dynamical Feedback 

Control”. We propose that the dynamics in the motor cortex emerge from a sensorimotor 

transformation that couples the motor cortex to sensory input from the periphery, and to 

contextual inputs from other cortical and subcortical areas. Dynamics in motor cortex can be 

thought to approximate gains of a feedback controller, and by moving the neural state to 

different regions of state space, the motor system can rapidly alternate between different 

controllers. The DFC framework presents a new lens to interpret neural dynamics, and to 

understand how ensembles of neurons generate flexible and responsive patterns of muscle 

activity.  

 

Introduction: 
Many of the questions that we ask about the brain are determined by the perspective from which 

we view it. Questions that are entirely sensible from one vantage point may be meaningless in 

another; for example, from the perspective of neuroscientists that study single neuron activity, 

the question “Are these neural trajectories tangled?” (Russo et al., 2018) is meaningless. What is 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 January 2022                   doi:10.20944/preprints202201.0428.v1

©  2022 by the author(s). Distributed under a Creative Commons CC BY license.

mailto:chrissversteeg@gmail.com
https://doi.org/10.20944/preprints202201.0428.v1
http://creativecommons.org/licenses/by/4.0/


considered a reasonable question can change depending on your viewpoint (Kaiser, 2012).  

 

Two major conceptual frameworks have guided recent study of the motor system: Optimal 

feedback control (OFC) and neural dynamical systems (NDS). The former posits that the brain 

generates movement through a control system built from a feedback controller, fundamentally 

dependent on input from a forward model and state estimator (Scott, 2004; Shadmehr & 

Krakauer, 2008; Todorov & Jordan, 2002). The brain can adjust feedback gains according to 

planning and context, thereby altering the nature of the transformation of state estimates into 

motor output. Most research in this field has been at the level of movement psychophysics 

(Mazzoni & Krakauer, 2006; Sha et al., 2006; Taylor et al., 2014), only infrequently examining 

the firing rates of single neurons (Cross et al., 2021; Kalidindi et al., 2021; Pruszynski, 2014; 

Pruszynski et al., 2011). OFC presents what might be considered an “algorithm-level” 

description of how the motor system controls movements but is largely agnostic to how this 

algorithm is implemented by neurons.  

 

In contrast, the dynamical systems framework posits that motor cortical areas are pattern-

generating circuits whose firing patterns emerge due to intrinsic dynamics of the network and its 

extrinsic inputs (Shenoy et al., 2013). Under the dynamical systems hypothesis, the neural state 

evolves according to the structure of a dynamical landscape, much like a ball rolling predictably 

along a curved, multi-dimensional track. Time-varying descending commands to muscles can be 

read out by corticospinal neurons from the movements of this neural state, a form of pattern 

generation. In NDS, planning and contextual inputs encode different movements simply by 

establishing different starting points; different tracks for the neural state space ball to roll down. 

In contrast with OFC, NDS has its roots in analysis of multi-electrode neural recordings, not 

psychophysical experiments or control theory. In summary, NDS incorporates both an 

algorithm-level (pattern-generation) and an implementation-level (dynamics of neural circuits) 

description of movement generation. 

 

While these two frameworks both focus on the sensorimotor system, questions that OFC models 

pose, such as “what are the feedback gains that produce this movement?” seem uninterpretable 

under NDS. Conversely, common questions in NDS, such as “how do rotational dynamics 

contribute to the generation of motor output?” have rarely been posed in the framework of OFC 

(although see Kalidindi et al., 2021). To bridge this gap, we propose a hybrid model called 

Dynamical Feedback Control (DFC), that provides a unifying framework for algorithmic and 

implementation-level descriptions of the sensorimotor system; we propose that the algorithm of 

optimal feedback control is implemented by the dynamics of motor circuitry. In building this 

argument, we review OFC and NDS, with the goal of convincing the reader that 1) the brain 

embodies the major components of an optimal feedback control system and 2) that dynamical 

systems analysis provides a powerful set of tools to describe the computations performed by 

neural circuits. Ultimately, we propose an experiment to test the key predictions of DFC and 

provide a roadmap for future study to further unify our understanding of dynamics and feedback 

control. 
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OFC Model: 

Minimum intervention principle: 
There are many ways that a movement can be “optimal”, perhaps by achieving minimal distance 

travelled, minimal endpoint jerk, or minimal energy expended (Huang et al., 2012; Sha et al., 

2006). A major feature of OFC is a rule known as the minimum intervention principle, which 

states that a good control system should correct only task-relevant parameters, while allowing 

irrelevant parameters to vary (Todorov & Jordan, 2002). This property emerges from two 

considerations: 1) correcting for irrelevant perturbations increases effort-dependent noise and 2) 

to do so increases total energetic expenditure, which runs counter to expectation and observation 

(Todorov & Jordan, 2003). 

 

Tasks designed to exploit an uncontrolled manifold exemplify the minimum intervention 

principle. In one such task, a subject is instructed to exert force on two buttons using different 

fingers (F1 and F2). The sum of the forces may be controlled using any combination of F1 and 

F2, leading to “task-relevant” (F1+F2) and “task-null” (F1-F2) dimensions of control. The 

minimum intervention principle predicts that an optimal controller should allow variance in the 

task-null dimension in order to achieve tighter control in the task-relevant dimension.  

 

Human behavior generally follows the minimum intervention principle. In very early studies of 

motor psychophysics, Bernstein (Bernstein, 1967) described remarkably precise hammer strikes 

arising despite highly variable trajectories, suggesting that the hammer’s trajectory was 

irrelevant as long as it produced an accurate strike (Biryukova & Sirotkina, 2020). Across a 

wide variety of tasks, this seems to be a principle of human movement: Task-null dimensions 

have large variance while task-relevant dimensions are well controlled. Any implementation of 

OFC needs to account for this feature. 

 

Components of the OFC model: 
Optimal feedback control theories have been around for decades (Todorov & Jordan, 2002), but 

in recent years a common picture has emerged. Figure 1A depicts one prevailing model in 

which the planning module sets feedback controller gains that are specific to the desired 

movement and context (Shadmehr & Krakauer, 2008). The feedback controller transmits a 

motor command to the muscles, a copy of which is sent to the forward model. The forward 

model transforms this “efference copy” signal into the predicted sensory consequences given the 

current state of the limb. The ensuing movement generates actual sensory signals 

(“reafference”) that travel from the periphery to the brain. The state estimator combines the 

predicted and reafferent signals, weighted by their relative confidences, to produce an estimate 

of the state of the limb. This state estimate passes through the feedback controller to generate a 

new motor output and the cycle repeats itself.  

