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Abstract: Demographic change is leading to the aging of German society. As long as the baby boom 

cohorts are still of working age, the working population will also age - and decline as soon as this 

baby boom generation gradually reaches retirement age. At the same time, there has been a trend 

towards increasing absenteeism (times of inability to work) in companies since the zero years, with 

the number of days of absence increasing with age. 

We present a novel stochastic forecast approach that combines population forecasting with forecasts 

of labor force participation trends, considering epidemiological aspects. For this, we combine a sto-

chastic Monte Carlo-based cohort-component forecast of the population with projections of labor 

force participation rates and morbidity rates. 

This article examines the purely demographic effect on the economic costs associated with such 

absenteeism due to the inability to work. Under expected future employment patterns and constant 

morbidity patterns, absenteeism is expected by close to 5 percent by 2050 relative to 2020, associated 

with increasing economic costs of almost 3 percent. Our results illustrate how strongly the pro-

nounced baby boom/ baby bust phenomenon determines demographic development in Germany 

in the midterm. 
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1. Introduction 

The demographic transition is leading to the aging of German society [1,2]. As long 

as the baby boomers in Germany are still of working age, the workforce will also age - and 

shrink and rejuvenate as that generation gradually reaches retirement age [3]. The 1964 

cohort turned 55 in 2019 and is expected to regularly retire at age 67 in 2031 [4]. In the 

short term, therefore, the German economy will need to focus on the aging of the work-

force while in the medium and long term the shrinking and rejuvenation process will pre-

vail [1]. An important issue to address, among others, is how this demographic develop-

ment will affect the future economic costs of companies and the German health insurance 

system with respect to absenteeism. 

Absenteeism (periods of health-related incapacity to work) is a topic yet under-in-

vestigated when it comes to its economic costs. Although aging is a well-researched topic 

in the contexts of labor supply [3], pensions [4], healthcare (costs) [5], or long-term care 

and disabilities [6], the question of absenteeism going along with aging has yet been given 
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much less attention. It is, after all, not only a question of how strong the labor supply will 

be affected by aging but also to what extent it is threatened to be temporarily lost due to 

(chronic) diseases and illnesses. The present aging report by the European Union (EU), for 

instance, does not even mention the problem of absenteeism [5]. Studies addressing ab-

senteeism, on the other hand, remain rather descriptive, not offering projections of absen-

teeism in the context of the demographic transition – although it is well-known that times 

of absenteeism occur more often and for a longer period later in work life [7].  

In Germany, which is the most populous country in the EU [5], aging is a topic of 

major concern given its low fertility [8] and decreasing mortality [9] for almost half a cen-

tury. At the same time, since the mid-2000s, a trend toward increasing absenteeism can be 

observed, as the average number of days of absenteeism per case increases with age [10]. 

Is this trend likely to continue in the future? What economic costs are already incurred by 

companies because of absenteeism, and what costs can ceteris paribus (c.p.) be expected 

in the future as a result of the German demographic development? These are the questions 

we address in this paper.  

How the working-age population will develop in the future depends on the under-

lying population trends. These are determined by the three major demographic compo-

nents fertility, migration, and mortality [1]. Of particular relevance for the development 

of the labor force are the fertility rates, which have a delayed effect on the labor force when 

the new-born have entered the working age [8], and migration, which affects the labor 

market relatively quickly as people tend to migrate when they are of working age. How-

ever, to what extent migrants also succeed in entering the German labor market, very 

much depends on the migrants’ sociodemographic background [3,11]. For instance, the 

labor market integration of refugees takes significantly more time on average than for 

foreign citizens from the EU [11]. Mortality trends, on the contrary, have a rather negligi-

ble impact on the labor force, as they become quantitatively noticeable rather at older ages, 

long after the end of the common working life [3]. In this paper, we will project future 

labor force development driven by these components. 

 A first forecast model for absenteeism in the context of aging and the effect on the 

associated economic costs was suggested by Wilke [10], also for the German case. The 

model is based on age-specific morbidity risks derived from data provided by the Federal 

Institute for Occupational Safety and Health (BAuA) [12]. In our contribution, we further 

elaborate this approach by connecting it to a stochastic population forecast for Germany, 

developed by Vanella and Deschermeier [1]. Moreover, we take trends in labor force par-

ticipation into account to acknowledge their potential impact on absenteeism. For this, we 

implement updated forecasts of age- and sex-specific labor force participation rates 

(LFPRs) in our model, which have been conducted by Fuchs and colleagues based on an 

own stochastic forecast model [3,13].  

Section 2 outlines the data and the methodological approach used in our study in 

more detail. Section 3 shows the results for our projection of future labor force develop-

ment and corresponding cases of absenteeism until the year 2050 – provided age-specific 

employment and disability rates remain constant. Subsequently, these purely demo-

graphic effects on the future development of absenteeism are evaluated further in terms 

of the associated economic costs. In Section 4, we then discuss limitations and potential 

improvements and close with an outlook on questions for further research. 

