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This paper proposes a relativistic model of the Universe in which the geometry describes a 4D
version of the 2-sheeted hyperboloid that is isotropic, homogeneous in space at a given time and
inhomogeneous in time. The radius of this metric is temporal as opposed to spatial. It predicts both
a Universe and Anti-Universe moving in opposite directions of time undergoing an expansion phase,
followed by a collapsing phase. Using only the current age of the Universe and transition redshift, it
predicts the accelerated expansion and it is shown that its Hubble diagram fits currently available
supernova and quasar data as well as predicting a Hubble constant H0 ≈ 71.6km/s/Mpc. The
angular term of the metric describes time dilation caused by the relativistic kinematic precession
effect known as Thomas Precession which can be interpreted as spin about the time dimension.
The model also makes two novel predictions: that the early Universe should have structures older
than expected due to an increased amount of proper time relative to coordinate time in that era
and that the background Universe should appear brighter than current models predict.
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I. MOTIVATION AND ROADMAP

The current model of cosmology is based on the FRW
metric, which, under the flat space assumption, is a flat
space metric in spherical coordinates whose space-like
dimensions are scaled by a time-dependant scale fac-
tor. What is notable here is that for a Universe with
a non-accelerating expansion, the FRW model makes the
same predictions as a spherically symmetric cosmological
model based on Newtonian gravity. But the expansion
of the Universe is now known to be accelerating. To ac-
commodate this acceleration, the cosmological constant
is introduced into the field equations which is assumed
to give empty space a pressure that creates an acceler-
ated expansion. The problem with the cosmological con-
stant is that it is just a measured number whose value is
heretofore unpredictable via any currently existing the-
ory, making the true underlying nature of the accelerated
expansion a mystery.

Another notable feature of the FRW metric is that it
models the Universe as a continuous fluid. While this ap-
proximation might work well in the early Universe where
the matter is more evenly spread, it becomes less accurate
over time as concentrated pockets of matter become more
dispersed and the continuous fluid assumption starts to
break down, requiring the use of the Cosmological Con-
stant to correct for that. It is also curious that the Uni-
verse would curve the spatial dimension over time via the
scale factor, but have its time dimension completely un-
curved. This is curious because we know that for a finite
distribution of matter/energy, both space and time are
curved, yet the FRW metric seems to suggest that the

infinite matter and energy of the Universe has no effect
on the curvature of the time dimension.
It will be argued in this paper that the metric properly

describing the Universe including its accelerated expan-
sion is the internal Schwarzschild metric. This metric
is a spherically symmetric vacuum solution. Consider
that the external Schwarzschild metric, which is also a
spherically symmetric vacuum solution, can be used to
describe the worldlines of particles on an infinitely thin
shell collapsing toward a center in space. For the internal
metric, we can imagine that the matter and energy in the
Universe is isotropically and homogeneously distributed
throughout infinite space (3D space in this case), but ex-
ists only at the present time (time is the radius of the
metric in this case) where the past and future are vac-
uums. When we see light from galaxies billions of years
old, we are seeing the photons in the present. So the
photons have been falling with the Universe for billions
of years and then they are finally measured at our time
and location. Thus, the galaxies we see in the distant past
are not still ”there” at that time, we are just measuring
the photons emitted from that location and time at our
current location and time. If we accept the vacuum as-
sumption and that the Universe is spherically symmetric,
then according to Birkhoff’s theorem, the internal met-
ric is the only possible cosmological metric because the
Schwarzschild solution is the only spherically symmetric
vacuum solution in General Relativity.
In section II, we show that surfaces of constant time

in the internal metric can be visualized as a collection
of 2-sheeted hyperboloids analogous to how the external
metric at a given radius can be visualized as a collec-
tion of one sheet hyperboloids. The 2-sheeted hyperbolic
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nature of the metric changes the interpretation of the an-
gular term relative to the external metric, and it is shown
that the metric describes a Universe that is isotropic, ho-
mogeneous in space and inhomogeneous in time, as our
Universe has been observed to be. It is also demonstrated
that the angular term of the internal metric comes from
the kinematic relativistic effect known as Thomas Pre-
cession. This precession acts as an intrinsic ’spin’ around
the time dimension.

In section V we solve for the unknowns for the inter-
nal Schwarzschild metric, namely our current cosmolog-
ical position in the metric and the counterpart of the
Schwarzschild radius, using existing cosmological data.
The model is then used to calculate relevant cosmolog-
ical parameters and it is found that the model fits the
cosmological data very well.

In section IX, the internal metric is interpreted as hav-
ing an imaginary (as in complex numbers) radius which
gives us the 2-sheeted hyperbolic structure. This 2-
sheeted geometry gives us a Universe and Anti-Universe
falling in opposite directions of time relative to each
other. The Universe and anti-Universe are falling
through the imaginary time dimension described in that
section. It is shown that the Universe and Anti-Universe
undergo an expansion phase followed by a collapse, where
they annihilate with each other and pair production then
gives birth to a new pair of Universes as the cycle repeats.

In section XI, we place the external metric in the back-
ground cosmology of the internal metric and show that
a Black Hole event horizon can never form during the
expansion phase. We see that gravity becomes repulsive
during the collapse phase and would-be Black Holes be-
come White Holes. This is a consequence of the Universe
moving in the opposite direction of time during collapse
relative to expansion.

We will begin the argument by examining the geometry
of the full Schwarzschild metric in detail.

II. THE SCHWARZSCHILD GEOMETRY

The Schwarzschild metric is the simplest non-trivial
solution to Einstein’s field equations. It is a vacuum so-
lution for the spacetime around a spherically-symmetric
distribution of energy. The the external and internal
forms of metric can be expressed as (coordinates in the
external metric are primed to distinguish them from the
internal metric coordinates):

dτ ′2 =
r′ − rs
r′

dt′2 − r′

r′ − rs
dr′2 − r′2dΩ′2 (1)

dτ2 = −u− r

r
dt2 +

r

u− r
dr2 − r2dΩ2 (2)

Equation 1 is the external metric with t′ being the time-
like coordinate and r′ being the spacelike coordinate. The
Schwarzschild radius of the metric is given by rs = 2GM

in natural units. We use the prime notation for the coor-
dinates here to distinguish the external coordinates from
the internal coordinate. The external metric is the metric
for an eternally spherically-symmetric vacuum centered
in space. This metric is also used to describe the vacuum
outside a spherically symmetric object occupying a finite
amount of space (like a star or planet). This metric as
written in Equation 1 becomes the Minkowski metric as
r′ → ∞.

Equation 2 is the internal metric with t being the
spacelike coordinate and r being the timelike coordinate.
This describes the metric for a spherically symmetric vac-
uum centered in time. The constant u is a time constant
that will be later derived from cosmological data. Analo-
gous to the external case, this metric should also describe
a vacuum of time outside a spherically-symmetric object
spanning infinite space. The ”center” of the metric is ev-
erywhere in space, but at a single point in time. As will
be shown, when talking about the ”center” of the inter-
nal metric, we cannot think of it as the center of a sphere,
but rather as a particular set of sheets in a collection of
2-sheeted hyperboloids.

