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Simple Summary: Selection of molecularly targeted anti-cancer treatments with monoclonal anti-
bodies as well as with small molecules is often informed by immuno-histochemical confirmation of
target marker expression on tumor tissue that is obtained by invasive biopsy. However, tissue bi-
opsies are resource-intensive with procedural risks and limitations, and repeat sampling may not
be possible following tissue insufficiency. Therefore, a non-invasive alternative for determining the
presence of molecular markers in cancer patient sample, for selection of targeted anti-cancer drugs
is warranted. Here, we describe the analytical and clinical performance characteristics of a Circulat-
ing Tumor Cell (CTC)-based test to determine the presence of PD-L1, ER, PR and HER2 in patients
with solid organ tumors for selection of respective targeted therapy. The performance characteristics
of the test support its clinical suitability and applicability.

Abstract: Biomarker directed selection of targeted anti-neoplastic agents such as immune check-
point inhibitors, small molecule inhibitors and monoclonal antibodies form an important aspect of
cancer treatment. Immunohistochemistry (IHC) analysis of the tumor tissue is the method of choice
to evaluate the presence of these biomarkers. However, a significant barrier to biomarker testing on
tissue is the availability of an adequate amount of tissue and need for repetitive sampling due to
tumor evolution. Also, tumor tissue testing is not immune to inter- and intra-tumor heterogeneity.
We describe the analytical and clinical validation of a Circulating Tumor Cell (CTC) assay to accu-
rately assess the presence of PD-L122C3 and PD-L128.8, ER, PR and HER2, from patients with solid
tumors to guide the choice of suitable targeted therapies. Analytically, the test has high sensitivity,
specificity, linearity and precision. Based on a blinded case control study, the clinical sensitivity and
specificity for PD-L1 (22C3 and 28.8) was determined to be 90% and 100% respectively. The clinical
sensitivity and specificity was 83% and 89% for ER; 80% and 94% for PR; 63% and 89% for HER2
(by ICC); and 100% and 92% for HER2 (by FISH), respectively. The performance characteristics of
the test support its suitability and adaptability for routine clinical use.
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1. Introduction

Rapid advances in the understanding of key cellular pathways that drive cancer cell
survival and proliferation have guided the development and use of molecularly targeted
therapies in solid tumors. These molecular targets can be cell surface receptors or partic-
ular genetic alterations such as mutations, fusions or translocations that confer an onco-
genic potential to cancer cells. Such anticancer agents act on specific molecular targets
expressed preferentially by neoplastic cells, and therefore are expected to be more effec-
tive with fewer side effects than conventional cytotoxic anticancer treatments (chemother-
apy) [1]. A wide range of targeted drugs have been approved by the US Food and Drug
Administration and also recommended as standard of care therapies for multiple solid
organ tumors. Immune checkpoint inhibitors Pembrolizumab, Nivolumab, Atezoli-
zumab, Cemiplimab-rwlc, Ipilimumab for certain PD-L1 positive tumors; hormonal ther-
apy such as Tamoxifen, Fulvestrant, Anastrozole, Letrozole, Exemestane targeting estro-
gen receptor (ER) in breast cancer; anti-HER?2 drugs for HER2 overexpressing breast, co-
lon, rectal, gastric and esophageal tumors are a few examples of targeted therapies in rou-
tine clinical use.

Accurate detection of the presence of these theranostic markers in tumor samples
from cancer patients is the most crucial and ongoing need for directing the choice of tar-
geted therapy for the patient. Programmed death-ligand 1 (PD-L1) expression in tumor
tissue is a predictor for the efficacy of immune checkpoint inhibitors (ICIs) in some solid
tumors. In addition to limitations inherent to tissue biopsy, predicting response to ICI
therapy remains a challenge owing to variation in the choice of PD-L1 detection antibodies
and relevant cell population, positivity cut-off values, sample processing, spatial and tem-
poral heterogeneity in PD-L1 expression, and oncogenic versus induced PD-L1 expression
[2—-4].

