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This paper investigates a relativistic model of the Universe in which the geometry describes a 4D
version of the 2-sheeted hyperboloid that is isotropic, homogeneous in space at a given time and
inhomogeneous in time. The internal Schwarzschild metric is used for this model, which is justified
by the fact that spherically-symmetric empty spaces in the Universe are effectively surrounded by
a shell of infinite mass (the surrounding Universe and in particular, the infinitely dense mass at the
Big Bang). Thus the metric for the empty spaces must be described by the Schwarzschild metric
according to Birkhoff’s theorem. Since the shell’s mass is infinite, the external solution cannot
describe this spacetime and therefore the internal Schwarzschild solution must be the correct metric
for this spacetime. The important insight here is that the source of the metric is not at r = 0, but
that the event horizon is the metric source in both cases, representing a location/time of infinite
density. This is supported by looking at the internal geometry in Kruskal coordinates where the
event horizon surrounds the vacuum at an infinite distance, meaning the Schwarzschild radius, and
therefore mass, of the source shell is infinite. The full spatial homogeneity of the internal metric is
also demonstrated by visualizing at the Schwarzschild geometry (with 2 spatial dimensions and the
time dimension) in Kruskal coordinates. The model predicts both a Universe and Anti-Universe
moving in opposite directions of time undergoing an expansion phase, followed by a collapsing
phase. Using only the current coordinate age of the Universe and transition redshift, it predicts the
accelerated expansion and it is shown that its Hubble diagram fits currently available supernova
and quasar data as well as predicting a Hubble constant Ho & 71.6km/s/Mpc. The angular term
of the metric describes time dilation caused by the relativistic kinematic precession effect known as
Thomas Precession which can be interpreted as spin about the time dimension. The model also
makes two novel predictions: that the early Universe should have structures older than expected
due to an increased amount of proper time relative to coordinate time in that era and that the
background Universe should appear brighter than current models predict.
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I. MOTIVATION AND ROADMAP mass density and pressure where the metric must match
the external Schwarzschild metric at the star’s outer ra-

dius. Therefore, the cosmic filaments cannot be described

The current model of cosmology is based on the FRW
metric, which comes from the assumption that the Uni-
verse is accurately modelled as perfect fluid. This means
that we are modelling the Universe as having uniform
density and pressure at all points in space. While
this may be a good approximation for the early pre-
recombination Universe, the perfect fluid assumption is
clearly no longer a valid one in the later Universe. We
observe that the Universe is not a uniform distribution
of galaxies, but rather a web-like structure of matter sur-
rounding large voids. Thus, the pressure and density
is surely not uniform at all locations in space, making
the perfect fluid assumption less and less accurate as the
Universe expands and cools.

Furthermore, it is notable that a given region of space-
time can only be described by one metric. This means
that the region containing a star, for example, is not
described by the FRW metric, it is described by a
spherically-symmetric metric with a radially-dependant

by the FRW metric because they are not perfect fluids
and the spacetime in those regions will be described by
metrics whose mass distribution matches the configura-
tions of the filaments. What this implies is that a cos-
mological metric (one that accurately describes the ex-
pansion of the Universe) must be a vacuum solution de-
scribing the empty spaces surrounded by the matter in
the Universe. This empty space differs from Minkowski
space in that the empty spaces in the Universe are sur-
rounded by the infinite mass of the Universe and there-
fore should be modelled as a spherically-symmetric vac-
uum surrounded by a shell of infinite mass.

It will be argued in this paper that the metric prop-
erly describing the vacuum of the Universe, including its
accelerated expansion, is the internal Schwarzschild met-
ric. Section II demonstrates how the source of both the
external and internal metrics are not at » = 0, but rather
at the event horizon which represents an infinitely dense
shell as viewed from the outside in the case of the exter-
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nal metric, and an infinitely dense shell as viewed from
the inside in the case of the internal metric. Justification
for the internal metric representing a vacuum surrounded
by a shell at infinity comes from looking at the geome-
try in Kruskal coordinates and noting that the horizon
is located at spatial infinity for the internal metric. This
means in the internal metric, the shell has an infinite
Schwarzschild radius and therefore infinite mass. In both
metrics, as will be shown, these shells look like infinitely
dense points in the frame of an observer approaching the
shell in space for the case of the external metric and in
time for the case of the external metric. The temporal
nature of the spatial expansion and contraction of the in-
ternal metric matches what we observe in regards to the
structure of the Universe. Furthermore, in section XV,
we demonstrate that it would be impossible to fall past
the horizon from the outside due to length contraction
effects for observers approaching the horizon.