An important observation is that the internal metric
describes a vacuum solution to the field equations. But
the Universe is clearly filled with energy, so how can this
solution be the Cosmological metric? In order to satisfy
the requirements of the metric, the Universe must be “a
spherically-symmetric energy distribution occupying an
infinite amount of space for a finite amount of time”.
For this metric to be a cosmological description, it must
be that Universe only truly exists in the present and in a
very real sense moves into the future. We see light from
old galaxies and the CMB because the light moves into
the future with the rest of the Universe. However, that
matter no longer exists in the past, it only truly exists in
the present, but the light that we receive in the present
shows us what that matter looked like when the Universe
was physically in the past.

Time being the radial dimension of the internal metric
combined with the fact that the solution is a vacuum so-
lution gives a mathematical justification for our intuitive
notions of past, present, and future. The in-homogeneity
along the radial direction gives us an arrow of time that
distinguishes the ‘past’ and ‘future’ analogous to the way
the external solution gives us an absolute distinction be-
tween ‘up’ and ‘down’. And the vacuum as described
above gives us a boundary between them, that boundary
being the ‘present’ time, when the matter/energy of the
Universe is actually positioned in the spacetime.

Observation has shown that the Universe is:

• Spherically Symmetric

• Homogeneous in space

• In-homogeneous across time

We will also make one further assumption in this paper:
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• The Universe only ever occupies a single instant of
Cosmic time and moves from one moment of cos-
mic time to the next where the time measured by
observers between cosmic times depends on their
respective motions.

Relativity of simultaneity does not prohibit the idea of
the energy existing at a specific Cosmological time be-
cause of the nature of the metric. In Cosmology, we can
determine absolute motion and absolute simultaneity be-
cause we have the Cosmic Microwave Background. For
example, consider two events that are causally discon-
nected. If observers at each event see the CMB tem-
perature to be uniform in all directions (the observers
are co-moving), then if both observers measure the CMB
to have the same temperature at both events, then we
know the events are absolutely simultaneous, even if a
third observer in motion sees them as non-simultaneous.
Any observer in motion through space, inertial or oth-
erwise, will see a dipole on the CMB, and that dipole
will provide all the info about the state of motion of the
observer. Therefore, we can define past, present, future,
and motion in an absolute sense. To put it another way,
the fact that cosmological time is finite into both the
past and future allows us to specify the distance of any
event from either the beginning or end of time absolutely
in terms of the CMB temperature, which relates directly
to the cosmological coordinate time. Different observers
will disagree on how much time has elapsed according
to their local clocks due to the time dilation effects of
their local gravitational fields and peculiar motions, but
everything in the Universe is falling together in the time
dimension.

Figure 1 shows the Kruskal-Szekeres coordinate chart1

for both the internal and external metrics where light
travels on 45 degree lines on the chart.

FIG. 1. Kruskal-Szekeres Coordinate Chart

1 Figures 1, 3, 8, 9, 11, 12, and 13 are modifications of:
’Kruskal diagram of Schwarzschild chart’ by Dr Greg. Li-
censed under CC BY-SA 3.0 via Wikimedia Commons -
http://commons.wikimedia.org/wiki/File:
Kruskal diagram of Schwarzschild chart.svg#/media
/File:Kruskal diagram of Schwarzschild chart.svg

The equation for a 2D hyperboloid surface embedded
in three dimensions is given by:

x2

a2
+
y2

b2
− z2

c2
= ±1 (3)

For our purposes, we will be considering the special case
where a = b = c, which gives the one and two sheeted
hyperboloids of revolution. Next, we note the following
relationship with regards to the Kruskal coordinates:

X2 − T 2 =
( r
u
− 1

)
e

r
u (4)

Equation 4 is only for one dimension of space, but we
know that the metric is spherically symmetric and can
therefore extend Equation 4 to 2 spatial dimensions by
simply adding a Y coordinate to get an equation that
matches the form of Equation 3 where a2 = b2 = c2 =(
r
u − 1

)
e

r
u ≡ ρ2:

X2 + Y 2 − T 2 = ρ2 (5)

Equation 5 describes 2D hyperboloid surfaces for a given
r where the external metric has positive ρ2 and the inter-
nal metric has negative ρ2. This means that the external
metric describes a 1-sheet hyberboloid while the internal
metric describes a 2-sheeted hyperboloid.
We will for now focus on regions I and II from Figure 1,

where region I captures the external metric and region II
captures the internal metric. If we choose some constant
value of r = r0 in each region and plot Equation 5 for
each region, we get the surfaces shown in Figure 2.

FIG. 2. 2D Surfaces of Constant r for Internal and External
Metrics

In the internal case where we have two separate sheets,
we will only focus on the top sheet for now. The mean-
ing of the bottom sheet will be discussed in section VIII.
In the external metric, the sheet represents an equato-
rial circle of space around the central body at all times.
This circle is on a plane with a normal at the center and
pointed vertically in Figure 2. If we then consider cir-
cles on all planes whose normals are at different angles
relative to the normal of the plane we are currently vi-
sualizing, we get a 2D spherical surface representing the
space surrounding the central body at constant r.
Now imagine we are situated at some point in empty

space in the Universe facing in some direction. There is a
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plane of infinite space at the present time perpendicular
to the direction we are facing. This plane is the hyper-
bolic sheet depicted on the left side of Figure 2 where we
are situated at the apex of the sheet. So the direction
we are facing is the normal vector to this sheet (with the
vector origin at the apex of the sheet) and just like in the
external case, there are similar planes constructed from
normals at all different angles to the direction we chose
to face and when we put all of these together, we get an
infinite 3D space at the present time.

But the points on this collection of sheets at r0 are
spacelike to us because they all exist at the same time
as us and we can only see points on past sheets whose
light has had time to reach us. Light paths in Figure 1 are
lines at 45 degrees and light cones in Figure 2 are oriented
vertically where the beginning of the Universe is at the
origin between the two sheets and time moves forward
as the top sheet moves up the diagram vertically. So we
can construct an image of what a 2D slice of the Universe
would look like to us in this geometry with our position at
the center. Figure 3 shows the present sheet (r0) where
we are positioned in space at the apex of the sheet. We
then show a cross section of that sheet on the Kruskal-
Szekeres coordinate chart with the past light cone shown
(dashed lines at 45 degrees emanating from t = 0 at r0).
That light cone intersects past sheets of constant r > r0
(past sheets not shown in the top left of Figure 3 but are
represented by the hyperbolas the dashed lines intersect
in the top right of the figure) and these intersections are
projected onto the plane at the origin to give us a 2D
image of our past light cone of the Universe.

FIG. 3. Projection of the Past Light Cone on a Flat Plane

Despite the hyperboloic nature of the spacelike planes,
space still looks flat from our perspective because our
past light cone intersects past surfaces as circular cross-
sections. As we can see in the lower projection in Figure

3, concentric circles around the center of the projection
(marked with ’x’) are circles of constant distance t and
time r from us. So we see that as we look further away
in space and back in time, the Universe becomes more
dense until at the beginning of the Universe, which cor-
responds to an infinite distance and finite time from us,
the Universe is infinitely dense. This is in line with our
current observations of the Universe.

We can further extend this to three spatial dimensions
by adding a Z2 term, but given the spherical symmetry
we can define R2 ≡ X2 + Y 2 + Z2 and change Equation
4 to

R2 − T 2 = ρ2 (6)

In this formulation, we put ourselves at R = 0 and can
then make the projection in 3 dimensions such that the
2D projection of Figure 3 will become a 3D ball that,
from our reference frame, is isotropic, homogeneous in
space and inhomogeneous in time, which is consistent
with the Cosmological Principle.