 

However, different movements require different feedback gains; even a seemingly trivial change 

such as reaching to different targets requires a different set of gains. Clearly, this does not limit 

our ability to make rapidly varying reaching movements. More generally, we are able to switch 

rapidly between previously learned behaviors, although learning a new behavior may require 

some time. Inputs from the planning module must be able to modify the controller quickly to 

allow the expansive and context-dependent repertoire of movements that the brain can produce.  
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Modern OFC proposes that different regions of the brain embody the four major components 

necessary to generate movement under this framework: a planning module, a feedback 

controller, a forward model, and a state estimator (Shadmehr & Krakauer, 2008). The behavior 

of the cerebellum has many of the hallmarks of a forward model, the motor cortex appears able 

to enact feedback control policy, perhaps with dual proprioceptive and visual controllers, and 

the state estimator may be constructed by circuits in anterior (area 3a) and posterior parietal 

(areas 5/7) cortex (Figure 1B). As the planning module must account for a wide variety of 

potential cost and reward signals, it is unlikely that it is localized to any single area, but instead 

may be distributed throughout the premotor and prefrontal cortices, as well as the basal ganglia.  

 

 
 

Figure 1: Features and neural correlates of Optimal Feedback Control for reaching. A: 

Model of optimal feedback control system, consisting of feedback controller (red), forward 

model (green), state estimator (blue), and musculoskeletal system. Colors denote the role of 

brain areas in the subsequent portions of the figure. B: Proposed proprioceptive feedback 

control loop. Motor cortex acts as a feedback controller, cerebellum a forward model, and area 

3a a state estimator.  

 

Cerebellum as a forward model: 

Forward models, which predict sensory consequences of movement, are necessary for control 

systems that include substantial feedback delays. Running the feedback controller on delayed 

proprioceptive information (~40-50 ms for signals from the distal arm) can produce oscillations 

about the setpoint (Kawato, 1999; Wolpert et al., 1998). Relying on predicted feedback while 
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waiting for actual sensory feedback can mitigate the instability caused by sensory delays. 

 

Among its other functions, many studies point to the cerebellum as the neural implementation of 

a forward model (Figure 2A) (Kawato, 1999). The intention tremor typical of patients with 

damage to the anterior lobes of the cerebellum is reminiscent of a feedback controller with long 

sensing delays. These patients also lack anticipatory increases in grip force during a predictable 

ball-drop task (Nowak et al., 2007; Serrien & Wiesendanger, 1999).  Another clinical sign of 

cerebellar damage is difficulty in coordinating movements that involve multiple joints (Izawa et 

al. 2012; Nowak et al. 2007), which may reflect difficulties in predicting the interaction torques 

arising between mechanically-coupled limb segments (Bastian et al., 1996). In such a model, the 

sensory and efference copy inputs take the form of cerebellar mossy fibers, and the deep 

cerebellar nuclei provide the predicted sensory signals. Sensory prediction errors trigger updates 

to the forward model (through inferior olive activity and Purkinje cell complex spikes), which 

alter the synaptic weights of the parallel fibers onto Purkinje cells. For further review, see 

(Shadmehr, 2020). 

 

Under OFC, disruptions of the forward model should eliminate sensory prediction and cause 

motor output to behave as though it has only lagged sensory information. Transcranial magnetic 

stimulation (TMS) can be used to disrupt processes in circumscribed regions of the brain and 

test how the resulting loss of function affects behavior. Human subjects have undergone 

cerebellar TMS while reaching (Miall et al., 2007). In these experiments, subjects initiated a 

slow reach to the right in response to an audio cue. At a random time into this reach, another 

audio cue signaled a reach to a distant visual target (Figure 2B). The timing of this cue caused 

the direction to the target relative to the hand to vary across trials. Although movements were 

made without vision of the arm, subjects could easily compensate for the varying position at the 

start of the second reach. 

 

However, on TMS trials, the reach was typically not directed accurately at the target. Instead, its 

trajectory was appropriate to reach the target beginning from where the hand had been ~100 ms 

in the past (Figure 2B, red line). Disrupting the cerebellum did not eliminate the reach but 

caused it to proceed as though it had been planned with lagged somatosensory information. This 

experiment supports the existence of both a forward model in the cerebellum and a state 

estimator elsewhere in the brain that combines predicted and actual sensory information to 

compute a single state estimate for use by the controller.   

 

 

Motor cortex as a feedback controller: 

At a high level, a feedback controller maps states to actions that drive the system to a desired 

location in state space. A reach feedback controller might map a state estimate derived from 

vision, proprioception, and predicted state to the pattern of muscle activation that produces a 

desired movement.  

 

To perform the feedback control presented in Figure 1B, the candidate feedback controller must 

1) receive sensory inputs 2) project to the muscles and 3) send an efference copy signal to the 

forward model. Motor cortical neurons receive substantial somatosensory input (Cross et al., 

2021; Pavlides et al., 1993), and old-world primates (and humans) have direct projections from 
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motor cortex to motor neurons (Lemon, 1997; Rathelot & Strick, 2009). The cortico-pontine 

mossy fibers provide the cerebellum with efference copy inputs (Ramnani, 2006).  Thus, motor 

cortex presents a promising location for the feedback controller. 

 

Long-latency reflexes may provide a useful model of OFC, as these automatic sensory-motor 

loops can mediate complex behavior yet have obvious analogies with classical feedback control 

models without the added complexity of voluntary influences. They are capable even of 

complex obstacle avoidance and rapid (<100ms) target switching in response to proprioceptive 

perturbations (Figure 2C, D (Nashed et al., 2014)). Anatomical, psychophysical, and 

electrophysiological evidence suggests that long-latency reflexes take a transcortical route 

through M1 (Asanuma, 1975; Zarzecki & Asanuma, 1979). When these reflexes are altered, 

such as by changing the interactions between joints, there are corresponding changes in firing 

rates of M1 neurons (Evarts & Tanji, 1974; Pruszynski et al., 2011). Furthermore, TMS over 

M1 of humans can potentiate these reflexes, suggesting a causal role for M1, not simply a 

correlation with reflexes generated elsewhere (Pruszynski et al., 2011).  

 

One recent experiment examined long-latency reflexes evoked in humans during reaching 

(Figure 2C). Subjects were asked to reach to one of two targets while avoiding a visible 

obstacle. On some trials, the experimenters bumped the subject’s hand to the left with a fixed 

magnitude perturbation, forcing the subject to correct their reach. On trials when the hand 

happened to be pushed farther to the left, subjects tended to correct to the left target, while on 

trials when the hand was pushed a smaller distance, the subjects moved to the right. The elbow 

extensor muscle activation differed between these two conditions in less than 100 ms after the 

bump (Figure 2D), a latency much lower than that of a voluntary choice (Scott, 2016). Perhaps 

the mapping from the arm’s sensory state to the appropriate motor output has been pre-

computed, to include responses to any “likely” perturbation; small bumps result in reflexive 

forces that guide the hand to the right target, while large bumps result in forces to the left 

(following the orange arrows, Figure 2C). Importantly, the orange arrows represent the 

approximate direction that combined muscle forces would accelerate the hand while correcting 

for a perturbation in these particular task conditions. Different targets or obstacles would 

require a different landscape. The motor system seems to be able to change the mapping from 

state-estimate to force output rapidly, based on the particulars of the reaching task.  