Biomarker-guided systemic therapy in breast cancer is based on the several molecu-
lar subtypes of the disease determined by gene expression profiling and immunohisto-
chemistry (IHC) analysis [5-9]. Discordance in tumor characteristics, predominantly the
receptor status, of primary and metastatic breast cancer is largely due to tumor progres-
sion and evolution, the choice of adjuvant therapies and sites of metastasis [10-12]. As
clinically relevant discordances in hormone receptor (ER, estrogen receptor; PR, proges-
terone receptor) and human epidermal growth factor receptor 2 (HER2) status impact
prognosis, subsequent therapy choices and patient management [11,13-15], it warrants
biopsy and retesting of the metastatic lesions for these markers [16-19]. However, biopsies
of metastases or serial biopsies in case of disease progression are cumbersome, expensive,
restricted to the most accessible metastatic site and do not account for intra-tumor and
inter-metastatic heterogeneity. Such biopsies may also not be feasible or warranted due to
poor ECOG performance score or co-morbidities.

CTC characterisation has the potential for non-invasive evaluation of these bi-
omarkers for treatment selection as well as for longitudinal assessments to determine
changes to biomarker status enabling predictive therapeutic course corrections [20-22].
We have previously demonstrated that CTCs are ubiquitous in various cancers, irrespec-
tive of radiological, metastatic or therapy status and can be utilized for non-invasive di-
agnostic triaging [23,24]. Here, we demonstrate the method development, optimization,
analytical and clinical validation of a CTC based technology to evaluate therapeutically
relevant targets viz. PD-L1, ER, PR and HER?2 from blood samples of patients with solid
organ cancers to guide choice of suitable targeted therapies. Figure 1 is a schema of the
test showing the various steps in CTC enrichment followed by ICC/FISH profiling for
therapeutic biomarkers.

2. Materials and Methods
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Samples

All biological samples for the method development, optimization and validation
were obtained from participants in two studies, TRUEBLOOD (CTR1/2019/03/017918; reg-
istered on 5th March, 2019) and RESOLUTE (CTR1/2019/01/017219; registered on 23rd Jan-
uary, 2019). Both studies, TRUEBLOOD (approved on 19th February, 2019) and RESO-
LUTE (approved on 1st January, 2019) were approved by Datar Cancer Genetics Limited
Institutional Ethics Committee. The approval letters are available at:

http://ctri.nic.in/Clinicaltrials//WriteReadData/ethic/9337723928 ECA pprovalLetter-
TrueBlood Amendment.pdf

http://ctri.nic.in/Clinicaltrials//WriteReadData/ethic/6623151333 ApprovalLetter-
byEC-RESOLUTE.pdf

In addition, leftover blood samples from known (recently diagnosed or pre-treated)
cancer patients who availed of Datar Cancer Genetics’s commercial services for cancer
management as well as healthy (asymptomatic) volunteers at the organization were also
obtained. All participants provided written informed consent. Both studies were per-
formed in accordance with the Declaration of Helsinki.

Peripheral blood mononuclear cells, Formalin-fixed, Paraffin-embedded (FFPE) tis-
sue sections, cell lines and CTACs were used for FISH. Fresh tissue collected from all
study participants was transported in transport medium or RNA later solution at 4°C.
FFPE tissue samples were transported to the laboratory at room temperature. All samples
were processed at the DCGL Laboratory facility accredited by the College of American
Pathologists (CAP) as well as Clinical Laboratory Improvement Amendments (CLIA).

Antisera and Cell Lines

The details of antisera and cell lines are provided in Supplementary Table S1. The
purity of the cell lines was confirmed by Short Tandem Repeat (STR) Profiling and testing
for Mycoplasma every 6 months.

Positive and Negative controls

The FISH assay included SKBR3 reference cell line as the positive control (with re-
ported ERBB2 gene amplification) while peripheral blood mononuclear cells (PBMCs) iso-
lated from asymptomatic individuals (males + females) with no history, suspicion or risk
of cancer were used as negative control.

Probe Design

The CE IVD approved ZytoLight SPEC ERBB2/CEN 17 Dual Color Probe (PL8) was
used for fluorescence in situ hybridization. The probe is a cocktail of ZyOrange (ex: 547
nm, em: 572 nm) labelled probe specific for the alpha satellite centromeric region of chro-
mosome 17 (D1721, CEN17) and ZyGreen (ex: 503 nm, em: 528 nm) labelled probe specific
for the chromosomal region 17q12-q21.1 harboring the ERBB2 gene.