We will discuss the meaning of the r2dΩ2 term of the
internal metric, which has units of time, in section VI but
first let us show that this model fits current cosmological
data for the expanding Universe.

III. THE SCALE FACTOR

Expressions for the proper time interval along lines of
constant t and Ω and the proper distance interval along
hyperbolas of constant r and Ω from Equation 2 are:

ds

dt
= ±

√
u− r

r
= ±a (7)

dτ

dr
= ±

√
r

u− r
= ±1

a
(8)

And the coordinate speed of light is given by:(
dt

dr

)
light

= ± r

u− r
= ± 1

a2
(9)

Where a is the scale factor. First we should notice that
none of the three equations depend on the t coordinate.
This is good because the t coordinate marks the position
of other galaxies relative to ours. Since all galaxies are
freefalling in time inertially, the particular position of
any one galaxy should not matter. The proper temporal
velocity, proper distance, and coordinate speed of light
only depend on the cosmological time r.

A plot of the scale factor vs. r (with u = 1) is given in
Figure 4 below:
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FIG. 4. Scale Factor vs. r for u = 1

IV. THE CO-MOVING OBSERVER

Let us take a co-moving observer somewhere in the
Universe we label as t = 0 as the origin of an inertial ref-
erence frame. We can draw a line through the center of
the reference frame that extends infinitely in both direc-
tions radially outward. This line will correspond to fixed
angular coordinates (Ω). There are infinitely many such
lines, but since we have an isotropic, spherically symmet-
ric Universe, we only need to analyze this model along
one of these lines, and the result will be the same for any
line.

We must determine the paths of co-moving observers
(dt = dΩ = 0) in the spacetime. For this we need the
geodesic equations for the internal Schwarzschild metric
[1] given in Equation 2. In these equations u represents
a time constant (in Figure 1, the value of u is 1). The
following equations are the geodesic equations of the in-
ternal metric for t and r (0 ≤ r ≤ u) for dΩ = 0:

d2t

dτ2
=

u

r(u− r)

dr

dτ

dt

dτ
(10)

d2r

dτ2
=

u

2r2
(11)

Looking at points 0 < r < u, then by inspection of Equa-
tion 10 it is clear that an inertial observer at rest at t will
remain at rest at t ( d2t

dτ2 = 0 if dt
dτ = 0).

Let us next demonstrate how the internal metric fits
with existing cosmological data and calculate various cos-
mological parameters using that data.

V. CALCULATION OF COSMOLOGICAL
PARAMETERS

In order to compare this model to cosmological data,
we must solve for u and find our current position in time
(r0) in the model. Reference [2] gives us transition red-
shift values ranging from zt = 0.337 to zt = 0.89, depend-
ing on the model used. We can use the expression for the

scale factor in Equation 7 to get the expression for cos-
mological redshift from some emitter at r measured by
an observer at r0 [1]:

1 + z =
a0
a

=

√
r(u− r0)

r0(u− r)
(12)

Furthermore, the deceleration parameter is given by:

q =
äa

ȧ2
=

4r

u
− 3 (13)

By setting Equation 13 equal to zero, we find that the
scale factor at the transition from decelerating to accel-
erating expansion at is:

at =

√
4

3
− 1 =

1√
3

(14)

Using Equations 12, 14, and the transition redshift es-
timate, we can get an expression for the present scale
factor:

a0 = at(1 + zt) =
1 + zt√

3
(15)

Next, we find expressions for u and our current radius r0
by noting that the Universe has been found to be roughly
13.8 billion years old. Therefore, we can set αr0 ≡ u −
r0 = 13.8 and use Equations 7 and 15 to obtain the
following for u and r0:

r0 =
u− r0
a20

=
αr0

a20
=

3αr0

(1 + zt)2
(16)

u = r0 + αr0 = αr0

(
3

(1 + zt)2
+ 1

)
(17)

Next we compute the CMB scale factor (aCMB) and co-
ordinate time (rCMB) in this model where the redshift
of the CMB (zCMB) is currently measured to be 1100:

aCMB =
a0

1 + zCMB
(18)

rCMB =
u

1 + a2CMB

(19)

We can next derive the Hubble parameter equation using
the scale factor. The Hubble parameter is given by (in
units of (Gy)−1):

H =
ȧ

a
=

u

2r(u− r)
(20)

Table I below gives the values of u, r0, H0, a0, q0, aCMB ,
rCMB , and qCMB given the upper and lower bounds of
zt from [2] as well as the average of the upper and lower
bound values and assuming αr0 = 13.8. All times are in
Gy and H0 is in (km/s)/Mpc.
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zt αr0 u r0 H0 a0 q0 aCMB rCMB qCMB

0.337 13.8 37.0 23.2 56.6 0.77 -0.49 0.0007 36.95 0.99
0.614 13.8 29.7 15.9 66.2 0.93 -0.86 0.0008 29.65 0.99
0.89 13.8 25.4 11.6 77.6 1.09 -1.17 0.0010 25.35 0.99

TABLE I. Limiting Cosmological Parameter Values Based on
zt Measurement and a 13.8 Gy Age of the Universe

From the results in Table I, we see that the true tran-
sition redshift is likely between 0.614 and 0.89 given the
fact that the current value of the Hubble constant is
known to be in that range. Thus, more accurate mea-
surements of the transition redshift are needed to increase
the confidence of this model, though we do see that it is
able to reproduce measured results.

Table II has the proper times from r = u to the current
time as well as the CMB for stationary, inertial observers
(dt = rdΩ = 0) by integrating Equation 2. The column
τtot gives the time from r = u to r = 0. The expression
for τtot turns out to be quite simple:

τtot =
π

2
u (21)

In Table II below, the column τremain gives the time be-
tween r = r0 and r = 0.

zt αr0 τ0 τtot τremain τCMB

0.337 13.8 42.2 58.1 15.9 8.6
0.614 13.8 37.1 46.7 9.6 2.4
0.89 13.8 33.7 39.9 6.2 2.3

TABLE II. Limiting Proper Times Based on zt Measurements
and an age of 13.8 Gy for the Universe (Time is in Gy)

Note that the proper time τ0 of the current age of the
Universe is actually much larger than the coordinate time
u − r0. And even though we are presently only about
halfway through the “coordinate life” of the Universe (ac-
cording to Table I), the amount of proper time remaining
is actually much less than the amount of proper time that
has already passed (according to Table II). This provides
a measurable prediction from the model: as telescopes
such as the JWST peer farther into the past with greater
accuracy, we should expect to find stars, galaxies, and
structures that are much older than expected because of
the increased amount of proper time available for such
things to form in the early Universe. Hints of this has
already been found with the star HD 140283, whose age
is estimated to be nearly the age of the Universe itself
[3].