In section II, we also demonstrate that surfaces of con-
stant time in the internal metric can be visualized as a
collection of 2-sheeted hyperboloids analogous to how the
external metric at a given radius can be visualized as a
collection of one sheet hyperboloids. The 2-sheeted hy-
perbolic nature of the metric changes the interpretation
of the angular term relative to the external metric, and
it is shown that the metric describes a Universe that is
isotropic, homogeneous in space and inhomogeneous in
time, as our Universe has been observed to be. It is also
demonstrated that the angular term of the internal met-
ric comes from the kinematic relativistic effect known as
Thomas Precession. This precession acts as an intrinsic
‘spin’ around the time dimension. In section VI, it is
shown how this term gives rise to Coriolis accelerations
that affect curvilinear motion of massive objects as well
as gravitational lensing angles.

In section V we solve for the unknowns for the inter-
nal Schwarzschild metric, namely our current cosmolog-
ical position in the metric and the counterpart of the
Schwarzschild radius, using existing cosmological data.
The model is then used to calculate relevant cosmolog-
ical parameters and it is found that the model fits the
cosmological data very well.

In section IX, the internal metric is interpreted as hav-
ing an imaginary (as in complex numbers) radius which
gives us the 2-sheeted hyperbolic structure. This 2-
sheeted geometry gives us a Universe and Anti-Universe
falling in opposite directions of time relative to each
other.  The Universe and anti-Universe are falling
through the imaginary time dimension described in that
section. It is shown that the Universe and Anti-Universe
undergo an expansion phase followed by a collapse, where
they annihilate with each other and pair production then
gives birth to a new pair of Universes as the cycle repeats.

In section XI, we place the external metric in the back-
ground cosmology of the internal metric and show that
a Black Hole event horizon can never form during the
expansion phase. We see that gravity becomes repulsive
during the collapse phase and would-be Black Holes be-
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come White Holes. This is a consequence of the Universe
moving in the opposite direction of time during collapse
relative to expansion.

We will begin the argument by examining the geometry
of the full Schwarzschild metric in detail.

II. THE SCHWARZSCHILD GEOMETRY

The Schwarzschild metric is the simplest non-trivial
solution to Einstein’s field equations. It is the met-
ric that describes every spherically symmetric vacuum
spacetime. The the external and internal forms of metric
can be expressed as (coordinates in the external metric
are primed to distinguish them from the internal metric
coordinates):

' —r !

dr’? = —=dt”? — ——dr” —2dQ* (1)

T r—rg

u

dr? = — dr? — r2dQ? (2)

D +
r _
Equation 1 is the external metric with ¢’ being the time-
like coordinate and 7’ being the spacelike coordinate. The
Schwarzschild radius of the metric is given by r, = 2GM
in units with ¢ = 1. We use the prime notation for the
coordinates here to distinguish the external coordinates
from the internal coordinates. The external metric is
the metric for an eternally spherically-symmetric vacuum
centered in space. This metric is also used to describe the
vacuum outside a spherically symmetric object occupy-
ing a finite amount of space with a finite mass (like a star
or planet). This metric as written in Equation 1 becomes
the Minkowski metric as 7’ — oo.

Equation 2 is the internal metric with ¢ being the
spacelike coordinate and r being the timelike coordi-
nate. This metric is currently believed to describe
the interior of a Black Hole. But consider the case
of a spherically-symmetric vacuum surrounded by a
spherically-symmetrically distributed infinite amount of
mass. This would be a spacetime surrounded by a shell
with an infinite Schwarzschild radius (because the mass of
the shell is infinite). Since this is a spherically symmetric
vacuum, it must be described by the Schwarzschild met-
ric. This is also the description of spherically-symmetric
vacua in our Universe, since the surrounding Universe is
effectively a shell of infinite mass (every region of the Uni-
verse is light-like connected to the Big Bang in all direc-
tions, which acts as a shell of infinite mass/Schwarzschild
radius). Therefore, the internal metric describes the
spacetime of the pockets of empty space in the Universe.
The constant v in the internal metric is a time constant
whose value in years will be later derived from cosmo-
logical data. Choosing a value for this constant amounts
to choosing the units of time for analysis. This metric is
essentially the Minkowski metric with a variable speed of
light, which can also be interpreted as an expanding or
collapsing space.
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So the Schwarschild metric describes the curved space-
time caused by an infinitely dense shell from two perspec-
tives:

e The external metric describes the spacetime around
an infinitely dense shell of finite mass and radius in
the frame of an observer infinitely far away from
the shell

e The internal metric describes the spacetime inside
an infinitely dense shell located at infinity in the
frame of an observer at rest inside the shell. In the
case of the Universe, the shell would be the entire
Universe at time r = u (as will be shown, the scale
factor is zero there and therefore we have infinite
mass and density).

Figure 1 shows the Kruskal-Szekeres coordinate chart!
for both the internal and external metrics where light
travels on 45 degree lines on the chart. This will help
illustrate the above points more clearly.