Enrichment of Circulating Tumor Cells from Peripheral Blood

Aliquoted blood samples (5 mL) were processed for the enrichment of CTCs from
peripheral blood mononuclear cells (PBMC) as described previously [25].

Immunocytochemistry Profiling of CTCs

The process of ICC profiling of CTCs was as described previously [24]. Representa-
tive fluorescent images of Circulating Tumor Cells (CTCs) isolated from cancer patient
samples immuno-stained for A) PD-L1 22C3, B) PD-L1 28.8, C) ER, D) PR, and E) HER2
are provided in Supplementary Figure S4.

Fluorescence in situ hybridization (FISH)

Tissue sections were fixed on poly-L-Lysine coated slides for 1 h at 60 °C and then
incubated at 70 °C for 10 min. Sections were dehydrated with serially diluted ethyl alcohol
(increasing concentration), deparaffinized with 2 washes of xylene and finally rehydrated
with serially diluted ethyl alcohol (decreasing concentration). Sections were preheated
and then subjected to proteolysis with pepsin at 37 °C for 35 min. Following proteolysis,
sections were washed with 1x saline sodium citrate (55C) and dehydrated with serially
diluted ethyl alcohol. DNA probe was carefully overlaid over tissue sections and covered
with a coverslip. Denaturation was performed at 72 °C for 12 min followed by incubation
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in a humidified chamber for 17.5 hours. Post hybridization washing was performed twice
for five minutes with wash buffer (manufacturer provided).

SKBR3 and PBMCs were diluted to ~1000 cells. CTACs with cell viability of >90% and
approximately 500-1000 cells per reaction were used. Cells were fixed with fresh 3:1 meth-
anol: glacial acetic acid for 5 min. Cells were harvested by centrifugation (400 x g, 5 min,
room temperature) and resuspended in minimal diluent (as required for the number of
assays). Slides were cleaned with 70% ethanol and coated with Poly-L-lysine before use.
Approximately 10 ul of the fixed cell suspension was placed on the slide. Freshly prepared
3: 1 methanol — acetic acid fixative was carefully overlaid on the cell suspension where a
crater forms within the cell suspension. Additional fixative was overlaid dropwise until
the aqueous solution drew back to the slide edges. The slide was then drained, dried and
immersed in ice-cold methanol for 5 min. Fixed cells were treated with 2x SSC for 2 min
followed by enzymatic proteolysis for 15 min. Post fixation of the slides was performed
using 1% formaldehyde solution for 5 min followed by washing for 15 min using 1x Tris
buffered saline (TBS) and dehydration using serially diluted ethanol. DNA probe was
added onto the slide and covered with a coverslip. Denaturation was performed at 72 °C
for 12 min followed by incubation in a humidified chamber for 17.5 hours. Post-hybridi-
zation washes (2x) were performed for 2 min with cytology stringency buffer and 5 min
with cytology wash buffer SSC.

Finally, all slides (tissue / cells) were incubated with 4',6-diamidino-2-phenylindole
(DAPI) for nuclear staining. Samples were then treated with antifade mountant for 15 min
at room temperature. All slides were scanned on an Axio Imager Z2 (Carl Zeiss Ober-
kochen, Germany). Single color images were captured in several focus planes to capture
both fluorophores. The reporting of all FISH samples was as per ASCO-CAP 2018 HER2
Testing Guidelines [26-28]. Representative fluorescent images of Circulating Tumor Cells
(CTCs) and corresponding tumor tissue from a breast cancer patient positive for HER2
gene amplification (green) as evaluated by FISH is provided in Supplementary Figure S5.

IHC analysis

FFPE tissue was analyzed by IHC using Anti-Her-2 (Polyclonal, DAKO) as per stand-
ard procedures and the results were analyzed as per ASCO-CAP guidelines.

Method Development and Optimization — ICC

Details of method development and optimization studies as well as their findings are
provided in the Supplementary Materials.

Analytical Validation - ICC

Details of extensive analytical validations which established the performance charac-
teristics of the test as well as their findings are provided in the Supplementary Materials.

Analytical Validation - FISH

Analytical validation of the FISH process was performed using healthy donor
PBMCs and ERBB2/CEN17 positive SKBR3 reference cells. Details are provided in Sup-
plementary Materials and Supplementary Table S8.