Next we would like to use the u and r0 values found to
create an envelope on a Hubble diagram to compare to
measured supernova and quasar data. First we need to
find r as a function of redshift. We can do this by solving
for r in Equation 12:

r =
u(1 + z)2

a20 + (1 + z)2
(22)

We can derive the expression for t vs. r along a null
geodesic where the geodesic ends at the current time r0
and t = 0 by setting dτ = rdΩ = 0 in Equation 2 and
integrating:

t =

∫ r

r0

r

u− r
dr = u ln

(
u− r0
u− r

)
+ r0 − r (23)

Next we substitute Equation 22 into Equation 23 to get
coordinate distance in terms of redshift:

t = r0+u

[
ln

(
a20 + (1 + z)2

1 + a20

)
− (1 + z)2

a20 + (1 + z)2

]
(24)

We need to convert the distance from Equation 24 to the
distance modulus, µ, which is defined as:

µ = 5 log10

(
DL

10

)
(25)

Where DL in Equation 25 is the luminosity distance. Lu-
minosity distance is inversely proportional to brightness
B via the relationship:

B ∝ 1

D2
L

(26)

The brightness is affected by two things. First, the spa-
tial expansion will effectively increase the distance be-
tween two objects at fixed co-moving distance from each
other. This will reduce the brightness by a factor of
(1+z)2 (because the distance in Equation 26 is squared).
But there is also a brightening effect caused by the ac-
celeration in the time dimension. We define ν ≡ dτ

dr = 1
a

as the temporal velocity of the inertial observer at some
r and the speed of light at that r as νc ≡ dt

dr = 1
a2 . The

ratio of these velocities gives us:

νc
ν

=
dt

dr

dr

dτ
=
dt

dτ
=

a

a2
=

1

a
(27)

Equation 27 tells us how far a photon travels over a given
period of time measured by the inertial observer’s clock.
So we see that as light travels from the emitter to the
receiver, this speed decreases. This decrease in the speed
from emitter to receiver will result in an increased photon
density at the receiver relative to the emitter, increasing
the brightness. Therefore, this effect will increase the
brightness by a factor of:

a0
a

= 1 + z (28)

This effect is not accounted for in the current relativistic
cosmological models and therefore gives a second predic-
tion that light from the distant Universe should appear
brighter than expected.
Taking these brightness effects into account, the total

brightness will be reduced by an overall factor of 1 + z
relative to the case of an emitter and receiver at rest
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relative to each other in flat spacetime. Equation 26 in
terms of co-moving distance t and redshift z becomes:

B ∝ 1 + z

(t(1 + z))2
→ B ∝ 1

t2(1 + z)
(29)

Giving the luminosity distance as a function of co-moving
distance t and redshift z:

DL = t
√
1 + z (30)

Which gives us the final expression for the distance mod-
ulus as a function of co-moving distance and redshift:

µ = 5 log10

(
t
√
1 + z

10

)
(31)

A plot of distance modulus vs. redshift is shown in Figure
5 below plotted over data obtained from the Supernova
Cosmology Project [4]. Curves calculated from all three
values of zt in Table I are plotted, giving an envelope for
the model’s prediction of the true Hubble diagram.

FIG. 5. Distance Modulus vs. Redshift Plotted with Super-
nova Measurements

Note that the middle curve corresponds to zt = 0.614
and the lower curve corresponds to zt = 0.89. The super-
nova data is better fit by a curve between these values.
The curve halfway between (with zt = 0.75) gives us
H0 = 71.6, a0 = 1.0, q0 = −1.0, u = 27.3, and r0 = 13.5.

In [5], the authors analyze a large sample of quasar
data to obtain distance moduli at higher redshifts than
is possible with supernova data. Figure 6 shows the same
predicted envelope from Figure 5 for the Hubble diagram
plotted out to higher redshifts with the quasar data from
[5] also shown with error bars. The black diamonds in the
figure are the 18 high-luminosity XMM-Newton quasar
points described in [5].

FIG. 6. Distance Modulus vs. Redshift Plotted with Quasar
Measurements

Finally, by subtracting r0 from Equation 22 we can
calculate the lookback time for a given redshift. Figure 7
shows the lookback time vs. redshift for the three tran-
sition redshifts.

FIG. 7. Lookback Time vs. Redshift

VI. THE ANGULAR TERM r2dΩ2

To understand the angular term of the internal metric,
let us first think about the external metric in a reference
frame attached to an observer in the gravitational field
of a star. In this frame, if the observer is in circular or-
bit around the star, then the star will appear to revolve
around the observer. But the star will also appear to re-
volve around the observer if the observer is just spinning
in place. In order to distinguish between these to cases,
we need a gyroscope.
We start by drawing a line between the observer and

the star and orient the axis of the gyroscope along this
line. In the frame of the observer, if the gyroscope main-
tains its orientation along this line as the star revolves
around the observer, then they know they are just spin-
ning in place and not actually orbiting the star. If how-
ever they see that the angle between the gyroscope axis
and connecting line changes as the star revolves around
the observer, then they know they are in orbit around the
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star and their angular velocity as described by the angu-
lar term in Equation 1 will be the rate at which the angle
between the gyroscope axis and connecting line changes.
So the angle of the external metric describes the angle
between a gyroscope axis and a line connecting the ob-
server’s reference frame to the center of the source body
of the metric.

For the internal metric, there is no central body like the
star that can be referenced as the source of the metric.
Instead, we must use the distant surrounding Universe
as a reference, with the Cosmic Microwave Background
being an optimal reference in this case. Just like in the
external case, we can draw a line from the observer to
some point on the CMB and orient the gyroscope along
that line. As we move through empty space, the change
in angle between the gyroscope axis and the connecting
line will be the change in angle dΩ in Equation 2. In a
Newtonian Universe, this angle would never change be-
cause even if we moved around a curvilinear path through
space, the gyroscope would remain fixed in its orienta-
tion. But in Special Relativity, there is a kinematic effect
known as Thomas Precession in which the orientation of
the gyroscope will change as a result of an acceleration
being applied to the observer at an angle to the observer’s
current velocity. The Thomas Precession is given by:

ω⃗T =
1

c2

(
γ2

γ + 1

)
a⃗× v⃗ (32)

Where

γ =
1√

1− v2

c2

(33)

At non-relativistic speeds, this precession is very small,
essentially zero at human scales. Also note that we do
not include dynamical relativistic precession effects such
as geodetic precession and frame dragging in this because
those effects are accounted for by the metrics describing
the curved spacetime that causes them. We discuss how
to find the total proper time of a worldline resulting from
the combined metrics in section XII. We can think of this
kinematic precession as the ’spin’ of an object since it is
an intrinsic rotation of the object’s reference frame.

Going back to the two-sheeted hyperboloid in Figure
2, we can keep our observer’s frame fixed at the apex
of the sheet and describe this precession as the sheet re-
volving around the apex (i.e. from the observer’s frame,
it appears the Universe is revolving around them). Like-
wise, we can describe motion in the t dimension by again
keeping the observer fixed at the apex and hyperbolically
rotating the sheets (rotate the sheets for every r) under
the observer in the direction of travel (recall that in Fig-
ure 2, the circles on the 2-sheeted hyperboloid represent
distances of constant t since the t coordinates emanate
from the origin between the two sheets in the figure such
that distances of constant t from the observer at t = 0
are cones with different opening angles that intersect a
given sheet as circles). Given these interpretations of the

motion in t and Ω, it is notable that if an object had
some intrinsic spin already and started moving in t, the
object would move on a curved trajectory analogous to
a charged particle moving in a magnetic field.