FIG. 1. Kruskal-Szekeres Coordinate Chart

On this diagram, the T' = +X lines represent the in-
finitely dense shells in both scenarios. We can see that
at 1 = ry = u (the "Horizon”), both metrics are the
same. The origin T = X = 0 location/time describes
an infinitely dense point in space for the external solu-
tion (this is shown formally in section XV) for all time
and a time at which all infinite space is contracted for
the external solution. The 7" = +X lines are light-like
because light cannot escape an infinitely dense region of
space, regardless of the mass (i.e. the external observer
cannot receive light emitted from the Schwarzschild ra-
dius and the internal observer cannot receive light from
the time when space was infinitely contracted). The dif-
ferent quadrants of Figure 1 will be examined in section
VIII. We can also see in Figure 1 that for the internal

1 Figures 1, 3, 8, 10, and 12 are modifications of: ’Kruskal
diagram of Schwarzschild chart’ by Dr Greg. Li-
censed under CC BY-SA 3.0 via Wikimedia Commons -
http://commons.wikimedia.org/wiki/File:
Kruskal_diagram_of_Schwarzschild_chart.svg#/media
/File:Kruskal_diagram_of_Schwarzschild_chart.svg
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metric, the horizon is located at t = oo, meaning the
Schwarzschild radius and therefore mass of the shell is
infinite (because t is the spacelike coordinate). Thus,
it is clear from the geometry that the source masses of
the Schwarzschild metric are not concentrated at r = 0
(which is currently assumed and accepted by most physi-
cists today, but is not anywhere mathematically implied
or demanded in the derivation of the Schwarzschild met-
ric), but rather at the event horizon itself.

Another way to look at the internal metric is that it de-
scribes an infinitely dense source that exists at a location
in time, not space. The vacuum surrounding the source is
a vacuum in time (i.e. the r dimension is a vacuum). Just
like the density of a massive free falling shell in a spatial
vacuum is governed by the external metric, the density
of a spherically symmetric, infinite 3D volume of space
that physically moves through time (i.e. in a presentist
Universe where only the present contains matter and en-
ergy and the past and future are vacuums) is governed
by the internal metric. The source in this case would
be the so-called 'Big Bang’, which, from our present per-
spective looks like an infinitely dense shell a finite time in
the past away from us in all directions. It will be shown
that the scale factor of the metric is zero at that time
meaning that the infinite 3D space is compressed there,
which means the mass of the source for the internal met-
ric must be infinite, which is exactly what we expect for
the Universe at a time when the scale factor is zero. As
will be shown in section XV, the horizon of the external
metric looks like a shell (viewed from the outside) from
far away, but becomes an infinitely dense point in the
frame of an observer approaching it. Likewise, the Big
Bang looks like an infinitely dense shell (viewed from the
inside) at times later than the Big Bang, but looks like an
infinitely dense point (because the proper distance goes
to zero regardless of coordinate distance at that time) in
the frame of an observer in the Universe as the Universe
approaches that time. In other words, both the internal
and external metrics look the same in the frame of an
observer approaching the source, which is to be expected
since they have the same mathematical description there.

Now we must show that the space in the internal met-
ric is homogeneous. The equation for a 2D hyperboloid
surface embedded in three dimensions is given by:

2 2 2
x Y z¢
P + 2l +1 (3)
For our purposes, we will be considering the special case
where a = b = ¢, which gives the one and two sheeted
hyperboloids of revolution. Next, we note the following
relationship with regards to the Kruskal coordinates:

X2—T2:<£—1>eﬁ (4)

Equation 4 is only for one dimension of space, but we
know that the metric is spherically symmetric and can
therefore extend Equation 4 to 2 spatial dimensions by
simply adding a Y coordinate to get an equation that
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matches the form of Equation 3 where a® = b = ¢ =
(5 — 1) en = p*

X24Y2 1% =p? (5)

Equation 5 describes 2D hyperboloid surfaces for a given
r where the external metric has positive p? and the inter-
nal metric has negative p?. This means that the external
metric describes a 1-sheet hyberboloid while the internal
metric describes a 2-sheeted hyperboloid.

We will for now focus on regions I and II from Figure 1,
where region I captures the external metric and region IT
captures the internal metric. If we choose some constant
value of r = 7y in each region and plot Equation 5 for
each region, we get the surfaces shown in Figure 2.

~
&

External r-Surface

Internal r-Surfaces

FIG. 2. 2D Surfaces of Constant r for Internal and External
Metrics

In the internal case where we have two separate sheets,
we will only focus on the top sheet for now. The mean-
ing of the bottom sheet will be discussed in section VIII.
In the external metric, the sheet represents an equato-
rial circle of space around the central body at all times.
This circle is on a plane with a normal at the center and
pointed vertically in Figure 2. If we then consider cir-
cles on all planes whose normals are at different angles
relative to the normal of the plane we are currently vi-
sualizing, we get a 2D spherical surface representing the
space surrounding the central body at constant r.