 

The short latency of transcortical reflexes limits the potential influence of inputs from premotor 

areas, inputs that voluntary movements depend on. However, recent results suggest a tighter link 

between the feedback control model of long-latency reflexes and voluntary movements than had 

previously been appreciated (Maeda et al., 2018; Scott et al., 2015). This prospect seems 

contrary to our subjective sense of “agency”, the feeling that we are the ones consciously 

controlling how our movements play out.  In Box 1, we discuss this relationship between 

voluntary and reflexive control, suggesting that these two seemingly disparate processes may 

indeed be two sides of the same coin. 
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Figure 2: Evidence for cerebellum and motor cortex as linked forward model and 

feedback controller A: Model of cerebellum that generates a prediction of sensory input from 

efference copy (adapted from (Shadmehr, 2020), figure 1B). B: While redirected reaches made 

without vision (blue trace) normally acquired the target (yellow square) accurately, cerebellar 

transcranial magnetic stimulation caused trajectories (red trace) that appeared to be based on 

lagged somatosensory information (adapted from Miall et al. 2007, figure 1A, D). C: 

Adapted from Nashed et al., 2014, figures 2B and 6B. Human subjects were asked to reach from 

black circle to either of two outer targets (red and blue circles) while avoiding an obstacle (filled 

black circle). The unperturbed trajectory is shown in black. Leftward perturbation (purple 

arrow) displaced the hand, producing altered trajectories and subsequent responses (colored 

lines). The mapping from sensory to motor states is represented stylistically by orange arrows 

that approximate the motion of the hand as a function of its location and the task parameters. D: 

Mean elbow extensor muscle activity for trials that ended at the right (blue) and left targets 

(red). Statistically significant differences (region between dashed lines denoted by *) occurred 

less than 100 ms after bump was applied at time 0 (purple line). 

 

Area 3a as a proprioceptive state estimator: 

State estimators combine different sources of information based on the reliability of each input 

stream. For instance, a hunter shooting at a bird on a cloudy day must combine his noisy visual 

input with a prediction of where he expects the bird to be given its previous position and 

velocity.  Similarly, a proprioceptive state estimator needs to combine afferent proprioceptive 

information with predictions based on efference copy and a forward model. This state estimator 
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should satisfy three criteria: 1) It should project to M1. 2) It should receive lagged 

proprioceptive signals from the periphery. 3) It should receive proprioceptive predictions from 

the cerebellum. Current evidence suggests that area 3a may act as a proprioceptive state 

estimator. 

 

Area 3a projects strongly to M1 (Huffman & Krubitzer, 2001). Area 3a receives substantial 

proprioceptive input from the limbs (Jones & Porter, 1980; Phillips et al., 1971; Yumiya et al., 

1974). While there is no direct evidence in primates that it also receives predicted 

proprioceptive signals, recordings in mice show that VL neurons encode sensory predictions as 

well as actual somatosensory signals (Dooley et al., 2021). Contrary to expectation, the primary 

thalamic inputs to area 3a are not from somatosensory thalamus (VPL and VPS), but instead 

from cerebellar thalamus (VL) (Padberg et al., 2009). More definitive evidence that it acts as a 

state estimator could be obtained by recording from area 3a while varying the relative reliability 

of predicted and actual proprioceptive information (e.g., by applying a predictable bump to the 

hand during a reach). We predict that as a monkey learns to expect this perturbation, neurons in 

3a will begin to predict it, even on catch trials in which it does not occur. Importantly, this 

learned sensory prediction is distinct from alterations of the motor plan (i.e., a change in the 

feedback controller) that also occur during motor adaptation. 

 

Summary of evidence for OFC in the brain 

The large body of evidence reviewed above, including studies ranging from human 

psychophysics and TMS, to single neuron recording and modeling lend considerable support to 

the OFC model of movement control. A recent study attacked the question directly by using 

selective cooling to turn off particular regions of the brain thought to constitute OFC building 

blocks (Takei et al., 2021). Cooling area 5 (a putative visual state estimator) resembled 

disruption of a state estimator, while cooling motor cortex caused what looked like reduced 

gains in a feedback controller.  

 

The motor system appears to act as a feedback system with at least one feedback controller in 

the motor cortices, with the cerebellum acting as a forward model, and a proprioceptive state 

estimator, probably in area 3a. However, knowing that motor cortex is a feedback controller 

does not tell us how that feedback controller is implemented by circuits of neurons. For insight 

into this question, we turn next to the more recent theory of neural dynamical systems. 

 

Neural Dynamical Systems: 
Discerning how ensembles of neurons perform computation is one of the critical challenges 

facing the fields of both neuroscience and artificial intelligence. Firing rates of individual 

neurons, in the brain and in artificial neural networks, have complex temporal patterns that are 

often difficult to interpret or to match to any observable task-related variable (Churchland et al., 

2006; Fetz, 1992; Russo et al., 2018; Sussillo et al., 2015; Sussillo & Barak, 2013). This 

difficulty in interpreting single neuron activity has led to the adoption of population-level 

analyses that attempt to understand the network through discovery of lower-dimensional “latent 

spaces”. Because many neurons have highly correlated firing rates, a large percentage of the 

firing rate variance of a population of neurons can be explained by many, many fewer latent 

dimensions than the total number of neurons in the circuit (P. Gao & Ganguli, 2015). These 

patterns of correlations across neurons can be captured by “covariance matrices”, and there are a 
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number of related linear (principal component analysis and Gaussian-process factor analysis 

(Cunningham & Ghahramani, 2014; Cunningham & Yu, 2014; Yu et al., 2009)) and nonlinear 

(autoencoders, t-SNE (Kramer, 1991; Pandarinath et al., 2018; van der Maaten & Hinton, 

2008)) methods used to compute and study these latent signals.   

 

Preparatory activity sets the initial conditions of a neural state space dynamical system: 
A prominent idea that emerged concurrently with this latent-space view is that cortical networks 

act as “dynamical systems” (Shenoy et al., 2013). The fundamental property of a dynamical 

system is that the state at some time in the future is determined by its current state, as well as 

any inputs to the system (Hirsch et al., 2013; Sussillo, 2014). In this sense, the current state of an 

ensemble of neurons recorded from the motor cortex appears to determine its future state with 

remarkable accuracy (Shenoy et al., 2013; Sussillo et al., 2016). The movement of the neural 

state within these latent spaces is often quite similar across trials (Kaufman et al., 2014; 

Pandarinath et al., 2018; Russo et al., 2018) as though it were playing out a fixed pattern, 

analogous to the dynamical trajectory of the three dimensional Lorenz attractor (Figure 3A). The 

particular path taken by the neural state seems to depend on the state of the system determined 

by planning-related activity prior to the go cue (Kaufman et al., 2014).  