Clinical Study - ICC

The ability of the test to detect theranostically relevant markers PD-L1, ER, PR and
HER? in the blood from cancer patients (n=192) across 8 different solid organ tumors was
ascertained and established. Further details are provided in Supplementary Tables S14
and S15.

Clinical Study — FISH

Clinical Validation of the test was established across 2 studies, with 54 known cases
of breast cancer in study 1 and 44 cases in study 2, details of which are provided in Sup-
plementary Materials.

3. Results

3.1. Analytical Validation —ICC
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The overall findings of the analytical validation study are presented in Table 1. The

detailed findings are provided in Supplementary Materials.
3.2 Analytical Validation — FISH

The detailed findings of the analytical validation of the FISH process are provided in

Supplementary Materials.
3.3 Clinical Validation — ICC

We evaluated the performance characteristics of the test in a case control cross vali-
dation study. The study included sub-cohorts for PD-L1 22C3, PD-L1 28.8, ER, PR and
HER?2 where status of markers (positive or negative) was previously established via im-
munohistochemistry (IHC) of tumor tissue obtained by invasive biopsy. Samples were
assigned to training and test sets in a 70%:30% ratio. Following initial assignment of sam-
ples into training and test sets, samples were shuffled and a random 30% selected succes-
sively to generate a total of 20 iterations of the test set. The performance characteristics of
the test were evaluated across the 20 iterations of the test set; this cross validation model
avoided anomalous results from overfitting (biased selection) as well as random enrich-
ment (unbiased selection) of samples in the test set. Based on the cross validation, the
median sensitivities for the markers as well as the best and worst case scenarios are pre-
sented in Table 2. The median sensitivity was 90% for PD-L1 22C3, 90% for PD-L1 28.8,
83% for ER, 80% for PR and 63% for HER2. The median specificity was 100% for PD-L1
22C3, 100% for PD-L1 28.8, 89% for ER, 94% for PR and 89% for HER2.

3.4 Clinical Validation — FISH

Clinical Validation of the test was established across 2 studies.

3.4.1 Study 1: The first study was a blinded case control study using CTACs from 54 known
cases of breast cancer where ERBB2 gain (or its absence) was previously established on
biopsied tumor tissue samples by FISH. This study employed a 20-fold cross validation
design to determine the sensitivity and the specificity.

Based on the cross validation, the median sensitivities for the markers as well as the

best and worst case scenarios are presented in Table 2 and Supplementary Table S15
(HER2 FISH). The median sensitivity, specificity and accuracy was 100%, 92% and 94%
for ERBB2 on CTCs as evaluated by FISH.
3.4.2 Study 2: The second study was based on samples from 44 known cases of breast can-
cer. The samples in this study included a subset of samples from the first study as well as
additional clinical samples which were not included in the first study. In the samples in-
cluded in this study ERBB2 (HER?2) status was previously established on tumor tissue by
immunohistochemistry (IHC) as well as by FISH and on CTACs from matched blood sam-
ples collected from the same patients. The second study included samples where IHC of
tumor tissue had indicated equivocal findings for HER2. This study established the con-
cordance of tumor tissue-FISH as well as CTAC-FISH with tumor tissue- IHC

Among the 44 malignant samples where C-ETACs were analyzed, IHC indicated
HER?2 positivity in 10 samples, negative status in 25 samples and equivocal status in 9
samples. Among the HER?2 positive samples, tissue FISH and CTAC FISH had sensitivities
of 80% and 90% respectively. Among the HER2 negative samples tissue FISH and CTAC
FISH had specificities of 100% and 96% respectively. Among the equivocal samples both
tissue FISH and CTAC fish indicated positive status in the same 2 samples and negative
status in the same 7 samples (Supplementary Table 516).

3.5. Figures, Tables and Schemes
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Figure 1. Schema of Test.

Functional enrichment of CTCs is achieved using an epigenetically activating medium that elimi-
nates all non-malignant cells and permits tumor derived malignant cells to survive. Subsequently,
the multiplexed immunocytochemistry (ICC) evaluates the presence of therapeutically relevant
markers (PD-L1 22C3, PD-L1 28.8, ER, PR, and HER2) on respective CTCs. Fluorescence in situ hy-
bridization (FISH) for HER?2 assesses the amplification of this gene in enriched CTCs. The repre-
sentative FISH image shows DAPI-stained nuclei of CTCs with HER2 gene amplification (green).