2. Materials and Methods 

2.1 Stochastic Population Forecast 

As a baseline of our projection, we compute a stochastic population forecast by age and 

gender for Germany over the period 2021-2050, following a stochastic cohort-component 

approach for age- and sex-specific population forecasting suggested by Vanella and 

Deschermeier [1] with an adjustment to the migration forecast. There, the authors forecast 

the population based on stochastic principal component-based time series methods for 

the major demographic components fertility, international net migration, and mortality. 
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Stochasticity is considered in the model by Monte Carlo simulation (10,000 draws) of all 

variables, resulting in 10,000 trajectories of the future population by age and gender. Our 

migration model, however, differs from that suggested in the mentioned study. For Ger-

many, migration rates are more stable than flows, as they consider the baseline population 

[11]. Moreover, for the case of small-area migration in Germany, Vanella et al. [14] show 

that a naïve random walk forecast of pseudo migration rates gives better fits to historical 

migration patterns in Germany. In that vein, we use the latter approach, adjusted to na-

tional age- and sex-specific pseudo net migration rates for Germany.  

Hence, in the first step of the analysis, we forecast the future birth numbers. For this, we 

multiply forecasts of the age-specific fertility rates (ASFRs), as derived according to 

Vanella and Deschermeier [1,8], with simulations of the female population in the corre-

sponding fertile age. I.e., in trajectory 𝑡, the births in year 𝑦 (𝐵𝑦,𝑡) are the scalar product 

of the vectors of the simulated ASFRs and the corresponding female population 

 𝐵𝑦,𝑡 = ∑ 𝜑𝑦,𝑎,𝑡 ∗ 𝑃𝑦−1,𝑎−1,𝑓,𝑡
50
𝑎=15 , (1) 

with 𝜑𝑦,𝑎,𝑡  being the ASFR of females aged  𝑎  years in trajectory 𝑡  in year 𝑦  and 

𝑃𝑦−1,𝑎−1,𝑓,𝑡  being the simulated female population in age 𝑎 − 1 at year-end 𝑦 − 1. There-

fore, the ASFR is estimated on the female population at the end of the previous calendar 

year. As there are no clearly defined lower or upper limits of the reproductive age, 15 is 

defined as the lower limit, and age group 50 refers to the baseline population 50-54 years 

of age. Therefore, we assume the same ASFR for females aged 50-54. These assumptions, 

based on the available data, give plausible age schedules for fertility and, therefore, offer 

a good basis for forecasting the total births. The baseline birth data have been partly (1968-

1991) provided on request by the German federal statistical office (Destatis) for the two 

former German states to the first author of the present paper for earlier studies [15-18], 

and partly (1992-2020) been downloaded for unified Germany from Destatis’ database 

GENESIS-Online [19]. The denominators of the ASFRs (and all other rates used for the 

study) are the corresponding end-of-year population estimates, which are taken from the 

Human Mortality Database (HMD) for all years until 20171 [20-22]. The HMD estimates 

derived by Klüsener et al. [23] are, especially for the years before 2011, preferable to the 

original Destatis data, as they are adjusted to errors arising from the population updating 

in intercensal periods and errors from unobserved migration, which particularly bias the 

old-age population estimates [1]. Since at the time of writing this paper no data beyond 

2017 was available on the HMD, we rely on original Destatis population data, provided 

on request to us [24], for the years 2018-2020. 

Second, after deriving the birth numbers, we simulate the share of males (and indirectly 

females), respectively, among all births 2  by time series ARIMA methods, following 

Vanella and Deschermeier [1]. Gender shares among the births since 1950 are downloaded 

from GENESIS-Online [25]. Male births are consequently computed by multiplying the 

share of males in year 𝑦 in trajectory 𝑡 (𝑟𝑦,𝑡) with all births in the said year and trajec-

tory:  

 𝐵𝑦,𝑚,𝑡 = 𝑟𝑦,𝑡 ∗ 𝐵𝑦,𝑡. (2) 

The female births are, consequently,  

 𝐵𝑦,𝑓,𝑡 = (1 − 𝑟𝑦,𝑡) ∗ 𝐵𝑦,𝑡 = 𝐵𝑦,𝑡 − 𝐵𝑦,𝑚,𝑡. (3) 

 
1 Note that the HMD estimates refer to the January 1st rather than December 31st. Therefore, for instance, the population 

estimates by the HMD for 2018 correspond to Destatis estimates for 2017. 

