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Abstract: This present work explores the performance of a thermal-magnetic engine of Otto type,
considering as a working substance an effective interacting spin model corresponding to the q−
state clock model. We obtain all the thermodynamic quantities for the q = 2, 4, 6, 8 cases in a small
lattice size (3× 3 with free boundary conditions) by using the exact partition function calculated
from the energies of all the accessible microstates of the system. The extension to bigger lattices was
performed using the mean-field approximation. Our results indicate that the total work extraction
of the cycle is highest for the q = 4 case, while the performance for the Ising model (q = 2) is the
lowest of all cases studied. These results are strongly linked with the phase diagram of the working
substance and the location of the cycle in the different magnetic phases present, where we find
that the transition from a ferromagnetic to a paramagnetic phase extracts more work than one of
the Berezinskii–Kosterlitz–Thouless to paramagnetic type. Additionally, as the size of the lattice
increases, the extraction work is lower than smaller lattices for all values of q presented in this study.

Keywords: q-state clock model; entropy; Berezinskii-Kosterlitz-Thouless transition; Otto engine;
Mean- field approximation

1. Introduction

The Otto cycle, widely used by the automotive industry, is today one of the most
studied cycles theoretically and experimentally in thermodynamics [1–22]. This is due to
two fundamental reasons: The first is that the efficiency depends on the properties of the
working substance, and the second is that its execution stages separate the contributions
of work and heat [23,24]. The standard Otto cycle consists of two isochoric trajectories
and two isentropic trajectories. In the case where the control parameter is the external
magnetic field, the isochoric paths are constant magnetic field processes. In this context,
the performance of various working substances operating under an Otto cycle where
the control parameter corresponds to an external magnetic field has been studied, where
we highlight, quantum dots [25], graphene quantum dots [26], multiferroic chain [27,28],
among others.

On the other hand, the q-state clock model is the discrete version of the famous 2D
XY model [29–32], which is probably the most extensively studied example showing the
Berezinskii–Kosterlitz–Thouless (BKT) transition in the presence of a frustrated quenched
disordered phase [33–38]. The q-state clock model is one of many magnetic models to mimic
the thermodynamics of some materials, and it can be viewed as a classical Heisenberg
spins model with very strong planar anisotropy [29].

One way to characterize the phase transitions of the q-clock state model is through
the maxima obtained in the specific heat as a function of temperature. Each location of a
maximum of the specific heat on the temperature axis will represent a value for a so-called
critical temperature. It has been shown [33–38] (in the absence of an external magnetic
field) that for the q-clock state model, values q ≥ 5 (where q represents the number of
possible orientations that the spins can take), the specific heat presents two maxima. The
first maximum corresponds to a transition from a ferromagnetic phase (FP) to a BKT
phase, while the second maximum corresponds to a transition from BKT to a paramagnetic
disordered phase (PP) [29].
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In this research, we propose to study the work and efficiency of an Otto engine whose
working substance is an interacting spin system based on the well-known q-state clock
model. For this purpose, a complete analysis of the thermodynamics of small lattice systems
will be made by exact calculations, and the mean-field approximation will be used for large
lattice sizes. Phase diagrams will be calculated for a correct analysis to establish the cycle’s
operating range and what kind of transitions are involved. In addition, the effects of lattice
size on the cycle performance are studied. In particular, for our simulations, it is found
that the model with four spin degrees of freedom is the one with the best performance.

This article is organized in the following way: Next Section describes the system.
Section 3 covers the calculations of thermodynamics. Section 4 explains the model of
the engine proposal. Section 5 is devoted to the presentation of the phase diagram of
the system. Section 6 is oriented to understand where the Otto engine simulations are
positioned in the phase diagram of the proposed working substance. Section 7 present the
results and their discussion, and finally, Section 8 includes the main conclusions of this
paper.

2. Spin Model
2.1. q-state clock model

Figure 1. Example of the q-state clock model for a 3× 3 lattice where the direction of a spin in the
lattice is displayed at an angle of θ = π

3 .The purple circles represent the free boundary conditions in
the model.