 

A recent experiment using optogenetic stimulation provided causal evidence of the critical role 

of preparatory activity in setting these initial conditions. Mice were trained to lick one of two 

water ports designated by the frequency of an auditory tone. Shortly after the tone there was a 

go cue, allowing the mouse to lick. Neural activity preceding each lick clustered in two discrete 

locations in motor cortical state space that were predictive of the eventual lick direction (Inagaki 

et al., 2019). Optogenetic stimulation of this region of the brain during the planning period 

perturbed the activity, which typically returned to its unperturbed state. However, occasionally, 

the preparatory activity “jumped” from a location encoding one choice to the opposite one. On 

these trials, the mouse played out the behavior that corresponded to the post-stimulation activity, 

rather than that of the original cued behavior. This experiment supports the theory that the 

dynamics of this region build “attractors” that are the starting locations for two different 

movements. 

 

Further evidence of the coexistence of quite different dynamics within the cortical landscape 

comes from researchers who found a rapid switch between fundamentally different covariance 

patterns in mouse forelimb motor cortex in the transition between innate treadmill walking and a 

learned reaching task (Miri et al., 2017). These patterns, reflecting the functional interactions 

between cortical neurons, are thought to underlie differential control of muscles by distinct 

short-latency corticospinal pathways. Movement planning may amount to choosing an initial 

position within the landscape that produces specific trajectories of neural activity. 

 

The evidence from these two experiments in mice suggests that activity in the motor cortex 

simply moves between existing regions of neural state space that are associated with the 

dynamics appropriate for different behaviors. The alternative, if one assumes that these 

dynamics are an emergent property of the synaptic weights in a network, is that massive 

numbers of synapses are altered each time a different movement is planned. Unlike these 

examples of rapid changes in neural covariance patterns, monkeys forced to adopt novel 

covariance patterns in a Brain-Computer Interface experiment required weeks of careful 
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coaching to learn the behavior (Sadtler et al., 2014). We discuss the differences between these 

observations and their implications at greater length in Box 2. 

 

 

 
 

 

Figure 3: Dynamical systems and motor potent dimensions help explain how the brain 

produces patterned muscle activity. A: Lorenz attractor, an autonomous dynamical system 

whose state develops as a function of a set of differential equations. B: One-dimensional 

projection from the Lorenz system, which generates a pattern over time. C: Low-dimensional 

trajectories of neural activity. Preparatory activity (blue) falls on a line determined by specifics 

of the motor plan. The trajectories of the neural state play out based on those initial conditions 

(green). Adapted from (Kaufman et al. 2014), Figure 3B.  

 

 
Motor-potent spaces translate neural dynamics into muscle activity: 
To produce a movement, dynamical trajectories of the neural state must be transformed into 

time-varying muscle commands. In NDS, a lower-dimensional control signal is “read out” of the 

cortical population activity by downstream neural systems, much like the time-varying 

projection of the Lorenz state onto the Y dimension (Figure 3B, green axis). By choosing the 

correct dynamics (the correct shape in Fig 3A) and the correct decoding axis (Fig 3B), arbitrary 

muscle patterns can be generated. 

 

A remaining puzzle is why the substantial modulation of neural activity in both primary and 

premotor cortices after target presentation but prior to the go-cue does not cause undesired 

muscle activity during motor planning. Two major hypotheses have been proposed. The first is 

that there is a well-timed motor gating signal that prevents early, aberrant movements during 

motor planning (Benjamin et al., 2010; Duque et al., 2017; Duque & Ivry, 2009; Evarts & Tanji, 

1974). Dimensionality analysis offers an alternate hypothesis. Because there are many more 

neurons than muscles, any linear readout between the two includes a “null space”, the directions 

along which the M1 neural state can move without changing muscle activity (Figure 3, red and 

blue axes). In contrast, the “output-potent space” is the set of directions that do change the 

muscle activity (Figure 3, green axis). Because there are only about 50 muscles in the arm and 

millions of M1 neurons, the vast majority of directions in the M1 neural state space are “output-
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null”. Preparatory activity restricted to the null-space would cause no muscle activity. 

 

By fitting linear models relating the M1 activity to EMG signals, Kaufman et al., demonstrated 

that most of the preparatory activity is indeed, output-null (Figure 3C) (Kaufman et al., 2014). 

This implies that the subspace of preparatory activity, and therefore the initial conditions for 

every dynamical trajectory that M1 is able to produce, is embedded within dimensions that do 

not project to muscles. Movement planning amounts to choosing an initial position within this 

landscape, resulting in dynamics that generate a pattern in the output-potent space producing 

appropriate muscle activity.  

 

Neural dynamical systems and sensory feedback 
Despite its appeal, the dynamical view of the motor system is difficult to reconcile with the 

substantial OFC literature. In particular, the lack of a prominent role for sensory inputs means 

that NDS can’t address questions involving feedback control. More generally, the presence of 

sensory feedback complicates the interpretation of apparent “dynamics” in motor cortex. For 

example, a recent study demonstrated that neural population activity in the somatosensory 

cortex (Kalidindi et al., 2021) possesses many features attributed to dynamics in M1, in 

particular, rotations in neural state space (Russo et al., 2018). For these reasons, it is difficult to 

say what proportion of the dynamical behavior that we see in M1 is due to its own dynamics, 

versus dynamics “inherited” from other areas, including sensory input. 

 

A recent study from the Hantman lab highlights the importance that inputs may play in the 

dynamics observed in M1, in particular, inputs from the motor thalamus (Sauerbrei et al., 2019). 

Mice were trained to retrieve a food pellet and bring it to their mouth, a behavior typically 

accompanied by consistent patterns of motor cortical activity across trials. Optogenetically 

inactivating the thalamic inputs to motor cortex eliminated the activity normally seen in motor 

cortex and caused the mice’s reaching movements to fail. At least in the mouse, motor cortical 

dynamics are apparently contingent on thalamic inputs.  

 

While these data are difficult to understand from the NDS perspective, through the lens of 

optimal feedback control they have a clear interpretation. Without a state estimate from VL, the 

sensory state will be outside the set of sensory inputs that the motor system has learned to 

handle. Not able to interpret the state of the limb, the motor system cannot produce normal 

motor output. However, while OFC highlights the importance of these sensory signals, its 

explanation is agnostic to how neurons might perform this computation. To describe how the 

algorithm of OFC might be implemented in the brain, we need the tools of NDS. This 

experiment underscores the need for a single model through which the combined body of 

literature of NDS and OFC can be understood.  

 

Dynamical Feedback Control: 
The differing priority of sensory input represents a disconnect between the OFC and NDS 

frameworks; OFC models see sensory feedback as fundamental while most models of neural 

dynamics are agnostic to it. To connect these two theories, we propose that signals from the 

state estimator project to a subspace of M1 neural activity we call the “sensory-potent space”. 