VII. UNDERSTANDING COSMOLOGICAL
MOTION: A THOUGHT EXPERIMENT

The conventional interpretation of the Schwarzschild
metric is of a single spacetime with admittedly odd prop-
erties that produce Black Hole horizons that swallow up
information, but that interpretation at least uses a single
set of coordinates and a single worldline for the parti-
cle. In this paper, it is argued that these metrics are
related, but their coordinates do not quite describe the
same things and, as will be shown in section XIII, they
have different worldlines describing the same particle.
This demands an explanation and we can understand the
relationship better with a thought experiment.
A very important fact about the internal metric is that

it is not centered in space, which is consistent with the
cosmological principle. The angular term of the metric,
which has a center in time at all space, must be thought
of differently than we usually think of spherical metrics
centered in space as was discussed in section II. We can
always put ourselves at the center of space t = 0 and
if we pick an arbitrary direction at some fixed time r,
the t dimension is a linear (not radial) dimension that
extends infinitely in front of us in that direction as well
as infinitely behind us in the opposite direction. So even
though we are not centered in time in the metric, we can
always model ourselves as being at the center of space.
Understanding this is very important for visualizing what
the Universe looks like when we move cosmological dis-
tances.
Imagine a Universe full of Dark Stars (for reasons that

will be made apparent later, we will use the term ’Dark
Stars’ instead of ’Black Holes’), each one with a particle
moving in the star’s gravitational potential in arbitrary
ways. We will focus in on one such system. Let’s sur-
round our Dark Star and particle system with a larger
sphere containing both of them (call it a Cosmosphere)
centered on the Dark Star and large enough that the path
of the particle always remains inside it. The orientation
of the system is locked to the Cosmosphere so that if the
Cosmosphere moves or rotates, the system as a whole
moves and rotates with it.
We already know that Equation 1 describes the path

of the particle relative to the Dark Star and the r′ and
Ω′ coordinates are measured relative to the Dark Star.
But the time coordinates of Equations 1 and 2 must be
related because we must be able to synchronize the times
in both metrics. So we therefore need first to define the
cosmological time.
The CMB shines on the Cosmosphere, and the tem-

perature monopole of that light is directly related to the
cosmological time r and therefore local time t′. When the
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temperature monopole is zero, we are at r = t′ = 0. So
the monopole temperature of the CMB gives us a mea-
sure of cosmological time.

We’ve already discussed the cosmological angular mo-
tion dΩ

dτ as the Thomas Precession of a gyroscope relative
to the CMB, so this leaves us with cosmological linear
motion dt

dτ . We can figure out our cosmological velocity
dt
dτ by observing the magnitude and orientation of the
temperature dipole cast on the Cosmosphere from the
CMB. If the system is moving through t, one side of the
sphere will be more blue than the monopole and the po-
lar opposite side will be more red than the monopole.
The Dark Star, which is at rest relative to the Cosmo-
sphere can figure out how fast and in which cosmological
direction the Cosmosphere is moving in by observing the
magnitude of the dipole as well as the relative orientation
of it.

So when an observer moves linearly in t, half the sky
will be blueshifted and the other half will be redshifted
and the circle perpendicular to the dipole direction will
have no red or blueshift. For simplicity, let’s assume all
galaxies are co-moving. If we are also co-moving and we
look at a set of galaxies surrounding us at a fixed r > r0,
these galaxies will be equally redhisfted in our frame as
time goes on. If we then move in t in some direction, what
we would see is that we move closer to the galaxies in the
blueshifted portion of the sky and away from the galaxies
in the redshifted portion of the sky. How much closer or
farther away we move from a particular galaxy depends
on the magnitude of the red or blueshift in the direction
the galaxy sits in the sky. So if we shift our position
by moving in t in some direction, when we later come
to rest the galaixes that originally sat on a shell equally
distant in space and time from us will now each appear at
different distances and times from us depending on our
direction of travel. Figure 8 shows our pure motion in t
on the Kruskal coordinate chart.

FIG. 8. Depiction of Linear Cosmological Motion

Time moves upward in this diagram, so we start at
t = 0 and see two galaxies in each direction equidistant in
both space and time from us connected by equal length
null geodesics (dashed lines). The galaxies we see are

assumed to be co-moving in this example. Then we move
in t along some direction as we fall through time. The
diagram shows us how our view of the galaxies along our
direction of motion changes due to this motion. When we
are at some r < r0 later, we no longer see the two galaxies
equidistant in time and space from us. We see the galaxy
we moved toward at a closer distance in both space and
time to us than we did at the beginning. Conversely, we
see the galaxy we moved away from at a greater distance
in both space and time than we did originally (though we
still see a future version of the galaxy relative to when
we saw it at the beginning). But we can always define
our position as t = 0 and we can do this by shifting the 3
points depicting the end of the motion in Figure 8 along
hyperbolas of constant r by the amount t we moved. In
this depiction, we would remain at t = 0 and the galaxies
would be the things moving in our reference frame (i.e.
we would hyperbolically rotate the galaxies). It would
look like one galaxy is moving toward us while the other
is moving away.

If we were to imagine that we are revolving around
some point in space in a circle and defined our t coor-
dinate as 0 in the Kruskal diagrams for the entire mo-
tion, the worldlines of the galaxies in all directions would
be sine waves along their lines of constant t with the
phase of a given wave being a function of direction. In
other words, the entire Universe would appear to wobble
around us. Very importantly though, the angle we sweep
as we go around that circle is not the angle in the met-
ric. As has been discussed, the actual angle that would
go into the metric would be much smaller than the angle
of revolution around the point. It would be the result of
the Thomas Precession caused by the angular motion.

Thus, we see that Equation 1 describes the motion
of the particle relative to the Dark Star while Equation
2 describes the motion of the Cosmosphere’s reference
frame relative to the CMB/background Universe.

VIII. THE ANTI-UNIVERSE

Figure 9 shows the full Schwarzschild metric in
Kruskal-Szekeres coordinates. The diagram can be split
in two along the diagonal where in the top right half,
forward time points up in both the internal and exter-
nal regions while in the bottom right half, forward in
time points down. The direction of positive space is also
swapped when looking at the upper and lower halves.
For the external metric, the radius increases to the right
in the upper half and to the left in the lower half. For the
internal metric, the spatial t coordinate goes from −∞
to +∞ from left to right in the upper half and from right
to left in the lower half.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 July 2022                   doi:10.20944/preprints202201.0301.v9

https://doi.org/10.20944/preprints202201.0301.v9


10

FIG. 9. Universe and Anti-Universe

We can therefore conjecture that the diagram is de-
scribing both a Universe expanding up from the center
and an anti-Universe expanding down from the center,
each one moving toward a singularity. We expect that
the anti-Universe is made of mostly anti-matter because
the directions of both time and space are reversed rela-
tive to each other and therefore we expect the particles
of the second Universe to have opposite charges relative
to the first. This interpretation provides a resolution to
the question of why we only tend to see matter in our
Universe. It is because the equivalent amount of anti-
matter is moving away from us as a mirror Universe in
the opposite direction of time. The lower hyperboloid
sheet in Figure 3 therefore represents a 2D slice of the
Anit-Universe at a given time.

Thus, the pair of Universes (or ’Duoverse’) satisfies
CPT symmetry and the Kruskal coordinates T and X in
Figure 9 represent cardinal directions of space and time.

IX. COMPLEX SPACETIME

Notice that the dr and rdΩ terms in Equation 2 have
opposite signs. As is the case in Equation 1, we would
expect the angular and pure radius terms to have the
same sign. We can remedy this by changing Equation 2
to:

dτ2 = −u− r

r
dt2 +

r

u− r
dr2 + (ir′)2dΩ2 (34)

Equation 34 implies that the radius of the internal metric
is the imaginary counterpart of the radius of the external
metric. This is consistent with the fact that the internal
metric can be represented as collections of 2-sheeted hy-
perboloids.