Table 1. Summary of Analytical Validation.

The findings of Analytical Validation indicate that the Test provides reliable, accurate and repro-
ducible results when samples are obtained, stored and processed under the recommended condi-

tions.
PD-L1 22C3 PD-L1 28.8 ER PR HER2
Analyte Stability 24 h 24 h 24 h 24 h 24 h
Recovery >85% >85% >85% >85% >85%
Linearity >0.99 >0.99 >0.99 >0.99 >0.99
. 7-1000 cells/5 | 7—1000 cells/5 | 5-1200 cells/5 | 5-1200 cells/5 | 5-1200 cells /5
Linear Range
mL mL mL mL mL
LoB 0 cells / mL 0 cells / mL 0 cells / mL 0 cells / mL 0 cells / mL
LoD 2 cells /5 mL 2 cells /5 mL 3 cells / 5 mL 3 cells /5 mL 3 cells /5 mL
LoQ 7 cells / 5 mL 7 cells /5 mL 5 cells / 5 mL 5 cells / 5 mL 5 cells /5 mL
90% 95% 92.5%
87.5% 87.5%
Sensitivity (76.34% - (83.08% - (79.61% -
(73.2% - 95.81%) (73.2% - 95.81%)
97.21%) 99.39%) 98.43%)
. 100% 100% 100% 100% 100%
Specificity
(86.28% - 100%) | (86.28% - 100%) | (86.28% - 100%) | (86.28% - 100%) | (86.28% - 100%)
92.31% 93.85% 92.31% 96.92% 95.38%
Accuracy (82.95% - (84.99% - (82.95% - (89.32% - (87.10% -
97.46%) 98.30%) 97.46%) 99.63%) 99.04%)
Precision CV<24% CV<24% CV<24% CV<24% CV<24%

Table 2. Clinical Performance Characteristics.
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The table provides the performance characteristics of the Test which were determined from 20 iter-

ations of the Test Set and the Best-, Median- and Worst-Case values are reported.

Sensitivity Specificity Accuracy
Training
Set 86% 96% 92%
3] Test Set 70% 100% 86%
S (Worst) (50% - 90%) (100% - 100%) (71% - 100%)
g Test Set 90% 100% 95%
= (Median) (77% - 100%) (100% - 100%) (86% - 100%)
Test Set 100% 100% 100%
(Best) (100% - 100%) (100% - 100%) (100% - 100%)
Training
Set 86% 96% 92%
® Test Set 70% 91% 86%
§ (Worst) (50% - 90%) (79% - 100%) (71% - 100%)
3 Test Set 90% 100% 90%
& (Median) (77% - 100%) (100% - 100%) (78% - 100%)
Test Set 100% 100% 100%
(Best) (100% - 100%) (100% - 100%) (100% - 100%)
Training
Set 83% 94% 88%
Test Set 72% 71% 78%
- (Worst) (57% - 88%) (56% - 87%) (64% - 92%)
= Test Set 83% 89% 84%
(Median) (70% - 96%) (79% - 100%) (72% - 97%)
Test Set 94% 100% 94%
(Best) (87% - 100%) (100% - 100%) (85% - 100%)
Training
Set 83% 92% 88%
Test Set 60% 88% 77%
” (Worst) (43% - 77%) (76% - 99%) (63% - 92%)
a Test Set 80% 94% 87%
(Median) (66% - 94%) (85% - 100%) (75% - 99%)
Test Set 93% 100% 97%
(Best) (85% - 100%) (100% - 100%) (91% - 100%)
Training
Set 67% 91% 84%
~ Test Set 38% 72% 69%
& (Worst) (19% - 56%) (55% - 89%) (51% - 87%)
a Test Set 63% 89% 79%
(Median) (44% - 81%) (77% - 100%) (63% - 95%)
Test Set 100% 100% 92%
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Sensitivity Specificity Accuracy
(Best) (100% - 100%) (100% - 100%) (82% - 100%)
Training
Set 89% 97% 95%
= Test Set 75% 83% 81%
E (Worst) (54% - 96%) (65% - 100%) (62% - 100%)
& Test Set 100% 92% 94%
E (Median) (100% - 100%) (78% - 100%) (82% - 100%)
Test Set 100% 100% 100%
(Best) (100% - 100%) (100% - 100%) (100% - 100%)