This space is complementary and orthogonal to a “non-sensory space”, the set of M1 

dimensions that receive no sensory inputs. Together the sensory-potent and non-sensory spaces 
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comprise the complete M1 neural space.  By moving signals from specific sensory-potent 

dimensions into output-potent dimensions, dynamics in M1 might approximate a specific set of 

feedback gains. In this scheme, the neural dynamics seen during behavior are “contingent” 

dynamics, contingent on the sensory inputs entering motor cortex and the contextual inputs that 

comprise the preparatory activity.  

 

But how does motor cortex find dynamics that generate one particular movement from our 

behavioral repertoire? The possibility that the motor cortex might change the dynamics of a 

specific region of neural state space in the time it takes to prepare a movement seems unlikely, 

especially if those changes require alteration of many synaptic weights (see Box 2). Inspired by 

preparatory activity described by NDS, we propose instead that inputs encoding the associated 

costs, payoffs, and task requirements (from the planning module) move the neural state to 

regions where the dynamics already embody different mappings from limb state to motor 

output. In DFC, choosing the initial conditions of a dynamical system in NDS and choosing a 

feedback controller in OFC are in fact two different descriptions of the same process.  

 

A simple dynamical feedback controller: 
To demonstrate this idea, we will break down one of the simplest feedback loops in the body, 

the monosynaptic stretch reflex (Figure 4). In this example, the Ia afferent signals the 

lengthening velocity of the quadriceps muscle, and the α-motor neuron firing rate determines the 

activation of the quadriceps muscle. The synaptic weight between the 1a afferent and the α-

motor neuron acts as a feedback gain. 

 

This circuit can also be viewed as a simple dynamical system. At time t, the Ia afferent fires an 

action potential, followed by the α-motor neuron at time t+1. The neural state develops 

according to the dynamics dictated by the simple monosynaptic circuit (Figure 4B, black lines 

furthest into the page). Inputs to this dynamical system come from the environment via the 

muscle spindles, causing a predictable dynamical transformation that moves the 2D neural state 

from the sensory to the motor dimension. 

 

In practice, the stretch reflex must be more complex than this; there must be some way of 

inactivating it, lest attempts to move voluntarily recruit the reflex and brake the movement. 

Evolution has devised a way to add context to this reflex, allowing it to treat self-generated 

movements differently from those imposed externally. To our simple 2D system we add a third 

dimension, an input causing presynaptic inhibition of the 1a terminal (Figure 4A, green 

(Meunier and Pierrot-Deseilligny 1989)). The circuit is still a feedback loop, now with gain that 

depends on where the neural state sits along the Inhibition dimension (Figure 4B). When 

Inhibition is zero, the stretch reflex occurs unimpeded (Figure 4B, black trace). When Inhibition 

is large, the stretch reflex does not occur, as its gain is zero (Figure 4B, light grey trace). At 

intermediate levels of inhibition, the reflex occurs with a gain that is functionally appropriate for 

the context.  

 

The circuit is also now a slightly more complex dynamical system. At time t, the projection of 

the neural state along the 1a afferent dimension moves into the dimension of the α-motor neuron 

with dynamics determined by the projection of the neural state onto the Inhibition dimension 

(i.e., the context). Finding the dynamics within the Ia-α plane at different values of Inhibition is 
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equivalent to finding the feedback gain for that transformation. 

 

This simple example illustrates the key components of the DFC model. Its instantiation in the 

brain includes higher-dimensional versions of the motor-potent, sensory-potent, and context 

dimensions (Figure 4C). There exists an output-potent subspace in M1 which transmits signals 

to the muscles analogous to the α dimension, and a somatosensory subspace into which the state 

estimator projects proprioceptive information (both actual and predicted), analogous to the 1a 

dimension. Inputs from (at least) the basal ganglia (via thalamus) and premotor areas provide 

inputs analogous to the Inhibition dimension. We might designate these inputs context and 

planning subspaces, depending on the information they encode. The extremely high number of 

non-sensory and output-null dimensions provide many “scratch” dimensions on which dynamics 

can be sculpted to produce appropriate sets of feedback gains. By driving the state to a location 

within the context/planning subspace, these inputs set the initial conditions of a dynamical 

system with specific transformations from sensory to motor dimensions (Figure 4C). 

Equivalently, this preparatory activity sets the feedback gains of a complex sensorimotor 

transformation, thereby implementing the feedback controller predicted by OFC. 
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Figure 4: Stretch reflex as a simple 

dynamical feedback controller. A: 

Schematic diagram of the stretch reflex. Blue 

circle denotes the cell body of the Ia afferent 

muscle spindle. Red circle denotes the alpha-

motor neuron projecting to the quadriceps 

muscle. Green axon represents presynaptic 

inhibitory axon. B: Dynamical landscape of 

this simple circuit. Red axis denotes the 

firing rate of the α-motor neuron, blue axis 

the 1a afferent firing rate, and green axis the 

firing rate of the presynaptic inhibitory 

neuron. Black and grey lines show the 

movement of neural activity in state space 

during a tendon tap at different levels of 

Inhibition. C: Generalization of this model to 

motor cortex, with α-motor neuron firing rate 

replaced by an M-dimensional output-potent 

subspace and Ia afferent dimension replaced 

by an N-dimensional sensory-potent 

subspace. Inhibition dimension is replaced 

by a C-dimensional context and planning 

subspace.  
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A prototypical reach viewed through Dynamical Feedback Control 
Of course, voluntary reaching is more complicated than even a complex reflex. How does DFC 

address the situation of a monkey presented with a target in one of two directions? In this case, 

the monkey may plan a movement but must delay its execution until receiving an auditory go 

cue. Before the go cue, while the monkey’s hand is stationary and sensory inputs are 

unchanging, inputs from premotor areas and basal ganglia push motor cortex into a preparatory 

state that depends on the motor plan and costs/rewards, respectively (Z. Gao et al., 2018; 

Kaufman et al., 2014; Li et al., 2016). Movements along these preparatory dimensions place the 

neural state in a region whose local dynamics approximate a feedback controller that drives the 

limb to a desired location. The neural state remains in this preparatory location until the auditory 

cue nudges it, initiating its movement into the output-potent dimensions. 

 

Following movement preparation, the neural state moves into output-potent dimensions, sending 

motor commands to the muscles and efference copy signals to the cerebellum. The cerebellum 

uses these signals to predict the sensory consequences of the motor commands. These predicted 

proprioceptive signals travel to area 3a; where they are combined with lagged signals to provide 

a combined state estimate, which projects into the sensory-potent dimensions of M1. Motor 

cortex transforms this combined state estimate into motor commands with gains determined by 

the dynamics of the M1 cortical circuit. These dynamics are likely not wholly intrinsic to M1, 

but also emergent from the recurrent connections with thalamus and other cortical areas. 