The working substance under study corresponds to the q-states clock model on a two
dimensional (2D) square lattice of dimensions L× L = N, where local magnetic moment
or “spin” Si at site i can point in any of q directions in a given plane. Si is then a 2D vector,
i.e. Si = (cos( 2π

q k), sin( 2π
q k)), where k = 0, 1, ...q− 1, with equal probability. Magnitude of

Si is chosen to be the unity.
The isotropic Hamiltonian for such a system can be written as [29–32]:

H = −∑
〈i,j〉
J (~Si · ~Sj)−∑

i

~B · ~Si , (1)

where J > 0 is the ferromagnetic exchange interaction to nearest neighbors; the sum runs
over all pairs of nearest neighbors (i, j), which is indicated by the symbol 〈i, j〉 under the
summation symbol. ~B is an external field applied along one direction in the plane. In this
work we used arbitrary units choosing J = 1, making all the calculated quantities be in
terms of the exchange energy constant. Fig. (1) presents an example for a 3× 3 lattice of
this model.

For the thermodynamic analysis of this model we will perform two types of calcula-
tions to derive the partition function of the system. The first is an exact calculation of all
the accessible microstates of the system for a 3× 3 lattice for q = 2, 4, 6 and 8. For the same
values of q studied, for lattices of size up to 256× 256, mean-field theory will be employed.
Both calculations will be detailed below.
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3. Thermal Averages- Thermodynamics
3.1. Microstates

Figure 2. Diagram of spin lattice with q = 8 for different lattice size (left L = 3 ordered, right L = 16
disordered).

Let us start the thermodynamic discussion for the 3× 3 finite lattice with free boundary
conditions. We will use an approximation that we will call exact because it corresponds
to an exact diagonalization of the Hamiltonian given by Eq. (1) and the corresponding
calculation of all the possible microstates that the system possesses.

The partition function is obtained as follows

Z(T,B) =
λ

∑
n=1
Cne−

En
T , (2)

where the coefficients Cn correspond to all possible spin configurations compatible
with an energy En coming from the Hamiltoninan of Eq. (1) (basically representing the
degeneracy of the each energy level of the system) and λ is the number of different values
of energy levels. For all our calculations, we will use the Boltzmann constant kB = 1, which
means that temperature and energy are in the same units.

The number of microstates depends on the freedom of spin orientations, the size of
the lattice and the external magnetic field, in other words, on q, L and B. Each spin has q
potential states, and therefore all the possible self-energies of the system are given by

Nstates = qL×L. (3)

L q Nstates L q Nstates
3 2 512 8 2 1.84467E+19
3 4 262144 8 4 3.40282E+38
3 6 10077696 8 6 6.33403E+49
3 8 134217728 8 8 6.2771E+57
4 2 65536 16 2 1.15792E+77
4 4 4294967296 16 4 1.3408E+154
4 6 2.82111E+12 16 6 1.6096E+199
4 8 2.81475E+14 16 8 1.5525E+231

Table 1: Table with number of microstates according to q and L.

An example of the number of microstates for finite lattice systems is presented in Table
1. An example of the possible spin configurations for q = 8 in a 3× 3 and 16× 16 lattice
size is shown in Fig. 2. In Table 1, we note that for L = 3 the Ising model must consider
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512 lattice configurations to estimate the partition function. It is logical to think, seeing
the numbers presented in this table, that for large lattices size, the computational cost of
these calculations is not viable at present, and therefore, alternative methods such as Monte
Carlo simulations and the mean-field approximation are used. We will use the latter for a
larger lattice than the 3× 3 size.

3.2. Mean Field Approximation

Figure 3. Example of near neighbors (demarcated in yellow) for a spin (1, 1) in a 3× 3 lattice (marked
with lead color) with free boundary conditions.

The mean-field theory is based on the assumption that the fluctuations around the
average value of the order parameter ( in this case, the magnetization ~m ) are so small that
they can be neglected. The first term of the Hamiltonian of Eq. (1) that corresponds to the
interaction term between the spin of the lattice in different sites is modified by performing
the following approximations.

We can write the spin term as follows

~Sj = ~m + δ~Sj, (4)

where ~m is the average thermodynamic spin, the same for all sites in the lattice. Therefore,
we have

δ~Sj = ~Sj − ~mj. (5)

Thus, the spin-spin interaction term can be written as

~Si · ~Sj = −m2 + ~m ·
(
~Si + ~Sj

)
, (6)

where we have neglected the square terms of the fluctuation (O(δ~S)2). Therefore, the
interaction term of the Hamiltonian of Eq. (1) (that we callHJ) can take the form

HJ = −J ∑
〈i,j〉

(
−m2 + ~m ·

(
~Si + ~Sj

))
= ∑

i
(2Jm2 −J z~m · ~Si), (7)

where now the sum runs for each site in the lattice and z are the effective nearest neighbors
of the model (see Fig. 3 for an example). Consequently, we can define a Hamiltonian per
site given by the structure

hi = 2Jm2 −J z~mi · ~Si − ~B · ~Si. (8)
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Now, we can calculate the partition function per site, which will depend on q, B, m and T
given by

Z(q,B, m, T) = ∑
q

e−
ξ(q,B,m)

T , (9)

where ξ(q,B, m) is the energy per site coming from the Hamiltonian of Eq. (8).