2 The official statistics do not differentiate further genders but distributes them to either males or females. Accordingly, 

our forecast sticks to the binary gender definition. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 January 2022                   doi:10.20944/preprints202201.0317.v1

https://doi.org/10.20944/preprints202201.0317.v1


Third, we simulate migration in- and outflows by age and gender, generalizing the sug-

gestion by Vanella et al. [14]. Migration flows are not available by cohort but only com-

pleted years of age of the migrants. We, therefore, assume migration and births to occur 

uniformly over the year3. These assumptions allow us to approximate cohort-based age- 

and sex-specific migration flows based on the migration flows by completed age through 

averaging. I.e., based on the assumption that 1/12 of all annual migrations happen each 

month, we can conclude that half of the annual migrations have happened by the end of 

each year. Therefore, the average age of a migrant is exactly between two adjacent birth-

days. For instance, among female migrants of age 30 in the year 2020, one-half is assumed 

to have been born in the calendar year 1990, while the other half consequently has been 

born in 1989. Based on these flow data, we compute age- and sex-specific emigration rates 

and pseudo-immigration rates, following Fuchs et al. [11]. Migration flows by age and 

gender for the years 1991-1999 had been provided to the first author of the present paper 

by Destatis for an earlier study [27], the corresponding data for the period 2000-2020 are 

available via GENESIS-Online [28]. Based on the migration flow data in connection to the 

earlier mentioned population estimates, we derive (pseudo-) migration rates, which we 

forecast according to Vanella et al. [14]. The (immigration) emigration of individuals of 

age 𝑎 and gender 𝑔 in year 𝑦 and trajectory 𝑡, therefore, is given by 

 𝐼𝑦,𝑎,𝑔,𝑡 = {
𝑖𝑦,0,𝑔,𝑡 ∗ 𝐵𝑦,𝑔,𝑡  𝑓𝑜𝑟 𝑎 = 0,

𝑖𝑦,𝑎,𝑔,𝑡 ∗ 𝑃𝑦−1,𝑎−1,𝑔,𝑡  𝑓𝑜𝑟 𝑎 > 0
 (4) 

and  

 𝐸𝑦,𝑎,𝑔,𝑡 = {
𝑒𝑦,0,𝑔,𝑡 ∗ 𝐵𝑦,𝑔,𝑡  𝑓𝑜𝑟 𝑎 = 0,

𝑒𝑦,𝑎,𝑔,𝑡 ∗ 𝑃𝑦−1,𝑎−1,𝑔,𝑡  𝑓𝑜𝑟 𝑎 > 0
, (5) 

for immigration and emigration, respectively. Here, 𝑖𝑦,𝑎,𝑔,𝑡 (𝑒𝑦,𝑎,𝑔,𝑡) is the pseudo-immi-

gration (emigration) rate of individuals aged 𝑎 of gender 𝑔 in year 𝑦, and trajectory 𝑡. 

Note that migration estimates here are computed as the product of the pseudo-immigra-

tion (emigration) rate and the end-of-year population of the corresponding cohort in the 

previous year and the target (origin) country. To include migration among newborns, we 

refer to the births occurring in year 𝑦 as the denominator. Following Vanella et al. [14], 

we compute pseudo-net migration rates by age and gender as the difference of pseudo-

immigration rate and emigration rate of the same stratum, i.e. 𝑛𝑦,𝑎,𝑔,𝑡 ≔ 𝑖𝑦,𝑎,𝑔,𝑡 − 𝑒𝑦,𝑎,𝑔,𝑡. 

Vanella et al. [14] show that for Germany, a naïve multivariate random walk approach 

based on migration rates performs best to predict migration future migration flows. We 

adjust their approach by assuming the first differences of the pseudo-net migration rates 

Δ𝑛𝑦,𝑎,𝑔,𝑡 ≔ 𝑛𝑦,𝑎,𝑔,𝑡 − 𝑛𝑦−1,𝑎,𝑔,𝑡 to follow a multivariate Gaussian distribution: 

 

[
 
 
 
 
𝛥𝑛𝑦,0,𝑚,𝑡

𝛥𝑛𝑦,1,𝑚,𝑡

⋮
𝛥𝑛𝑦,0,𝑓,𝑡

⋮ ]
 
 
 
 

~𝓝(0⃗ , 𝜮) ∀ 𝑦, 𝑡, (6) 

with 0⃗  being a 2a-dimensional (in our case 192-dimensional) null vector and 𝚺 being the 

empirical covariance matrix of the first differences of all age- and sex-specific pseudo-net 

migration rates for 1995-2020. Monte Carlo sampling from (6) leads to 10,000 trajectories 

of the age- and sex-specific pseudo-net migration rates. Multiplying those with the popu-

lation bases according to (4) and (5), we can simulate the distributions of net migration for 

each stratum and year as 

 𝑁𝑦,𝑎,𝑔,𝑡 = {
𝑛𝑦,0,𝑔,𝑡 ∗ 𝐵𝑦,𝑔,𝑡  for 𝑎 = 0,

𝑛𝑦,𝑎,𝑔,𝑡 ∗ 𝑃𝑦−1,𝑎−1,𝑔,𝑡  for 𝑎 > 0
. (7) 