Importantly, by operating on state estimates derived from both prediction and lagged sensory 

signals, the same feedback controller can operate in predictive and reflexive modes (see Box 1). 

Thus, the movement unfurls through a recurrent loop connecting M1 to the periphery: motor 

outputs generate sensory inputs generate motor outputs. The dynamics that we observe in M1 

are therefore the dynamics of the motor cortex coupled to the mechanics of the arm. 

 

In this reflex-centric view of voluntary movement, reaches to the left and right would require 

different mappings from state to action (i.e., different feedback gains) in order for the sensory 

state at movement onset to produce the appropriate muscle activity. In DFC, the preparatory 

neural state moves along planning dimensions into different dynamical regions of the landscape 

for these two reach directions. The dynamics in these regions of state space build different 

sensory-motor mappings that generate different movements. By mapping task-relevant, but not 

task-null, sensory-potent dimensions onto corrective output-potent motor dimensions, the 

emergent dynamics of the motor system could correct only those errors that will hurt task 

performance, i.e., the minimum intervention principle hypothesized by OFC. How the brain 

modifies the dynamical landscape is still unclear, but this model of the motor cortex closely 

resembles a reinforcement learning policy; work connecting motor control and deep 

reinforcement learning may be essential to understanding the motor cortex.  

 

Implications of Dynamical Feedback Control 
 

What feedback transformation occurs during reaching? 
This combined perspective allows researchers to ask Optimal Feedback Control questions in the 

language of Neural Dynamical Systems, but models are only useful if they can make novel, 

falsifiable predictions. NDS makes two key predictions. First, motor cortical dynamics should 

mirror corresponding sensory-motor transformations. In other words, movements of the M1 
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neural state from sensory-potent dimensions into output-potent dimensions should predict the 

actual motor activity. This finding would suggest that dynamics help to produce descending 

commands to muscles. Second, the transformation from sensory-potent to output-potent 

dimensions (i.e., the feedback gain) should change with the task requirements, not in-place, but 

through a translation of the neural state along context dimensions to a different dynamical 

landscape. Confirmation of these two predictions would demonstrate the utility of DFC as a 

multi-level description of the feedback control implemented by motor cortex. 

 

We propose to use a 2D, visually guided reaching task while recording from M1. The monkey 

begins a trial by holding a robotic manipulandum in a target near to the body aligned left/right 

with the center of the screen (Figure 5A). We show the monkey a distant, midline target that is 

either narrow or wide (spanning the entire upper screen), chosen randomly across trials. After a 

random delay, we provide an auditory go cue. After acquiring the target, the monkey receives a 

liquid reward. On some trials, we apply a left or right perturbation to the monkey’s hand during 

the reach and record the perturbation evoked neural activity and reflexively generated corrective 

force. Bumps during a reach to a narrow target are task-relevant, while bumps during a reach to 

a wide target are task-null. Therefore, we expect that the corrective motor response will differ 

between target widths. Our question is: can the dynamics of the sensory-motor transformation in 

M1 predict the target-dependent corrective response?  

 

To determine the sensory-motor mapping in M1, we need to know which of its dimensions are 

sensory-potent and which are output-potent. By relating increases in sensory-potent dimensions 

to increases in output-potent dimensions, we can empirically estimate a feedback gain, the 

strength with which a given sensory input is transformed into motor output. We can map the 

dimensions of the sensory-potent subspace by recording M1 activity during perturbations of the 

monkey’s hand at rest (Figure 5B).   

 

Determining the output-potent space is a bit more complicated. If we were to simply measure 

M1 activity during voluntary movement and ignore the highly correlated reafferent inputs to M1 

(as has been done previously) our estimates would be inaccurate. Instead, we exclude the 

previously identified sensory subspace activity (Figure 5B) from the neural space, then fit a 

model that relates the remaining M1 activity to handle forces. This will give us a motor 

subspace that maps neural activity to right and left force generation and is orthogonal to the 

somatosensory subspace (Figure 5C).  

 

We can use these low-D sensory and motor subspaces to examine dynamics during the task. 

Specifically, we want to project the neural activity for a given target width onto the plane 

defined by single sensory and motor dimensions. The pair of dimensions should be related; for 

example, we expect that an error in a task-relevant sensory dimension (bump left) should be 

transformed into a projection of the neural state onto the output-potent dimension that corrects 

that error (move right; Figure 5D). The dynamics projected onto this plane will show how the 

sensory dimension moves into the motor dimension, or seen through the OFC lens, the feedback 

gain coupling the sensory input to the motor output. We would measure gain for a given 

movement by computing the ratio between the (motor) projection of the neural state onto the 

force dimension and its (sensory) projection onto the sensory-potent dimension. For a given 

sensory projection, trials with a small motor projection have a small feedback gain, while those 
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with a large motor projection will have a large feedback gain.  

 

 

 
Figure 5: Example experiment under Dynamical Feedback Control. A: Task diagram. 

Narrow and wide targets represented by red square and rectangle, respectively. Yellow circle 

represents the cursor, controlled by hand position. Blue arrow represents a force perturbation that 

moves the monkey’s hand to the left. Red arrow is a force generated by the monkey to the right. 

B: Schematic of responses in M1 to leftward bump perturbations. Black axes represent the high-

dimensional neural space in M1. Blue axis represents the leftward bump sensory-potent 

dimension in M1. Black circle represents the neural state prior to the bump, which moves along 

the blue axis in response to the bump (blue arrows here and in panel A). C: Black axes represent 

the non-sensory subspace of M1 activity. Red axis represents the rightward force output-potent 

dimension in this reduced M1 space. Red arrows indicate movement of the neural state (black 

circle) corresponding to rightward force generation. D: Diagram of expected results (analogous 

to Figure 4B). Blue axis represents the leftward bump sensory-potent dimension in M1 (of 

Figure 5B). Red axis represents the rightward force output-potent dimension (Figure 5C). Green 

axis represents the context dimension, along which the target width is encoded during the 

preparatory period. Black line represents the expected dynamical behavior of M1 as a response 

to a leftward bump during a reach to a narrow target. Grey line corresponds to behavior for a 

wide target. E) Diagram of hand motion that arises from projections onto M1 motor-potent 
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dimensions that are a function of two sensory-potent dimensions in M1 that encode hand position 

(blue axes) and a context dimension that encodes target width (green axis). Orange arrows 

indicate the mapping from sensory to motor states as in Fig 2A. 

OFC theory assumes a perpendicular bump will cause a task-relevant error primarily during 

reaches to the narrow target. Therefore, we predict that a given neural projection onto the bump-

related sensory-potent dimension will generate a larger projection onto the corrective motor-

potent dimension for narrow-target trials than for the wide-target trials (Figure 5D). This would 

indicate that the dynamics of the circuit (equivalently, the feedback transformations) are tuned 

to correct only for task-relevant perturbations.  