Consider once again Equation 6 along with Figure 3.
Let’s define D as the unitless diameter of the projection
in Figure 3 (this is a unitless diameter of the observable
Universe at some time r). This diameter comes from
calculating R where the past light cone of the co-moving
observer at t = 0 and r = r0 intersects the r = u cone.
From the geometry, we can see that R at this intersection

will be T0

2 where T0 is the T coordinate of the co-moving
observer at some time r = r0. Therefore, D = 2R = T0,
where T0 can be solved for by setting R = 0 in equation
6:

D ≡ T0 = ±
√(

1− r0
u

)
e

r0
u (35)

Note that D will range from 0 at r = u to 1 at r = 0.
We can plot the relationship between D and ir′ on the
complex plane in Figure 10 for both the Universe and
anti-Universe (we choose units where u = 1 here so that
the magnitude r′ ranges from 0 to 1):

FIG. 10. The Universe (Right) and anti-Universe (Left) in
the Complex Plane

The two Universes are coincident at i, representing the
event horizon/Big Bang era (in the rest of this paper, the
Big Bang will be referred to as Annihilation). Here, we
can say the matter and antimatter of the two Universes
have annihilated with each other and new pairs of matter
and antimatter filled Universes are created from the anni-
hilation, creating the two Universes travelling in opposite
directions of time. Over time, the imaginary radii of the
Universes decrease while the real diameters increase up
to the singularity, where the imaginary radii are 0 and
the magnitude of the real diameters are 1.
The anti-Universe moves in the opposite direction of

time relative to the Universe, and so we expect their
vectors on this plane to rotate in opposite directions as
shown.
Looking at Figure 10, we can mirror the curves in the

real axis to account for the −ir′ space. Doing so would
indicate that right as the Universes reach maximum ex-
pansion, the geodesics reverse in time and the Universes
begin to re-collapse toward each other until they collide
once again and annihilate.

X. NEWTONIAN ANALOG

This entire system is the temporal equivalent of two
masses initially moving apart from one another until they
reach a maximum separation distance u. At that point
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they will start falling toward each other again due to
mutual gravitational attraction. When they meet at their
common center, they annihilate, creating new pairs of
matter/antimatter particles and begin moving away from
each other again, as if they’ve bounced off each other.
It is equivalent to the exchange of potential and kinetic
Energy, but in the time dimension.

Now consider the Newtonian example of a ball in a
gravitational field rising to a maximum height h and then
falling back to the ground. dh

dt will be positive on the way
up, negative on the way down and zero at max height.
But this also means that dt

dh will be infinite at the max-
imum height because dh = 0 there. We might think
that when comparing this to the present case, t→ τ and
h→ r, but this is incorrect. We know that r is our time
coordinate and τ is the distance along the geodesic, so
h → τ and t → r. So from Equation 8, we see that,
just like in the Newtonian example, dτ

dr = 0 and dr
dτ = ∞

at the singularity because in this case dτ = 0 at the
turnaround.

XI. CONDENSATION AND EVAPORATION

We will now describe in detail the physical meaning
behind the ’Expansion’ and ’Collapse’ phases of the Uni-
verse. Looking at Equation 10, we see that the u

r(u−r)

term is always positive. During the expansion phase, dr
dτ

is negative and therefore d2t
dτ will always be in the op-

posite direction of dt
dτ . Therefore, this tells thus that

the peculiar velocities of cosmological objects will be re-
duced over time when no forces act upon them. Equa-
tion 10 describes an inertial force acting on all objects,
slowing them down during the expansion phase. If the
Universe is far from r = u and r = 0, it only has no-
ticeable effects at very large time scales and velocities
(because u

r(u−r) = 2H is very small for human veloc-

ity and time scales. For instance, currently H ≈ 71.6
km/s/Mpc so converting that to 1/s gives a value on the
order of ∼ 10−18). During collapse, dr

dτ is positive and
now the acceleration acts in the direction of motion of
the object and therefore increases its velocity over time
in that phase.

So we can view the expansion phase as a condensa-
tion of the Universe. The Universe starts out as a hot
plasma after the annihilation event, after which it cools
and motion of the particles slow down. At the beginning
of expansion, the deceleration is large (infinite at r = u
allowing null geodesics to become timelike), then for a
long period the deceleration is small, and on approach to
the signularity it once again goes to infinity. For just a
moment at the singularity, all motion stops completely.
The particles stop completely at the singularity because

u
r(u−r) ,

dr
dτ and therefore d2t

dτ become infinite there putting

an infinite inertial drag force on all objects. This is true
even for objects with a proper acceleration. So the ex-
pansion counter-intuitively effectively stabilizes gravita-

tional structures more and more as time moves forward,
promoting this condensation.

Likewise, the collapse phase can be viewed as an evap-
oration. After condensation, the Universe begins the col-
lapse phase. As the Universe emerges from the singu-
larity, the inertial force that now tends to accelerate is
extremely large (falling from infinity at the singularity),
but the dt

dτ of everything is zero, so there is no initial
acceleration at the very beginning of collapse. But any
perturbation to a particle’s state of rest will induce an
inertial acceleration in the direction of motion. There-
fore, particles will naturally gain momentum over time
and the Universe will heat up as gravitationally bound
structures begin to break down and the Universe tends
back toward a state of hot plasma as it approaches the
annihilation event. Once again u

r(u−r) ,
dr
dτ and therefore

d2t
dτ become infinite at the annihilation event, sending all
particles toward light-like geodesics as though they effec-
tively lose all their mass.

Now let us consider this from the perspective of the
external metric. Consider a star that has collapsed to
form a Black Hole. As will be demonstrated, the star
can never actually form an event horizon, but we can
imagine that the star is massive enough that it becomes
a ’Dark Star’.

The Schwarzschild metric depicted in Figure 1 de-
scribes an ’eternal’ Dark Star. But we could also say
that it describes a Dark Star from the beginning of the
Universe to the end of the Universe, with the beginning
of the Universe being marked by the t′ = −∞ line and
the end being the t′ = ∞ line. The Schwarzschild metric
is asymptotically Minkowskian, so it does not truly rep-
resent the spacetime around a real spherically symmetric
mass since the background Universe has been observed
to be non-Minkowskian, but we can use this metric along
with what has been determined from Equation 10 to ap-
proximate the expected trajectory for a freefalling object
in the field of a Dark Star over the expansion and col-

lapse phases of the Universe. The path dr′

dt′ of an object
in freefall in the field of a Dark Star as seen by a distant
observer is given by [6]:

dr′

dt′
= ±

(
r′ − rs
r′

)√
r′0(r

′
o − r′)

r′(r′0 − rs)
(36)

Where r′0 is the radius at which the object begins falling
from rest and rs is the Schwarzschild radius. The focus
here is not on the equation itself, which is a well-known
solution, but at the ± in front of it that comes from
taking the square root. Typically, when doing this calcu-
lation, we would take the negative sign and start falling
from t = 0 just because we expect that gravity is always
attractive and taking the negative sign ensures that dr′

is negative while dt′ increases from zero to infinity. But
given the fact that we now know that our proper motion
through time dr

dτ (where r = ir′) is negative during ex-
pansion and positive during collapse, this suggests that
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we should take the negative root when the Universe is ex-
panding and the positive root during collapse. The logic
is straightforward: We assert that the time at which the
Universe changes from expansion to collapse is at t′ = 0
and therefore the expansion occurs in the t′ < 0 region
and collapse occurs in the t′ > 0 region. For a worldline
going from t′ = −∞ to t′ = ∞, dt′ will always be positive
and dτ for the particle is always positive along the line.
Therefore, we take the negative root in the t′ < 0 region
to account for dr

dτ < 0 during expansion and the positive

root in the t′ > 0 region to account for dr
dτ > 0 during

collapse.
So during collapse, freefalling objects are ejected sym-

metrically out of the gravitational field of the object rel-
ative to expansion. Referring back to Equation 10, we
see that motion through space becomes more and more
limited as we approach the singularity. So when taking
into account this cosmological drag, we can say that as a
real object approaches t′ = 0 in such a field, its worldline
must become tangent to the r′ hyperbola closest to it.
And as collapse begins, it will smoothly and symmetri-
cally curve in the opposite direction.