 
3 Which in praxis is not the case. For births, for instance, there is strong annual seasonality [26]. 
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Fourth, we compute the deaths according to Vanella and colleague [1,9]. For this, age- ad 

sex-specific survival rates are computed retrospectively as quotients of survivors of some 

cohort at the end of the year and the sum of the survivors and deaths among the same 

cohort at the same point in time. This way, we include mortality among the children born 

in the current year and migration into our mortality estimates, including the timing of 

births and migration as represented by the historical data. The simulation of survival rates 

combined with the population estimates for the previous year and the migration flows 

and births simulated according to (3)-(7) gives the death simulations: 

          𝐷𝑦,𝑎,𝑔,𝑡 = {
(1 − 𝑠𝑦,0,𝑔,𝑡) ∗ 𝐵𝑦,𝑔,𝑡  for 𝑎 = 0,

(1 − 𝑠𝑦,𝑎,𝑔,𝑡) ∗ (𝑃𝑦−1,𝑎−1,𝑔,𝑡 + 𝑁𝑦,𝑎,𝑔,𝑡) for 𝑎 > 0
, (8) 

with 𝑠𝑦,𝑎,𝑔,𝑡 being the survival rate of individuals of age 𝑎 and gender 𝑔 in year 𝑦 and 

trajectory 𝑡. The reciprocal (1 − 𝑠𝑦,𝑎,𝑔,𝑡) is the corresponding mortality rate. The data un-

derlying the computation of the survival rates are, next to the earlier mentioned popula-

tion estimates, data on annual deaths by cohort and gender, provided on several occasions 

on request by Destatis to the first author [29,30].   

Fifth, combining the results from (3)-(8), we obtain the cohort-component simulations of 

the end-of-year population as 

 𝑃𝑦,𝑎,𝑔,𝑡 = {
𝐵𝑦,𝑔,𝑡 + 𝑁𝑦,0,𝑔,𝑡 − 𝐷𝑦,0,𝑔,𝑡  𝑓𝑜𝑟 𝑎 = 0,

𝑃𝑦−1,𝑎−1,𝑔,𝑡 + 𝑁𝑦,𝑎,𝑔,𝑡 − 𝐷𝑦,𝑎,𝑔,𝑡  𝑓𝑜𝑟 𝑎 > 0
. (9) 

 

2.2 Projection of Labor Force Participation in the Context of Increasing Retirement Ages 

Sixth, we combine our population forecast obtained from (9) with an updated stochastic 

forecast of labor force participation rates (LFPRs) suggested by Fuchs et al. [3], which in-

cludes trends in age-, gender- and nationality-specific labor market participation. These 

forecasts are especially crucial for our research question, as trends of increasing LFPRs are 

observable in the long run among females [3] and we will see increasing LFPRs among 

the elderly as a consequence of demography-related pension reforms, which cause legal 

retirement ages to increase until 2031 [4]. The updated LFPRs are provided by Fuchs et al. 

[13]. The authors, therefore, include trends in labor force participation by migration (for 

instance, longer periods of labor market integration) in their forecast. Therefore, we im-

plicitly assume shares of migrants in the population according to Fuchs et al. [13], as our 

model does not predict the foreign separately from the German population. The projection 

of labor supply by age group and gender can then be derived by  

 𝐿𝑦,𝑎,𝑔,𝑡 = 𝑙𝑦,𝑎,𝑔 ∗ 𝑃𝑦,𝑎,𝑔,𝑡, (10) 

with 𝑙𝑦,𝑎,𝑔 being the median forecast of the LFPR of individuals of age 𝑎 and gender 𝑔 

for year 𝑦 according to Fuchs et al. [13]. Note that we include the LFPRs only determin-

istically in the model, as they are subject to many aspects, such as the socio-economic 

composition of the population or the overall economic development. Since our focus is to 

investigate the pure demographic effect on future absenteeism, a deterministic inclusion 

of labor market effects fits our purpose. Including at least the expected trends in labor 

force participation appears necessary, however, to give a realistic estimate of the demo-

graphic effect under increasing retirement ages. We only adjust the LFPRs insofar, as 

Fuchs et al. [13] simulate five-year age groups. Our model is based on single years of age 

and we want to avoid hard cuts in the LFPR curves, which are a consequence of larger age 

groups. Therefore, we assume age- and sex-specific LFPRs (ASSLFPRs) as provided in 

Fuchs et al. [13] for age groups for the median age of each age group (e.g., for age group 

25-29, the LFPR from Fuchs et al. is assumed for age 27 in our model), and interpolate the 

LFPRs for the ages between the knots by natural cubic splines [31]. Yet, our aim is not to 

give a forecast of the future labor supply but to include the expected effects of labor supply 
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change in our model of future absenteeism. Since labor supply does not equal the popu-

lation in labor, the labor force projections are just used as auxiliary data that include the 

effect of delayed retirement in our projection. Assuming that the share of the labor force 

that is employed remains constant, the relative change between periods 𝑦 and 𝑦 + 𝜏 in 

employed persons for each age-gender stratum under changing LFPRs and the demo-

graphic trends in trajectory 𝑡 derived from (9) can then be computed by 

 ℓ𝑦,𝜏,𝑎,𝑔,𝑡: =
𝐿𝑦+𝜏,𝑎,𝑔,𝑡

𝐿𝑦,𝑎,𝑔,𝑡
. (11) 