 

Changes in the location of the neural state along the green axis during the preparatory period 

should encode the target type (Figure 5D, green axis); these movements will be accompanied by 

changes in the feedback gain of the sensory-motor transformation. Furthermore, we predict that 

the magnitude of the projection of the preparatory activity onto the context dimension (green) 

will correlate with the gain of the sensory-motor transformation for single trials. A trial having 

preparatory activity with a shorter projection along the green context axis will have a larger 

feedback gain than one with a longer projection, even for trials with the same target widths.  

 

This experiment would allow us to test 1) whether dynamics transform M1 sensory-potent 

dimensions into output-potent dimensions in a way that predicts the corrective forces generated 

by the monkey, and 2) whether different locations along the preparatory dimensions of M1 

constitute different regions of the dynamical landscape, each tuned to produce appropriate 

sensory-motor transformations to generate the movement and correct for task-relevant errors 

while ignoring task-null errors. 

 

Interestingly, there is nothing constraining this model to correct only mechanical perturbations; 

it is equally well equipped to deal with more abstract perturbations such as a target that changes 

location mid-reach. If the landscape itself cannot be altered quickly enough, an altered target 

location could be dealt with by moving the neural state to a region of the context subspace that 

encodes the new target (Figure 5E). In this view, DFC presents motor cortex (and the other 

brain areas to which it is coupled) as a dynamical system embodying plans for all likely 

movements, each existing in a range of possible contexts. We describe this “multiverse” concept 

in more detail in Box 3. 

 

 

Summary and Extensions of DFC: 
Under DFC, inputs from planning modules designate the location within the dynamical 

landscape used to generate a movement. To understand how these locations are chosen, we need 

to understand how basal ganglia and premotor inputs affect the M1 neural state, i.e., the BG-M1 

and Premotor-M1 input dimensions. These dimensions are analogous to the sensory-input 

dimensions to M1 described above, except they represent the dimensions in M1 that receive 

inputs from other brain areas. The analytical tools that have been used to find communication 

dimensions between other brain areas  (Perich et al., 2018; Semedo et al., 2019) can be used to 

compute these M1 input dimensions from basal ganglia and premotor areas as well. Given what 

we know about the roles of BG and PFC in the motor system, we predict that the variables 
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encoded in the BG-input dimensions to M1 should relate to costs of movement, while the 

variables encoded along PFC-input dimensions should relate to the motor plan itself. Using 

DFC as a guide, we can map the functional consequences of inputs from other brain areas on 

M1 feedback control. 

 

Importantly, we do not mean to suggest that the sensory-motor dynamics that we expect to find 

in M1 are “intrinsic” to M1 itself. Rather, these dynamics probably arise from recurrent 

coupling of M1 to a variety of other brain regions. Our model highlights one specific example of 

inter-region coupling that is experimentally tractable, namely, the coupling of M1 and the 

somatosensory periphery. Future work examining the connections of M1 to other areas (e.g., 

thalamocortical coupling) will be critical to untangling intrinsic M1 dynamics from those that 

arise from recurrent connections with other brain areas. 

 

The DFC model makes apparent that tools to estimate motor potent spaces and neural 

covariance matrices can be biased by the effect of somatosensory inputs, as the structure of the 

neural population activity arises from both the dynamics of the feedback controller and the 

sensory information that flows through it. Including these inputs into the DFC model allows 

more accurate estimates of these characteristics of motor cortex.  

 

There are some important limitations to this theory. Many components presented here, though 

based on existing evidence, remain speculative. Further work to characterize area 3a is needed 

to confirm that it receives both predicted and actual somatosensory signals, and that it combines 

these signals as a state estimator. In addition, any discussion of motor-potent projections makes 

the implicit assumption that these properties change only slowly, perhaps on the order of the 

time course of motor learning. There is evidence, however, that spinal interneurons process 

descending corticospinal signals even during motor planning (Prut & Fetz, 1999) and these 

signals are further modulated by the nonlinear properties of motoneurons (Dum & Strick, 1996; 

Heckman et al., 2005; Naufel et al., 2019; Shalit et al., 2012). Until we have a better 

understanding of how processing in the spinal cord affects descending cortical signals, we must 

interpret motor cortical signals with caution.  

 

Groups that study the neural control of movement from the perspectives of OFC and NDS are 

often not in close communication with one another. Dynamical Feedback Control may help to 

bridge this gap between the high-level motor control theory presented by OFC and the 

empirically derived dynamical landscape of NDS. We propose it as a unifying theory that can 

explain our current understanding of the motor system at multiple conceptual levels and guide 

future inquiry. 
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Box 1: Voluntary movement as a complex transcortical reflex 

A recent hypothesis suggests that voluntary and reflexive control of the arm share a sensory-

motor mapping (Scott et al., 2015). Supporting this hypothesis is the observation that adaptation 

of long-latency reflexes is accompanied by a corresponding adaptation of voluntary reaches 

(Maeda et al., 2018; Pruszynski, 2014; Scott et al., 2015). Conversely, learning to reach in an 

altered force environment causes adaptation of reflexes (Maeda et al., 2018). This bidirectional 

transfer of motor learning suggests that updates are not simply applied concurrently to two 

separate models for voluntary and reflex control, but instead to a single, shared neural circuit. 

 

Extending this logic, shared circuitry for reflexive and voluntary control of movement might 

allow a precomputed sensory-motor reflex mapping (as in Figure 2C) to produce controlled 

voluntary movements on trials without perturbations. The hand would move to the target by 

simply following the contour of the dynamical sensory-motor mapping, the direction and 

magnitude of endpoint motion determined in part by predicted sensory inputs based on efference 

copy, as well as direct efferent control.  

 

However, when we make voluntary movements, we feel a sense of agency that is not present 

during reflexive movements (Haggard, 2017). This feeling is difficult to reconcile with a motor 

system acting as a simple feedback controller. Interestingly, a major component of this sense of 

agency depends on how well reafferent sensory information matches prediction (Blakemore et 

al., 1998, 2000); this corresponds to the function of the state estimator in the OFC model. When 

predicted proprioceptive information is accurate, as in a well-learned voluntary reach with no 

perturbations, the state estimator allows the feedback controller to circumvent sensory 

conduction delays by providing predicted proprioceptive signals (black trajectory in Figure 2C), 

and perhaps a sense of agency. In contrast, when predicted somatosensory information is 

inaccurate, such as when a subject begins to learn a predictable force field, the discrepancy 

between predicted and actual sensory information may produce a feeling that “something” else 

moved your limb. We hypothesize that this feeling of agency should return as learning 

progresses and prediction accuracy improves; to our knowledge this has never been tested.  

 

Box 2: Learning: Fast and Slow 

The location of preparatory activity within the neural state space seems to set the appropriate 

dynamics to allow movements in particular directions (see Fig 3C and  (Churchland et al., 2006; 

Kaufman et al., 2014). Furthermore, there is evidence that this neural state space consists of 

multiple, fixed attractors, not a continuously remodeled dynamical landscape (Inagaki et al. 