(a)

(b)

Figure 4. Plots of internal energy for Ising model (q = 2), computed exactly (yellow-dotted line)
and approximately by mean-field theory distinguishing number of nearest neighbors. We note that
z = 2.67 fits best when B ≥ 1.

We found that for mean-field with a number of nearest neighbors z = 4, in the
framework of a small system with lattice L× L = 3× 3, that the internal energy behaves
differently from the one obtained in an exact approximation. It is proposed to find a
number of effective nearest neighbors that fits the approximation through an optimization.
By releasing the number of neighbors, ze f f ∈ <+, and minimizing the internal energy
difference (between the exact and approximate case via mean-field), it was found that for
L = 3, the optimal number of neighbors was ze f f = 2.67 (for all values of q). This can be
seen in Fig. 4 for the Ising model (q = 2, as an example) on a 3× 3 lattice where the internal
energy is shown for an external field B = 1 and B = 4 for different values of z from z = 0.1
to z = 4.

Amplifying the above qualitatively, we propose an expression for the number of near
neighbors effective that adjusts according to the weighting of the effect of non-interacting
edges in the system when the lattice has a generic resolution L× L. For the square lattice
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with up, down, left, and right near neighbors, the effective neighbors for a central spin for
the mean-field is determined by the following expression (independent of q).

ze f f =
4× (L− 2)2 + 3× 4× (L− 2) + 2× 4

L2 . (10)

3.3. Thermodynamic Relations

Once the partition function of the system has been obtained by either of the two
approaches discussed above, it is possible to compute all the thermodynamical observables
in a general way through the expressions ( with kB = 1 )

F = −T ln Z, (11)

U = T2 ∂ ln Z
∂T

, (12)

and
C = ∂U

∂T
, (13)

where F is the Helmholtz free energy, U is the internal energy and C is the specific
heat at constant magnetic field. In addition, with the differential expression of Helmholtz
free energy given by dF = −SdT−MdB, we can obtain the entropy and the magnetization
of the system given by

S = − ∂F
∂T

; M = − ∂F
∂B (14)

4. Otto Engine
4.1. Description of Otto Engine

The standard Otto engine is a quasi-static cycle (which means there is always ther-
modynamic equilibrium) that considers two isochoric and two adiabatic processes [14–
17,25,26]. In our case, the isochoric stages are replaced by constant magnetic field processes.
Therefore, the entropy versus external magnetic field diagram is represented by a rectangle
like in Fig. 5. The Otto cycle processes are detailed below:

1- Adiabatic compression (stage A→ B). The system, which is initially at a tempera-
ture Tl and an external field B1, is subjected to an increase in the external magnetic field
up to a value B2 without exchanging heat with its surroundings. From the first law of
thermodynamics, we will then have that the total work done in the process is given by:

WA→B = UB(TB,B2)−UA(Tl,B1), (15)

where U corresponds to the internal energy of the system given by Eq. (12). When the
external magnetic field changes from B1 to B2 the evolution of the temperature in the
adiabatic process is not free and must be governed by the condition of entropy equality
given by

S(Tl ,B1) = S(TB,B2), (16)

where S it is defined by Eq. (14).
2- Isochoric heating stroke (stage B → C). The system is placed in contact with a

thermal reservoir at temperature T = Th until the working substance reaches thermal
equilibrium with the reservoir. This process is carried out at a constant magnetic field,
and there is no work done during its execution. There is only heat exchange between the
working substance and the reservoir given by

Qin = UC(Th,B2)−UB(TB,B2). (17)
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3- Adiabatic expansion (stage C→ D). The system is disconnected from the thermal
reservoir and subjected to a change in the external magnetic field from B2 to B1 without
exchanging heat with its surroundings. There is only work done at this stage given by the
expression

WC→D = UD(TD,B1)−UC(Th,B2). (18)

Again, the temperature at this stage does not evolve freely and depends on the constant
entropy condition in this case given by