 

2.3 Projection of Relative Increase in Absenteeism given Demographic and Economic Trends 

Seventh, we combine our projections of the labor force effect according to (11) with infor-

mation on absenteeism by age group to deliver stochastic estimates of the demographic 

effect on absenteeism. We do not know the exact number of days of absenteeism. The most 

informative data available publically are annual reports on work-related safety and health 

issues, provided by the Federal Ministry of Labour and Social Affairs (BMAS) and the 

BAuA. We specifically use the latest report for the year 2019 [7]. In Germany, every indi-

vidual is health insured by either social health insurance (GKV) or private health insur-

ance (PKV) companies. In our reports, the data are restricted to GKV insured; age-specific 

data for PKV insured are not publically available. We use estimates for both cases of ab-

senteeism, standardized to 100 years of insurance membership, and averages of days per 

case are reported for 5-year age groups. The numbers are given in Table 1. 

Table 1. Standardized age-specific Cases of Work Absence per 1 Year of Full Insurance and Average 

Length of Absence as Days for GKV members in 2019 (Sources: [7]; authors’ computation and illus-

tration) 

Age Group Annual Cases per Capita Average Days per Case 
Average Annual Days 

per Capita 

15-19 2.57 5 12.85 

20-24 2.1 6 12.6 

25-29 1.65 8 13.2 

30-34 1.6 9 14.4 

35-39 1.6 10 16 

40-44 1.53 11 16.83 

45-49 1.48 13 19.24 

50-54 1.53 15 22.95 

55-59 1.65 17 28.05 

60-64 1.74 21 36.54 

65+ 0.71 23 16.33 

The number of cases does not increase monotonically by age, as knowledge about the 

connection between age and morbidities would suggest (see, for instance, [6] on disability 

risks in the context of long-term care insurance). Instead, we have more of a bathtub shape 

in the age groups below 65, followed by a sharp decrease for the elderly. The average sick 

days per case, however, show an increasing duration of absenteeism with increasing age. 

Multiplying these two statistics gives an average of days of absenteeism per year, stand-

ardized to one year of full insurance as an employed person in the GKV, which is given 

in the last column of Table 1. There, we see clear trends of longer absenteeism for age over 

24. For the teenage group, we see a slightly higher average absenteeism in comparison to 

the 20- to 24-year-olds. This might be a rounding error resulting from the rounding in the 

available data (note that the average of days per case is rounded to integers). An alterna-

tive explanation might lie in more absenteeism as a result of more injuries due to riskier 
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behavior, e.g., observable in higher traffic accident rates [32]. The dip in the elderly is un-

intuitive but could be explained by a positive selection of healthier workers employed in 

less exhaustive fields and having a higher work motivation, therefore, in many cases 

working beyond their individual retirement age, following Wilke [10]. 

It has to be noted that the data are not just a sample of all insured workers but somewhat 

biased. Age structure [33] and morbidities of the insured diverge, with the PKV attracting, 

on average, wealthier and healthier customers [34], since insurance companies offer more 

individualized contracts [35] and, in some regions, a more extensive healthcare supply is 

available for PKV in comparison to GKV insured [36]. Therefore, our data will probably 

overestimate the morbidities of the overall population. To circumvent this limitation in 

the data, we do not directly address the days of absenteeism but simply assume the rela-

tion of sick days between the age groups, i.e. the risk of sickness, to remain constant over 

time. Moreover, we assume constant shares of members in the GKV and PKV for the pro-

jection. Under these assumptions, we can project the relative change in absenteeism over 

time, restricted to future developments in the population size and structure and labor 

force participation, including increases in incidences in the oldest age group caused by 

increases in legal retirement ages which will occur until 2031 [4]. Yet again, we take the 

age group-specific numbers from Table 1 and interpolate them by natural cubic splines, 

as performed for the LFPRs. Our sickness data does not discriminate by gender; therefore, 

we will assume the morbidities to depend exclusively on age, not gender. Indeed, differ-

ences in morbidities between the genders exist, yet appear more subtle in the labor age 

groups, becoming more crucial among the elderly [6,37]. Therefore, the error resulting 

from this assumption appears negligible. In particular, we take (11), which includes de-

mographic and economic trends and multiply with average annual per capita absenteeism 

(𝑑𝑦,𝑎), which then serve as some kind of weighting factor of age-related morbidity: 

 S𝑦,𝑎,𝑔,𝑡: = 𝑑𝑦,𝑎 ∗ 𝐿𝑦,𝑎,𝑔,𝑡, (12) 

Where S𝑦,𝑎,𝑔,𝑡 is the annual sick days of individuals of age 𝑎 and gender 𝑔 in trajectory 