2019). However, when we interact with the world, we sometimes find that our actions don’t 

produce the intended outcomes. Often this mismatch has to do with changes in the environment; 

in many cases we can compensate in a few minutes, but occasionally we are presented with 

something that takes much longer to learn. What differentiates changes we can learn quickly 

from those requiring days or weeks?  

 

There are many mechanisms that can change the strength of existing synapses or form new ones, 

with time courses ranging from tens of milliseconds to hours or days. Activity dependent long-

term potentiation and depression are thought to underlie the persistent changes associated with 
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memory, including motor learning. Learning to make movements against a novel but predictable 

force field is a paradigm used since the early ‘90’s to study these processes (Scheidt et al., 2000; 

Shadmehr & Mussa-Ivaldi, 1994). Adaptation to new movement dynamics can happen in tens of 

minutes, but the learning remains fragile until the protein synthesis required for consolidation 

and stabilization of the underlying synaptic weight occurs (Citri & Malenka, 2008; Ranganathan 

et al., 2014; Shadmehr et al., 1995). A recent experiment examined the changes in the neural 

state space when monkeys learned to reach in an altered force environment. With roughly the 

time course of the behavioral adaptation, preparatory activity in motor cortex began to move in 

dimensions orthogonal to those of the control condition, pushing the neural state into a different 

region of the dynamical landscape (Sun et al., 2020)With roughly the time course of the 

behavioral adaptation, preparatory activity in motor cortex began to move in dimensions 

orthogonal to those of the control condition, pushing the neural state into a different region of 

the dynamical landscape (Sun et al., 2020). As in the mice experiments reviewed in the main 

text, we propose that in these experiments, dynamics appropriate for the curl field already 

existed, learned during the extensive behavioral training prior to the neural recordings.  

 

Another set of monkey experiments studied the neural state changes during two types of motor 

adaptation that had very different time courses. In those experiments, monkeys were initially 

trained to control a cursor using a BCI decoder with an “intuitive mapping”, one based on the 

natural covariance structure of the neural activity during hand movements. Subsequently, this 

decoder was altered in one of two ways. Successful adaptation either did or did not require the 

neural state to move “outside the manifold” and thereby break the natural covariance patterns 

among neurons (Sadtler et al., 2014). Monkeys could learn a “within-manifold” perturbation 

within a single experimental session. However, outside-manifold perturbations required weeks 

of coaching through progressive steps (Oby et al., 2019). Even for the within-manifold 

perturbations, monkeys “reassociated” their fixed repertoire of neural activity patterns to the 

new movements, a suboptimal strategy that preserves the covariance of the population activity 

on the manifold at the expense of task performance (Golub et al., 2018). Thus, for both within 

and outside manifold perturbations, the monkey finds it difficult to break the structure of activity 

across neurons, perhaps because doing so requires significant, coordinated synaptic weight 

changes.  Remarkably, in one experiment after having learned the out of manifold perturbation, 

the monkey could then switch readily between it and the intuitive decoder (Oby, personal 

communication). 

 

We suggest that some movement planning and some motor learning can happen relatively 

quickly by finding a region of the existing dynamical landscape with appropriate dynamics 

(some more easily found than others). When the appropriate dynamics don’t exist, the landscape 

itself needs to be altered. In this case, the brain may adopt a process analogous to training a 

policy in a deep reinforcement learning (RL) network. Deep RL models can learn expressive 

control policies that function across highly variable task conditions, such as altered force 

environments (OpenAI et al., 2019; Tobin et al., 2017). These policies are analogous to optimal 

feedback controllers; both transform sensory inputs into control signals, subject to loss and 

optimality criteria. In the brain, learning at the edge of the known landscape likely requires 

synaptic changes, changes that, as in RL, are reinforced by trial success and failure. 
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Box 3: The dynamical systems multiverse: 

We have attempted to paint a picture of a sensorimotor brain containing a multi-dimensional 

landscape in which planning a reaching movement involves selecting a track with contours that 

move the neural activity (and hand) to the intended target. The walls of this track defend against 

small perturbations; larger perturbations may bump the brain state from the “left” track onto the 

neighboring “right” one (Figure 2A). While perturbations within a given track are handled by a 

single feedback controller, large perturbations (or target shifts or even abstract rule changes) 

might push the neural state to a track that embodies a different set of sensorimotor 

transformations, the “track” for an entirely different feedback controller (Figure 5E and the 

mouse optogenetic experiment (Inagaki et al., 2019)). This view of the motor cortex implies the 

simultaneous presence of tracks that embody a variety of control strategies for many possible 

movements and contexts, accessible by a simple translation in neural state space.  

 

Of course, the world is considerably more complex than left and right movements. In this view, 

the neural landscape must somehow include all likely movements, perturbations, and contexts: 

many narrow, parallel tracks separated by substantial walls and perhaps several shallow tracks 

all within one broad track. Perturbations push the neural state from one track to another more 

easily for those tracks with lower walls (Finkelstein et al., 2021). We propose that this is 

possible because of the ultra high-dimensional nature of motor cortex, with theoretically as 

many dimensions as there are neurons. Its virtually limitless state space allows for the storage, 

retrieval, and execution of a vast number of previously learned motor behaviors. 

 

This is not to say that rapid changes to the dynamical landscape cannot occur. To execute a 

particular movement with greater urgency or care, one might desire a narrow track with high 

walls as opposed to a wide sloping plane. Perhaps there is an alternate means to modulate the 

general form of the tracks within the landscape beyond the adjustment of many specific synaptic 

weights. Diffuse neuromodulation may play this role.  

 

A large body of literature has demonstrated the effects of neuromodulators, which can up or 

down regulate neuronal excitability and alter synaptic efficacy (Jankowska et al., 2000; Vitrac & 

Benoit-Marand, 2017). Since dynamics emerge from large populations of interconnected 

neurons, a critical undertaking will be to understand how neuromodulatory effects, presently 

understood best at the level of single synapses, influence the circuit dynamics themselves. 

Research using artificial neural networks has begun to model the consequences at the network 

level of these cellular and synaptic level changes (Shine et al., 2021; Tsuda et al., 2021). An 

appealing function of these neuromodulators might be to apply “filters” that sharpen or smooth 

the geometry of the landscape. For instance, increases in vigor (related to the levels of striatal 

dopamine (da Silva et al., 2018; Panigrahi et al., 2015) might modify the dynamical landscape to 

produce larger projections into the muscle-potent space, thereby increasing movement speeds at 

the cost of accuracy. In addition to the motor system’s ability to rapidly explore the known 

landscape and to extend its edges through prolonged training and practice, neuromodulation 

might allow the brain to tune the dynamical landscape globally, tailoring it to current 

environmental or psychological conditions. 
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