S(Th,B2) = S(TD,B1). (19)

4- Isochoric cooling stroke (stage D→ A). Finally, the system is put in contact with
a thermal reservoir at temperature T = Tl until thermal equilibrium with the reservoir
is reached. The process is performed at constant magnetic field B = B1 and there is no
work done during this stage only heat exchange between the working substance and the
reservoir. The heat output is then defined as

Qout = UA(Tl ,B1)−UD(TD,B1). (20)

The efficiency of a thermodynamic engine is defined by

η =
|Wtotal |

Qin
. (21)

In our case Wtotal is given by

Wtotal = WA→B + WC→D, (22)

where WA→B and WC→D are given by Eq. (15) and Eq. (18) respectively.

Figure 5. Pictorial representation of the Otto cycle.

Simulations of the standard Otto engine are obtained by fixing the values of Tl , Th
and Bl and infinitesimally moving the Bh field to an arbitrary physically possible value.
That is why the points of the A and C states in the cycle are well-determined values in the
calculations. As mentioned above, the q-state clock model has one phase transition for
q ≤ 4 and two-phase transitions for q ≥ 5. This is why it is essential to know where points
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A and C are located in our simulations, as this will indicate whether we are operating
an engine through these phase transitions. In the following section, we will calculate
the so-called phase diagrams to select and interpret correctly the region where our motor
operates for the different values of q that will be presented in the results.

5. Phase Diagram

The maximum values of the heat capacity define phases of magnetic order. Therefore,
a qualitative analysis of the behavior of the specific heat concerning temperature and the
external magnetic field is proposed. We can see an example of the maxima in specific heat
for a 3× 3 lattice for the exact evaluation in the cases of q = 2 and q = 4 in Fig. 6 (a)-(b)
and for q = 6 and q = 8 in Fig. 6 (c)-(d), respectively. In these figures, it can be clearly seen
that for q ≥ 5, the specific heat has two maxima, which is indicative of a double phase
transition.

(a) (b)

(c) (d)

Figure 6. Specific heat as a function of temperature for different values of external magnetic field of
values B = 0 (blue), B = 1 (purple), B = 2 (lemon-green) and B = 4 (orange) for a 3× 3 lattice with
different values of q parameter. (a) Ising model, q = 2, (b) q = 4, (c) q = 6 and (d) q = 8.

Obtaining the curve representing the boundary between phases is based on maxi-
mizing the heat capacity for a given field and saving the pair of points (B f ix, Tcr) for each
model. In Fig. 7 (a)-(b) we visualize the phase diagram for q = 2 and q = 4 while for
Fig. 7 (c)-(d) we show the phase diagram for q = 6 and q = 8 respectively. Both figures
showing calculations with exact approximation for a small 3× 3 lattice. The Fig. 7 (a)-(b)
represents the specific heat maxima presented in Fig. 6 (a)-(b) showing its FP and PP phases
as expected for these values of q, whereas Fig. 7 (c)-(d) visualize the BKT phase for q = 6
and q = 8 in accordance with the specific heat figures shown in Fig. 6 (c)-(d).
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(a) (b)

(c) (d)

Figure 7. Phase diagrams for (a) q = 2; (b) q = 4; (c) q = 6 and for (d) q = 8.

In Fig. 7 (a) for the Ising model (q = 2), we notice that under the dotted curve, we
are in an ordered FP region (blue zone). As the temperature increases, the spins start to
disorder until reaching PP (red zone). For q = 4 ( Fig. 7 (b) ), we notice a similar transition,
with the difference of needing lower temperatures to achieve disorder. The phase diagram
for q = 6 and q = 8 presented in Fig. 7 (c) and Fig. 7 (d) respectively, shows three clear
phases for q = 8 while for q = 6 all three phases are present only up to an external magnetic
field close to B = 1.5. For higher magnetic fields, in the case of q = 6, only a transition
from FP to PP is present. This last characteristic is in coherence with the specific heat plots
shown in Fig. 6 (c) where we see that for fields higher than B = 1, in this case, B = 2, B = 3
and B = 4 shown in that figure (lemon-green, yellow and orange line respectively) a peak
in specific heat is lost compared to that shown for B = 0 (blue line) and B = 1 (purple line).
Consequently, we only have a transition from FP to PP type as the temperature increases
for this case studied.