𝑡 and in year 𝑦, which includes both demographic effects (stochastic) and labor market 

effects (deterministic), applying a status quo assumption to epidemiological trends. As 

𝑑𝑦,𝑎 is biased [10], we opt to derive the relative change in absenteeism instead of absolute 

numbers. Assuming that the relative bias of age-specific absenteeism is the same for all 

age groups, the biases will cancel out in a relative measure. The sum of absenteeism in 

year 𝑦 over all demographic groups is S𝑦,𝑡 = ∑ ∑ S𝑦,𝑎,𝑔,𝑡𝑔𝑎 . The absenteeism in year 𝑦, 

relative to the year 2020, in each trajectory is then  

 κ2020,𝑦,𝑡: =
S𝑦,𝑡

S2020
. (13) 

 

2.4 Projection of Relative Increase in Economic Costs by Absenteeism Trends 

In the eighth and final step, we project how, based on our previously derived results, ab-

senteeism will affect health economics. Given the derived demographic development and 

combined with the assumed economic and epidemiological trends, we project costs 

caused by productivity loss, ceteris paribus. For this, we borrow Wilke’s [10] estimates of 

age-specific productivity, measured in € of 2018, and loss thereof for each day of absen-

teeism. The most important numbers are given in Table 2. 

  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 January 2022                   doi:10.20944/preprints202201.0317.v1

https://doi.org/10.20944/preprints202201.0317.v1


Table 2. Annual gross income and productivity loss per day of absenteeism 2018 (Source: [10]; own 

illustration) 

Age Group Average Gross Income [as €] Loss of Productivity by Day [as €] 

20-24 21,246 58.21 

25-29 31,790 87.10 

30-34 39,826 109.11 

35-39 43,083 118.04 

40-44 45,610 124.96 

45-49 46,075 126.23 

50-54 45,972 125.95 

55-59 43,689 119.70 

60-64 40,853 111.93 

65-69 16,233 44.47 

Again, we take the last column and interpolate the values as described earlier. We can 

then estimate the relative change in economic costs of absenteeism by multiplying (12) 

with the average daily loss of productivity for the corresponding demographic stratum, 

say c𝑦,𝑎: 

 C𝑦,𝑎,𝑔,𝑡: = c𝑦,𝑎 ∗ S𝑦,𝑎,𝑔,𝑡. (14) 

Similar to (13), we compute the change in economic costs by absenteeism, relative to 2020 

by 

 π2020,𝑦,𝑡 ≔
C𝑦,𝑡

C2020

, (15) 

with C𝑦,𝑡 being the total costs of absenteeism calculated over all age groups in year 𝑦 and 

trajectory 𝑡. 

We will present the results of our simulations in the next section.  

 

3. Results 

Figures 1 and 2 illustrate the results of our population forecast. We show the forecasts until 

2050, aggregated to ten-year age groups. As our focus is on the labor age population, we 

limit our analysis to age groups 15-74.4 The black, continuous lines show the past obser-

vations since 1990, the median forecast is visualized as blue dashed lines and the 75% pre-

diction intervals (PIs) are added as violet, dotted lines. Those have been derived from 

Monte Carlo simulation via cohort-component forecasting as described in 2.1. The inter-

ested readers find forecast results for the demographic components in Appendix A, and 

more detailed results generated by the simulations are added in Online Supplement A.  

 
4 The model simulates ages by year 0-99, and 100+ as a cumulative age group. 
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Figure 1. Forecasts of Male Population in Labor Age by 10-Year Age Groups with 75% Prediction 

Intervals (Sources: [21]; authors’ computation and illustration) 

We expect a dip in the younger population by the end of the current decade, which is a 

consequence of a long period of very low fertility rates in Germany (the total fertility rate 

in Germany has consistently been below 1.5 children between 1981 and 2014 [8]). As a 

consequence of increasing fertility rates and positive net migration in the young age 

groups, this trend will invert in the long term, however. Volatility in the youngest age 

groups increases significantly at the end of the 2030s, which is because a large share of that 

age group is not yet born. An apparent trend is a large wave we see in the age group 55-

64 in the 2020s and, correspondingly, for the age group 65-74 in the following decade, 

which is the strong baby boom cohort, whose labor force participation is of special interest 

for our research question. The wave is more distinct for the females than for the males, 

which is due to the lower mortality of females, which becomes more emphatic in those age 

groups [9].  
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Figure 2. Forecasts of Female Population in Labor Age by 10-Year Age Groups with 75% Prediction 

Intervals (Sources: [15]; authors’ computation and illustration) 

The latter point stresses the importance of labor force participation trends by females. 

LFPRs of females traditionally are, on average, smaller than for males, as the females have 

been taking over more responsibilities in the household, and childcare opportunities have 

not been sufficient to allow for both parents to participate in the labor market. Since the 

late 1970s, more females have had the opportunity and will to follow a career of their own 

[8]. As a consequence, LFPRs have been increasing, which is a trend expected to persist in 

the future [3]. Figure 3 shows the LFPRs by age group and gender, nowcast by Fuchs et al. 