Furthermore it should be noted that since the expan-
sion phase takes place in the t′ < 0 region, an event
horizon can never form because that would require faster
than light motion to achieve.

An approximate example of a real geodesic for an ob-
ject in freefall in such a gravitational field is shown by the
dark black line in Figure 11 through both the expansion
and collapse phases of the Universe.

FIG. 11. Schwarzschild Freefall in Expanding and Collapsing
Spacetime

The conclusion we can draw from this is as follows.
During expansion, the background of the Universe glows
with decreasing temperature and brightness over time
via the CMB as gravitational structures stabilize and
galaxies form. During this phase, some stars will col-
lapse to form Dark Stars that we presently think of as
Black Holes. By the time we reach the singularity, the
Universe will be fully condensed and inert. At the sin-
gularity, light from the CMB will be infinitely redshifted
such that it is no longer detectable and the background

Universe becomes black (because a0 in Equation 12 be-
comes infinite there). The observer will see a completely
dark Universe at the singularity and over time, the Dark
Stars will begin to glow like candles lighting up the dark-
ness as the geodesics of the particles that were falling
toward their centers during expansion reverse and now
move outward. Shadow becomes flame. These former
”Black Holes” effectively become ”White Holes”, with
matter radiating from them, seemingly out of the vac-
uum, even though the radiation is coming from matter
that had accumulated in that region during expansion.
As the collapse proceeds, these White Holes will grow
brighter and shrink as the matter and energy making
them up escapes to the external Universe at higher and
higher energies due to the increasing inertial acceleration
from Equation 10. The Universe effectively evaporates
as all gravitational structures break down. By the end of
collapse, the Universe has returned to a state of increas-
ingly dense plasma until it collides with the anti-Universe
at the annihilation horizon.

XII. TOTAL PROPER TIME

The proper time in Equation 1 implicitly assumes the
local gravitational field is in a co-moving cosmological
frame. This is because t′ must be a function of cos-
mological time r. In fact, we know that as r′ → ∞
the proper time interval of the co-moving observer dτ
has to be equal to the t′ interval, we can choose dt′ to
be dt′ = dτco−moving. But there is no reference to the
spacelike t and Ω cosmological dimensions in the internal
metric. If the source of the gravitational field has cos-
mological motion, the true proper time will be reduced
relative to Equation 1 due to time dilation effects. The
total proper time interval is found by multiplying dτ ′ by
the ratio of dτ

dr for the actual cosmological motion of the

field source and dτ
dr of a co-moving frame:

dτtot = dτ ′
dτ

dr

(
dr

dτ

)
co−moving

(37)

Which becomes:

dτtot = dτ ′

√
1−

(
a2
dt

dr

)2

−
(
ar
dΩ

dr

)2

(38)

Recognizing that 1
a2 is the linear cosmological speed of

light (Equation 9), we can define dt
dr ≡ v and the cos-

mological linear speed of light 1
a2 ≡ vc. We also define

the angular speed dΩ
dr ≡ ω and the cosmological angular

null geodesic as 1
ar = ωc (by solving for dΩ

dr in Equation
2 with dτ = dt = 0), then we can write Equation 38 as:

dτtot = dτ ′

√
1−

(
v

vc

)2

−
(
ω

ωc

)2

(39)
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If we multiply ω
ωc

by r
r , and recognize that

(
v
vc

)2

+(
rω
rωc

)2

≡ V 2 is the total cosmological velocity (because

rω is the tangential velocity which is perpendicular to the
linear velocity), then we recover the Minkowski form of
the length contraction equation where the speed of light
varies over cosmological time:

dτtot = dτ ′
√

1− V 2 (40)

This is telling us that the worldlines in metrics such as
the external Schwarzschild metric are contracted by the
system’s cosmological motion. So we see that the cos-
mological model is essentially a collection of systems de-
scribed by metrics like the external Schwarzschild metric
in a hyperbolic background that is a quasi-Minkowski
metric with a time dependant speed of light.

In order for Equation 39 to be real, the quantity under
the square root must be positive and therefore

v ≤ vc

√
1−

(
ω

ωc

)2

(41)

And so we see that the upper speed limit of an object de-
pends on its spin. In other words if and object is spinning
about the time dimension while moving in a straight line,
its maximum speed will be reduced per Equation 41. It’s
as though this spin has increased the mass of the particle,
and perhaps even gives mass to a massless particle.

XIII. INTERNAL METRIC WORLDLINES

We will now examine the worldlines of a particle in the
Universe from its creation at the beginning of expansion
to the end of collapse. We know from Equation 10 that
the worldline becomes null at the end of collapse, so by
symmetry, it will begin the expansion as a null geodesic
as well at t = −∞ on the upper left to lower right Pair
Production/Annihilation line in Figure 12. It enters the
singularity parallel to the t coordinate per Equation 10 (it
is shown in Figure 12 entering t = 0, but it could be any
t). At the singularity, it is at the center of the spherical
time metric. It will pass through the center and begin
to move from r = 0 to increasing r during the collapse.
However, since it has passed through the center of the
metric, it is now moving in a direction oriented 180o from
the direction it was falling in during the collapse, again
parallel to the t coordinate. It is then accelerated to
become a null geodesic as it approaches the annihilation
event at the end of collapse. This is depicted in Figure
12 below for both the Universe and anti-Universe (the
solid lines are Universe worldlines and the dotted lines
are anti-Universe worldlines):

FIG. 12. Example Internal Worldline

We can now put everything together showing the mat-
ter and antimatter worldlines in the Universe and anti-
Universe for both the internal and external metrics on a
single diagram to show the full symmetry of space and
time in this model.

FIG. 13. Full Symmetry of the Schwarzschild Metric

All points on the pair production and annihilation lines
are coincident because they are all at the same r coor-
dinate and the proper distance and time separating the
points on the lines are zero since they are null geodesics.
Note that the worldlines of the external metric approach
the pair production and annihilation lines asymptotically,
becoming light-like in both cases. So in the upper left and
lower right quadrants we see the condensation (or expan-
sion) phase for the matter and antimatter worldlines in
both the internal and external spacetimes. Likewise, the
upper right and lower left quadrants show the same for
the evaporation (or collapse) phase.

XIV. RELATIVISTIC ENERGY AND INERTIA

The relativistic total energy equation for a particle in
Minkowski space is given as:

E2 = (mc2)2 + (pc)2 (42)
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It is important to note here that c is really just a unit
conversion constant that determines how the time and
space units are scaled relative to each other, which is
different than the physical speed of light from Equation 9,
which we will call vc. Therefore, we can think of Equation
9 as being unitless and multiplying it by the constant c
just gives it the desired units for space and time.