4. Discussion

We describe a non-invasive CTC-based assay for evaluation of therapeutically rele-
vant biomarkers PD-L1, ER, PR and HER2 in blood samples from cancer patients with
potential for clinical application in solid organ tumors. This test will be especially benefi-
cial in cases where tissue insufficiency is encountered and / or an invasive tissue biopsy
for tumor profiling is unviable. The test showed high analytical as well as clinical perfor-
mance characteristics, which support its intended use for evaluation of target biomarkers
for therapy selection.

Target biomarker expression is a prerequisite to identify cancer patients who are
likely to benefit from targeted anticancer agents such as small molecules (e.g., TKI) or
monoclonal antibodies (e.g., immune checkpoint inhibitors (ICI)). Although tumor tissue
analysis by IHC remains the gold standard for most clinical molecular analysis for tar-
geted therapy selection (with the exception of NGS for EGFR, BRAF or NTRK gene vari-
ants), it faces several biological and technological challenges. Liquid biopsy can be a viable
alternative to tissue biopsy for determining expression of target biomarkers to guide ther-
apy selection. Circulating tumor cells (CTCs), being the cells of tumorigenic origin in the
bloodstream, represent an ideal biomarker for theranostic applications in cancer therapy
[21]. Serial monitoring of tumor marker profile for monitoring dynamic alterations in
marker status during disease progression or treatment is viable with CTCs which is not
possible with tumor tissue. Changes in biomarker status have been previously reported
in up to 42% of cases evaluated for either PD-L1, ER, PR or HER2 [29-35].

We have earlier demonstrated the clinical utility of circulating tumor cells enriched
by this unique method, for screening, diagnostic triaging and non-invasive assessment of
response to cytotoxic chemotherapy agents (CCA) in solid organ cancers [23-25]. In this
study, we establish the clinical utility of CTCs obtained from patients with solid tumors
in evaluating the therapeutically relevant targets, PD-L1, ER, PR and HER2 to guide
choice of targeted therapies.

Targeting the immune checkpoint proteins (PD-L1 or PD-1) with inhibitory mABs is
a treatment strategy in multiple cancers. The expression of PD-1 and PD-L1 proteins, is
considered to be one of the factors predictive of response to ICL. IHC profiling of PD-L1
status is routinely used to identify patients likely to benefit from ICI therapies. Despite
the reported value of assessing PD-L1 overexpression on cells of different types in solid
tumors as a promising marker, its predictive value is restricted due to limitations of tumor
tissue biopsy, dynamic expression profile of PD-L1, intratumoral heterogeneity as well as
the influence of immune cell infiltrate in the tumor and its microenvironment [2,36]. Here,
we demonstrate high specificity (100%) and sensitivity (90%) for both PD-L1 22C3 and
PD-L1 28.8 antibody clones for detecting PD-L1 positive CTCs in patient samples. Alt-
hough, the recommendation for ICI therapy based on our assay will be for cancer types
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as per standard guidelines and recommendations, owing to the nature of the analyte, we
could eventually extend it to a tumor-agnostic setting.

Cheng et al. recently demonstrated the feasibility of CTC PD-L1 detection in periph-
eral blood using membrane filtration based on size [37]. Another study presented that PD-
L1 status in CTCs and circulating WBCs correlate with PD-L1 status in tumor tissue, re-
vealing the potential of CTCs assessment as a non-invasive real-time biopsy to evaluate
PD-L1 expression in patients with advanced-stage NSCLC [38]. Bergmann et al also eval-
uated the feasibility to detect CTC-PD-L1 expression in patients with advanced urothelial
carcinoma using the CellSearch® system [39]. Although these studies have shown the fea-
sibility and prognostic value of PD-L1 expression on CTCs, none of them have explored
their therapeutic utility. A recent study by Choi et al on circulating tumor cell proportion
scoring (CTPS) based PD-L1 assessment concluded that pure-CTCs based CTPS could be
deployed for innovative diagnosis strategies as alternatives for tissue biopsy and to guide
the personalized treatment in NSCLCs [40].