6. Cycle Reservoirs

Having two phase transitions for q ≥ 5 in the model, positioning the reservoirs
deserves a little analysis in favor of understanding how many transitions we will deal with
throughout the cycle. For this it is useful to unify Fig. 7 (a) to Fig. 7 (d) and plot the location
of the cold and hot reservoirs as point and a horizontal line on that figure respectively. This
is presented in Fig. 8 where we observe that the selection of the cold (point A of the cycle)
and hot (point C of the cycle) reservoir for our simulations is given by the points

Point A ≡ (B1 = 1.0, Tl = 0.6) (23)

Point C ≡ (B2 = 1.1− 4.0, Th = 6). (24)
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Figure 8. Otto cycle reservoirs selected for the study. The point A with Tl = 0.6 and B1 = 1 shows
that q = 2 (blue), 4 (lemon-green), 6 (yellow) is in FP and for q = 8 (red) the cycle starts in BKT phase.
The point C is represented with a red line with Th = 6 given its moving character taking values of Bh
between 1.1 and 4.0 in 0.1 intervals.

The selection of these points is based and satisfy three criteria:
i) The cold reservoir must have an entropy whose value is distinguishable to the

accuracy of numerical calculations in order to solve the first adiabatic condition given by
Eq. (16).

ii) At least one phase transition must be included in the cycle.
iii) Although the study is initiated with the intention that all models, faced with the

same hot reservoir, transit between FP and PP, the FP region of q = 8 corresponds to a zone
with low entropy, which would generate problems associated with the first point of the
criteria under discussion. Consequently, we place the cold reservoir in a BKT phase for
this case. As we have discussed above, q = 6 may present a double phase transition for
magnetic field values B < 1.5, so we select a cold reservoir that considers dominant only
the region of a single maximum in the specific heat for that value of q. In this case, a zone
where only one kind of transition of type BKT to PP exist, which occurs for B < 1.5. This is
done to have two study cases with FP to PP transitions and two with BKT to PP transitions.
In summary, in the results shown in the following section, the proposed magnetic Otto
engine for q = 2 and q = 4 will transit between phases FP and PP, while for q = 6 and
q = 8, it will transit between phases BKT and PP.

Finally, it is essential to mention that as the lattice size increases, our results indicate
that the critical temperatures increase for all q values studied, which implies that the FP
was becoming more prominent. However, with the points selected for the cycle operation,
we conserve the types of transitions for each value of q that can occur in the engine’s
execution.
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7. Results and Discussion

(a)

(b)

Figure 9. (a) Total work and efficiency (b) for a 3× 3 lattice for q = 2 (blue), q = 4 (lemon-green),
q = 6 (yellow) and q = 8 (red) for exact calculations (solid line) and mean-field approximation
(dashed line) as a function of external magnetic field B2.

We will first analyze the behavior of the work and motor efficiency (given by Eq. (22)
and Eq. (21) respectively) in a 3× 3 lattice with the exact and mean-field approximation for
q = 2, 4, 6 and 8. This analysis is presented in Fig. 9 wherein panel (a) the total work is
presented and (b) the system efficiency. Both plots are shown as a function of the variable
magnetic field in the system corresponding to B2 from value 1.1 to 4. For the total work
extraction presented in Fig. 9 (a), we note that the q = 2 curve (Ising model, blue-colored
curves) has the worst performance. The q = 4, 6 and 8 curves decrease the total work
extraction obtained as q increases, with the q = 4 curve (lemon-green colored curves)
having the highest work. It is important to note that we noticed a similar result between the
exact (solid lines) and mean-field methods (dashed lines), which indicates the consistency
of the presented calculations. These differences between the approximations to obtain the
thermodynamics of the system decrease as q grows. For q = 2 and q = 4, the exact method
performs better than the mean-field results. The above mentioned is reversed for q = 6
and q = 8, obtaining higher total work than the mean-field approximation. In the case
of efficiency, Fig. 9 (b) shows that the q = 2 case still presents the worst performance of
the cases analyzed. It is also the one that present the largest difference between the exact
and mean-field calculations. From Fig. 9 (b) we observe that the efficiency for q = 8 is
the highest of all cases, followed by that for q = 4, then q = 6 and finally q = 2. It is
important to note that the differences between the efficiencies of the q = 4, 6 and 8 cases
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are relatively small. Consequently, if we think of the best performance of the machine that
can be intuited from W × η, this will correspond to the q = 4 case.

Figure 10. Heat input (Qin, dotted line) and heat output (Qout, dashed line) for a small lattice of 3× 3
for exact calculations of q = 2 (blue lines), 4 (lemon-green lines), 6 (yellow lines) and 8 (red lines).