[13], for 2020 against their median trajectory for 2050. Our cubic splines interpolations are 

included in the figure as lines. The authors forecast increases in the LFPRs, especially 

among females. Under increasing trends in tertiarization and corresponding longer 

periods of education [38] that are connected to later entries in the labor market. 
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Figure 3. Age- and Sex-specific Labor Force Participation Rates for 2020 and 2050 (Sources: [25]; 

authors’ computation and illustration) 

Figure 4 shows our projection of the percentage change in overall absenteeism in Germany 

in relation to 2020, derived from our model, with 75% PIs. It has to be stressed that 

stochasticity in the model draws from demography only. Labor force participation is 

assumed as illustrated in Figure 3, and prevalence rates are assumed constant as derived 

by Wilke [10] and our interpolation of her estimates. Therefore, we exclusively estimate 

risk arising from the demographic developments, assuming fixed trends in labor force 

participation and epidemiology. Interestingly, we can expect waves in absenteeism with 

increases over the next years, as the baby boomers will be in the late phase of their 

employment period, which is associated with relatively high morbidity and connected 

phases of absenteeism (see Table 1). This development is enhanced by the mentioned 

increases in legal retirement ages until 2031. The delaying retirement effect of those 

increases will then stabilize, which will lead to further increases in old-age pensions [4], 

whereas decreases in absenteeism can be expected. During the 2040s, increases in 

absenteeism can be expected as a consequence of the high net migration Germany has 

witnessed since the 2010s, especially among young migrants (see, for instance, Figures A3 

and A4). Those having immigrated at a young age in the strong migration waves will in 

the 2040s reach their late labor age, which will be associated with high prevalences of 

absenteeism. 
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Figure 4. Projection of relative percentage change in overall annual absenteeism to reference year 

2020 (Sources: [7,13]; own computation and illustration) 

Finally, we consider the relative change in economic costs due to absenteeism associated 

with the demographic development, illustrated in Figure 5. Whereas the overall trending 

of the curve looks similar to Figure 4, we see less distinct waves, as not only the overall 

days of absenteeism factor into this but also the loss of productivity, measured according 

to Table 2. This, therefore, appears to give a more realistic picture of the economic 

consequences of the aging process, since we account for the worth of an employee to their 

employer as well, not just if they are at work or not.    
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Figure 5: Projection of relative percentage change in overall annual costs of absenteeism to reference 

year 2020 (Sources: [7,10,13]; own computation and illustration) 

     

4. Discussion 

We suggest a forecast model of absenteeism, using Germany as a case study and projecting 

absenteeism both in days and costs until 2050. We show that absenteeism is a complex and, 

for aging economies, severe topic. Yet, it is rather under-investigated in the scientific liter-

ature. Absenteeism depends not only on demographic development but also on socio-eco-

nomic trends, such as labor force participation, as well as epidemiological trends, such as 

trends in morbidity prevalence and working environments.  

We focus on the first part in most detail, employing an adjusted version of an established 

stochastic population forecast model for Germany, suggested by Vanella and Desch-

ermeier [1], including labor force participation rates and morbidity rates deterministically. 

LFPRs are assumed according to a recent forecast by Fuchs et al. [13], whereas age-specific 

morbidity rates are held constant as under the status quo scenario. We believe that our 

model thus offers a new approach towards research in economic and demographic fore-

casting with great potential for further development and improvement.  

Still, our model has some limitations. First, the model relies on a forecast of the labor sup-

ply potentially available to the labor market, based on a stochastic population forecast in 

combination with a forecast of labor force participation rates. This, however, does not nec-

essarily correspond to the number of persons being employed as we do not model the 

demand side of the labor market. To do this, another sophisticated forecast of the future 

economic situation would be required, which is not only beyond the scope of this paper as 
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such but also difficult to project in the long run. Moreover, additional data on the educa-

tion and training of the working-age population would be necessary and needed to be 

matched with projected labor demand.  

Apart from this, a higher differentiation of absenteeism, e.g. by gender or nationality, 

would improve our projections further. However, this type of data is not publicly availa-

ble.  

In addition, our projections of days of absenteeism and associated economic costs are not 

to be mistaken as true forecasts (for a distinction between forecasts and projections, see, 

for instance, [39]), as we provide forecasts on the population but include labor force par-

ticipation rates deterministically, only.  

Moreover, we do not conduct a forecast of the relevant epidemiological parameters, i.e. we 

do not make any assumptions about how age-specific absenteeism might develop in the 

future. In an aging population, so far, empirically, it remains unclear, whether overall mor-

bidity will decrease or increase. In the literature, two opposing theories can be found: the 

theory of morbidity compression and the medicalization theory. While the first theory as-

sumes morbidities to be delayed to later points in time, quasi-parallel to increases in life 

expectancy [40], the latter assumes increases in life expectancy to be completely spent in 

poor health [41]. While there is some evidence that the truth lies somewhat in between 

these two extreme scenarios [6], little is yet known about age-specific morbidity patterns. 