ER, PR and HER? status is prognostic and predictive in breast cancer [41,42]. The
choice of targeted therapies in breast, ovarian and uterine neoplasms depends on the ex-
pression of ER/PR on the tumor cells. Aromatase inhibitors Anastrozole, Letrozole, Ex-
emestane; Estrogen receptor antagonists Tamoxifen and Fulvestrant are indicated for use
in ER positive breast cancer. Aromatase inhibitors, Megestrol acetate, Medroxyprogester-
one acetate and GnRH analogs are recommended for use in ER/PR-positive uterine sarco-
mas. HER2 positivity is associated with clinical benefit from anti-HER2 therapies in breast,
colon, rectal, esophageal and gastric cancers. With our test, we show sensitivity of 83%,
80% and 63% and specificity of 89%, 94%, 89% for ER, PR, HER?2 respectively on CTCs
derived from known cancer patients. Studies have reported significant heterogeneity be-
tween ER/PR/HER?2 protein expression in CTCs and primary tumor/metastatic biopsy,
and this status may change over time due to therapy [11,42-45]. In our CTC-based test, we
observed slightly lower sensitivity for HER2 by ICC than other markers. However, we
observed 100% median sensitivity and 92% specificity for HER2 as determined by FISH.
Further, CTAC FISH had sensitivity of 90% among HER2 positive samples, and 96% spec-
ificity among HER?2 negative samples with 100% concordance with tissue-FISH for equiv-
ocal samples (Table 2, Supplementary Table 516).

The extent of discordance in marker status is varied across studies probably owing
to different techniques used for evaluation of marker status. Clonal selection of minor
subtype of cells “hidden” within the primary tumor following treatment, tumor hetero-
geneity, CTC selection process or inaccurate receptor status assessment of the primary
tumor are speculated to be contributing factors for the observed discordance in tumor
marker profile of primary tumor and CTCs [46,47]. A few studies elucidating the clinical
relevance of this observation have been carried out. In the Treat CTC randomized phase
II trial, patients with HER2 non-amplified breast cancer and >1 centrally confirmed
CTC/15 ml of blood were randomized (1:1) to Trastuzumab treatment. Trastuzumab did
not decrease the detection rate of CTCs in HER2 non-amplified, non-metastatic breast can-
cer. However, as patients were eligible for this trial irrespective of CTCs HER2 status, the
conclusions of this trial may not be directly relevant here [48]. The results of the random-
ized DETECT I1II trial suggested that Lapatinib resulted in early declines in circulating
tumor cell counts (CTCs) in patients with initially HER2-negative metastatic breast cancer
but HER2-positive CTCs [49]. Thus, it seems imperative to evaluate CTC based tumor
marker status for personalised therapy guidance and monitoring.

Thus, evaluation of theranostic markers like PD-L1, ER, PR and HER?2 on circulating
tumor cells cannot only guide choice of targeted therapy, but also help stratify responders
versus non-responders. The study, however, showed comparatively lower sensitivity
(63%) for detection of HER2 on CTCs by ICC and HER?2 detection by FISH appears to be
a more accurate option. Furthermore, this approach has not been prospectively evaluated
for treatment response and patient survival where CTC profiling based treatment guid-
ance was used for therapy selection.
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Overall, the study findings indicate that our assay for ICC characterisation of CTCs
can substitute IHC analysis of tumor tissue for profiling of therapeutically relevant mark-
ers. This approach has application in cases where tumor tissue may be limited and / or
where an invasive biopsy to obtain tumor tissue may be unviable as also where tumor
evolution is suspected.

5. Conclusions

We describe a blood-based, non-invasive test which detects therapeutic biomarkers
on CTCs with high sensitivity and specificity. The CTC based detection of PD-L1, ER, PR
and HER2 markers offers a non-invasive alternative to tissue-based IHC for selection of
immune-checkpoint inhibitors and targeted therapies for treatment of solid tumors. The
test has the potential to accommodate spatial and temporal heterogeneity and is ideal for
repeat sampling, longitudinal monitoring of tumor evolution and predictive therapeutic
course corrections.

6. Supplementary Materials: The supporting information can be downloaded at:
www.mdpi.com/xxx/.
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