As we have seen in section XIII, all matter starts
expansion on lightlike trajectories, as though they are
massless and end expansion fixed to a t coordinate as
if their mass has become infinite at the singularity. So
E = mc2, which quantifies the energy of a body at rest
in Minkowski spacetime, can be more generally written
as E = m0(vcc)

2 for a co-moving observer in the actual
Universe where m0 is a constant representing the mass of
the particle in empty space when a = vc = 1. Therefore,
we can rewrite Equation 42 more generally as:

E2 = (m0v
2
cc

2)2 + (pc)2 (43)

Noting that E0 = m0c
2 (the particle’s rest energy when

a = vc = 1), we can define the dynamic inertia m of the
particle as:

m ≡ E0

(vcc)2
=
m0

v2c
= m0a

4 (44)

What we see from this section and section XI is that
gravitational mass and inertia are in fact not equivalent.
The gravitational mass depends only on the amount of
material in the body (m0) whereas the inertia depends on
the Universe’s position in cosmological time in addition
to the gravitational mass.

It is also interesting, though perhaps not significant, to
note that a ∝ 1

TCMB
(where TCMB is the measured CMB

temperature at a given cosmological time) and therefore
the specific rest energy of particles is proportional to the
temperature of the Universe by E

m0
= 1

a4 ∝ T 4
CMB so

with c = 1 we get:

E

m0
=

(
TCMB

TCMB,0

)4

(45)

XV. ’SPAGHETTIFICATION’, AND A SELF
PORTRAIT OF THE UNIVERSE

We will now take a closer look at what actually hap-
pens at the singularity in the cosmological context. When
approaching the singularity, the dΩ term vanishes and
proper distances go to infinity. This is often referred
to as ’spaghettification’. In the conventional context of
falling into a Black Hole, this is interpreted as an ob-
server approaching the singularity getting both infinitely
stretched and squeezed and then they just cease to exist
at the singularity. But when we interpret the internal
metric as the cosmological solution, we find that the true
nature of the metric behavior at the singularity is in fact
much more mundane, yet incredibly revealing.

We’ve established that our galaxy is currently at some
temporal radius r and position t = 0 in the metric. For
simplicity in the following discussion, we will assume all
objects in the Universe are co-moving, though in real-
ity that is not the case. This assumption is only needed
to make the argument clear in this case. Now consider
two very distant galaxies we observe in the sky that are
equidistant from us in polar opposite directions at tem-
poral radius r > r0. We label one galaxy ’Front’ and the
other ’Back’. Figure 14 shows a diagram of t vs. r. The
t axis runs from −∞ to ∞ and the r axis goes from 0 to
u. The dashed lines are null geodesics that the light trav-
els from the Front and Back galaxies to reach us. The
geodesics are drawn as straight lines here, but in reality,
they would have some curvature to them due to the scale
factor a. Our position is the point at r0. The Front and
Back galaxies are represented with their own ovals. The
upper point in the Front galaxy and lower point in the
Back galaxy represent matter that are at the same time
r as the inner points, but shifted in space, t. The grey
dots represent the same points at a given t at different
times r (because we assumed the points are co-moving
in this example, the same objects at different times are
aligned horizontally in the diagram).

FIG. 14. t vs. r

Since we are the point at r = r0, we can see the two
points closest to us in the Front and Back galaxies be-
cause we are connected to them with null geodesics, but
all the other points are invisible to us at the current time
and location. Thus, we cannot see the more distant mat-
ter at those points because of that non-null spacetime
separation. Nonetheless, their gravitational influence on
the visible matter in the Front and Back galaxies is ap-
parent to nearby points. Note that in this special sce-
nario where we are assuming everything is co-moving,
there can be no matter between 0 and t or 0 and −t at
r because if there were any matter there, we would see
those points instead of the ones we see in Figure 14, but
we would see them not at r but at some time between r
and r0.
Now we move on to the singularity. The light cone

opening angle ψ at a given cosmological time is given by:

ψ = 2 tan−1

(
dt

dr light

)
= 2 tan−1

(
1

a2

)
(46)
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Figure 15 shows the light cone angle ψ as function of
r as we move along the r axis with decreasing r during
expansion, through the singularity, and then in increasing
r during collapse.

FIG. 15. Local light cone angles over time

We begin expansion at the left side of the diagram
where the light cone is totally open (ψ = π), because
Equation 9 goes to ∞ there. As we move through time,
the angle closes until at the singularity, light no longer
travels through t (ψ = 0), which is why Equation 9 goes
to zero there. At the singularity, light no longer travels
through space and everything becomes spacelike. But
also recall that motion has stopped at this point and all
light is infinitely redshifted, so there isn’t really a phys-
ical stretch happening, its only that adjacent points in
space are unable to communicate with each other at that
instant. Then as we pass the singularity and continue
moving now with increasing r during collapse, the light
cone will start opening in a symmetric way to how it
closed during expansion.

Therefore, space is not expanding the way we cur-
rently think about it in terms of a stretching of space.
What is changing is how quickly different points in space
are able to communicate with each other. The image of
space itself compressing to a point or ripping itself apart
is misleading. At the beginning of expansion, we have
a normal 3D space of particles that can communicate
instantly with all other particles regardless of distance
because the speed of light is infinite there. This com-
munication speed drops as expansion proceeds and local
gravitational structures are able to form. When reaching
the singularity where the scale factor is infinite, space is
not ripped apart but rather the light cone angles have
closed completely such that adjacent regions of space are
unable to communicate with each other which manifests
as infinite proper distances.

Finally, let us return to Equation 7 and track the
proper distance s of a point a fixed coordinate distance t
away from us for the duration of the expansion and col-
lapse. If we plot this proper distance vs the imaginary
version of r = ir′ similar to what was done in Figure 10,
we get a clean picture of how the expansion and collapse
of the Universe would appear to a co-moving observer

(expansion and collapse proceeds from top to bottom).
The reader’s current position is marked with ’x’:

FIG. 16. Self Portrait of the Expansion and Collapse of the
Universe with the Reader’s Current Position Marked with ’x’

Note that this is not the Universe and anti-Universe.
When the Universe is at r = ir′ = u, that is where the
Duoverse collides.

XVI. THE MANY WORLDS

The Duoverse described thus far contains all the events
in the Universe and anti-Universe for a single expansion
from beginning to end. However, the Duoverse then re-
collapses, annihilates, and pair produces a brand new
Duoverse. Therefore, we can think of each successive ex-
pansion and contraction of the Duoverse as happening
along another dimension which is discrete. This dimen-
sion essentially labels the different countably infinite ran-
dom set of Duoverses.
Since each Duoverse begins with annihilation, this

means each Duoverse begins with a random configuration
after annihilation. Therefore, there is no cause and effect
relationship between Duoverses from cycle to cycle. This
means the cycles cannot be ordered sequentially because
there is no way to know which cycle preceded or will fol-
low the current cycle. If we cannot order the cycles in a
sequence, then we can think of them all as being parallel
to each other. While events within a cycle can have cause
and effect relationships (i.e. the events ’happen’ at given
times), the various cycles themselves do not ’happen’,
they just exist along side all other cycles. Thus we can
think of the annihilation events as being a single event
from which infinite Duoverses emerge and to which they
return. This implies that finding ourselves in a particular
Duoverse is completely probabilistic where the probabil-
ity that we find ourselves in a Duoverse with a particular
configuration depends on how likely that configuration
is across all possible configurations. This gives us the
many worlds that have been invoked to explain quantum
probability in the Everett many worlds interpretation of
QM.
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