We tried forecasting the epidemiological trends ourselves in gathering time series data for 

age-specific absence rates from all previous BMAS/BAuA reports, however, we found sig-

nificant structural breaks in 2016, not allowing a sound basis for future projections. There-

fore, we decided to follow a simple but well-defined projection approach where epidemi-

ological risks are assumed to remain constant. Changes in absence risks in the model are 

thus exclusively rooted in changes in age-specific LFPRs and therefore only depicture the 

pure demographic effects.  

Regarding days of absenteeism and associated economic costs, our data was restricted to 

GKV data, which might be strongly biased, as has been discussed earlier. To account for 

this, we do not deliver absolute results for days of absenteeism and associated economic 

costs but only relative changes over time, so that biases level off.  

Last, our model only relies on pre-pandemic data. Therefore, our forecast does not include 

any influence the COVID-19 pandemic might have on demographic or epidemiological 

trends. For our model, however, it is only the working-age population that is relevant. 

Vanella et al. [42,43] have shown in international studies on excess mortality and case fa-

tality risks that mortality trends in these age groups so far have not been significantly tam-

pered by COVID-19. Therefore, the underlying mortality forecast is robust. For fertility in 

Germany, Vanella et al. [26] did not find statistical evidence for any effect of the pandemic. 

Therefore, our birth forecast holds as well. International migration flows slumped during 

the pandemic. So far, however, the effect of the pandemic on international migration is 

unpredictable as reliable data is still missing. The pandemic in 2020 halted the rise in em-

ployment rates that has been continuing since 2006. Even though LFPRs collapsed in the 

first months of the pandemic, a rising trend is anticipated again once the pandemic situa-

tion has ended. A similar trend is expected for 2021 [44]. Germany introduced the first 

major contact reduction measures in March 2020 [45]. Overall, the short-term effects of the 

pandemic can be explained quite well. For example, well over half of the significant in-

crease in transitions from employment to unemployment in April 2020 was probably due 

to the shutdown. The effects were even more pronounced in the absence of new hiring 

[46]. It is not yet clear, however, whether and to what extent long-term negative effects of 

the pandemic are to be expected. With or without the pandemic, in the medium and long 

run, a decline in the working-age population will be inevitable given the German demo-

graphic development [3]. 
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Keeping these limitations in mind, our model provides a solid first step towards under-

standing absenteeism and its economic costs given the ongoing aging process. Further-

more, we show that increases in the statutory retirement age do not lead to one-to-one 

increases in LFPRs but are also, as shown by Vanella et al. [4], associated with increases in 

disability pensions and higher absenteeism. Common projections on demography and 

pensions typically do not take these aspects into account (see, for instance, Vanella et al. 

[4], for an overview). Our approach, therefore, could be included in projections of future 

labor markets and pensions as a baseline for economic planning and political decision-

making. 

 

Author Contributions: Conceptualization, C.B.W. and P.V.; methodology, PV, C.B.W., and D.S.; 

software, P.V. and D.S.; validation, all authors; formal analysis, P.V. and D.S.; investigation, C.B.W. 

and P.V.; resources, P.V. and D.S.; data curation, P.V. and D.S.; writing—original draft preparation, 

C.B.W. and P.V.; writing—review and editing, P.V.; visualization, P.V.; supervision, C.B.W.; project 

administration, P.V. All authors have read and agreed to the published version of the manuscript. 

Funding: This research received no external funding. 

Data Availability Statement: Simulation data generated by this study can be found in Online Sup-

plement A. 

Acknowledgments: We thank Johann Fuchs for his valuable advice and consultation in the labor 

force part of the model. 

Conflicts of Interest: The authors declare no conflict of interest. 

 

  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 January 2022                   doi:10.20944/preprints202201.0317.v1

https://doi.org/10.20944/preprints202201.0317.v1


Appendix A. Supplementary Figures 

 

Figure A1. Births Forecast with 75% Prediction Interval (Sources: [19]; authors’ computation and 

illustration) 

 

Figure A2. Forecast of Males among all Births with 75% Prediction Interval (Sources: [19]; authors’ 

computation and illustration) 
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Figure A3. Forecasts of Net Migration of Males by 15-Year Age Groups with 75% Prediction Intervals 

(Sources: [27,28]; authors’ computation and illustration) 

 

Figure A4. Forecasts of Net Migration of Females by 15-Year Age Groups with 75% Prediction 

Intervals (Sources: [27,28]; authors’ computation and illustration) 
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Figure A5. Forecasts of Deaths of Males by 15-Year Age Groups with 75% Prediction Intervals 

(Sources: [29,30]; authors’ computation and illustration) 

 

Figure A6. Forecasts of Deaths of Females by 15-Year Age Groups with 75% Prediction Intervals 

(Sources: [29,30]; authors’ computation and illustration) 
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