The behavior of the efficiency for the exact case in the 3× 3 lattice can be understood
if we analyze the difference between the heat input (Qin given by Eq. (17)) and the heat
output (Qout given by Eq. (20)) divided by Qin due to the fact that the efficiency can be
written as

η =
Qin −Qout

Qin
= 1− Qout

Qin
. (25)

In Fig. 10 it can be seen that the ratio between Qout and Qin is not as significant for
q = 2 as it is for the other values of q studied, with the largest differences between Qin
and Qout being q = 4 and q = 8. Consequently, a lower efficiency is expected for the Ising
model (q = 2) with the parameters selected in the study.

(a) (b)

Figure 11. (a) Work per spin and efficiency (b) for a 3× 3 lattice and a 256× 256 lattice for different
values of q: 2 (blue), 4 (lemon-green),6 (yellow) and 8 (red).

In order to see the effects of lattice size on total work and efficiency, we propose to
study with the mean-field approximation the case of a lattice of size 256× 256 (for all
values of q), where the number of effective neighbors, ze f f is already close to the value four
and the approximation is more robust. These results are shown in Fig. 11 (a)-(b), wherein
(a) we show the total work and in (b) the efficiency of the system in comparison in a 3× 3
lattice. For the results to be comparable in Fig. 11 (a), we must speak of work per spin,
i.e., divide the total work obtained by the number of spins in the lattice. The first result
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we can appreciate in work per spin is that the larger the lattice, the smaller the amount
of extraction work obtained from the cycle for any value of q. The q = 2 case is still the
lowest total work, and the most significant difference between the lattice sizes studied.
In addition, q = 4 continues to show the highest work extraction. In addition, for large
256× 256 lattice we observe that there are no significant differences at low magnetic fields
(up to about B2 = 1.7 ) in the efficiency of the q = 4, 6 and 8 cases.

Finally, we can establish a quantitative relationship between the results obtained for
the total work and the location of the operating zone of the cycle by looking at the phase
diagrams in Fig. 7. If we first analyze the FP-PP type transitions, corresponding to the
q = 2 and q = 4 cases (panels (a) and (b) of Fig. 7), we observe that the ferromagnetic phase
involved in the cycle will be larger than that of the q = 4 case, where the preponderant
phase will be the PP. Comparing the work of q = 2 and q = 4, it is already known that q = 4
presents a higher work than the case of q = 2. If we focus on the BKT-PP type transitions
from Fig. 7, we notice that the BKT zone of q = 6 (panel (c) of Fig. 7) involved in the cycle
will be smaller than that of q = 8 (panel (d) of Fig. 7). If we now compare only the work of
q = 6 and q = 8, the case of q = 6 extracts more work than q = 8. This simple comparison
of results is an indication that the total work will then be more significant (with the same
operating parameters) when we have a smaller portion of the cycle in a sorted zone. In
addition, our results indicate that a FP-PP type transition is more beneficial than a BKT-PP
for the performance of the proposed magnetic motor when a small portion of the cycle is
positioned in an FP zone.

8. Conclusions

In this work, we have addressed the possibility of operating an Otto engine whose
working substance is an interacting spin system corresponding to the q-state clock model.
For small lattice systems, we have calculated and analyzed the thermodynamics of the
system exactly by obtaining all the accessible microstates of the system, while for larger
lattices, we have performed the calculations through the mean-field approximation. The
working substance used presents one or two phase transitions depending on the degree of
freedom of the spin, therefore, the selection of the operating range of the motor cannot be
arbitrarily selected and in our study and we have placed it for the Ising model (q = 2) and
q = 4 from an ordered phase (ferromagnetic phase) to a disordered phase (paramagnetic
phase) while for q = 6 and q = 8 it is from a vortex phase (BKT phase) to a disordered
phase. The results for small size lattices indicate that for the selected operating range q = 4
presents the best performance based on the extraction work and efficiency that can be
obtained in the cycle, while the Ising model is the worst performer of all the cases analyzed.
When the lattice size is increased, both efficiency and spin work decrease but the q = 4 case
is still the best performing case. These reported results can be interpreted from the phase
diagram of the working substance, which indicates that a smaller portion of the cycle in a
ferromagnetic phase would allow a better total work output.

This work is currently undergoing an extension considering the anisotropy and dipolar
interaction terms, both of which are fundamental in the correct description of real materials.
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