Now imagine we are situated at some point in empty
space in the Universe facing in some direction. There is a
plane of infinite space at the present time perpendicular
to the direction we are facing. This plane is the hyper-
bolic sheet depicted on the left side of Figure 2 where we
are situated at the apex of the sheet. So the direction
we are facing is the normal vector to this sheet (with the
vector origin at the apex of the sheet) and just like in the
external case, there are similar planes constructed from
normals at all different angles to the direction we chose
to face and when we put all of these together, we get an
infinite 3D space at the present time.

But the points on this collection of sheets at ry are
spacelike to us because they all exist at the same time
as us and we can only see points on past sheets whose
light has had time to reach us. Light paths in Figure 1 are
lines at 45 degrees and light cones in Figure 2 are oriented
vertically where the beginning of the Universe is at the
origin between the two sheets and time moves forward
as the top sheet moves up the diagram vertically. So we
can construct an image of what a 2D slice of the Universe
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would look like to us in this geometry with our position at
the center. Figure 3 shows the present sheet (ro) where
we are positioned in space at the apex of the sheet. We
then show a cross section of that sheet on the Kruskal-
Szekeres coordinate chart with the past light cone shown
(dashed lines at 45 degrees emanating from ¢t = 0 at rg).
That light cone intersects past sheets of constant r > rq
(past sheets not shown in the top left of Figure 3 but are
represented by the hyperbolas the dashed lines intersect
in the top right of the figure) and these intersections are
projected onto the plane at the origin to give us a 2D
image of our past light cone of the Universe. The density
of the coordinates at different radii (and therefore times)
is depicted with the shading inside the projection.

FIG. 3. Projection of the Past Light Cone on a Flat Plane

Despite the hyperboloic nature of the spacelike planes,
space still looks flat from our perspective because our
past light cone intersects past surfaces as circular cross-
sections. As we can see in the lower projection in Figure
3, concentric circles around the center of the projection
(marked with ’x’) are circles of constant distance and
time from us. So we see that as we look further away
in space and back in time, the Universe becomes more
dense until at the beginning of the Universe, which cor-
responds to an infinite distance and finite time from us,
the Universe is infinitely dense. This is in line with our
current observations of the Universe.

We can further extend this to three spatial dimensions
by adding a Z2 term, but given the spherical symmetry
we can define R? = X2 +Y? + Z2 and change Equation
4 to

R 1? = p? (6)

In this formulation, we put ourselves at R = 0 and can
then make the projection in 3 dimensions such that the
2D projection of Figure 3 will become a 3D ball that,
from our reference frame, is isotropic, homogeneous in
space and inhomogeneous in time, which is consistent
with the Cosmological Principle.

We will discuss the meaning of the r2dQ? term of the
internal metric, which has units of time, in section VI but
first let us show that this model fits current cosmological
data for the expanding Universe.
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III. THE SCALE FACTOR

Expressions for the proper time interval along lines of
constant ¢ and ) and the proper distance interval along
hyperbolas of constant r and 2 from Equation 2 are:

ds fu—r
dt T @ (7)

dr r 1
— =4 =4- 8
dr u—r a (8)

And the coordinate speed of light is given by:

1
(dt) . S )
dr light u—r a

Where a is the scale factor. First we should notice that
none of the three equations depend on the ¢ coordinate.
This is good because the t coordinate marks the position
of other galaxies relative to ours. Since all galaxies are
freefalling in time inertially, the particular position of
any one galaxy should not matter. The proper temporal
velocity, proper distance, and coordinate speed of light
only depend on the cosmological time 7.

A plot of the scale factor vs. r (with u = 1) is given in
Figure 4 below:

0.2 0.4 0.6 0.8 1.0

FIG. 4. Scale Factor vs. r for u =1

IV. THE CO-MOVING OBSERVER

Let us take a co-moving observer somewhere in the
Universe we label as t = 0 as the origin of an inertial ref-
erence frame. We can draw a line through the center of
the reference frame that extends infinitely in both direc-
tions radially outward. This line will correspond to fixed
angular coordinates (£2). There are infinitely many such
lines, but since we have an isotropic, spherically symmet-
ric Universe, we only need to analyze this model along
one of these lines, and the result will be the same for any
line.
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We must determine the paths of co-moving observers
(dt = dQ = 0) in the spacetime. For this we need the
geodesic equations for the internal Schwarzschild metric
[1] given in Equation 2. In these equations u represents
a time constant (in Figure 1, the value of u is 1). The
following equations are the geodesic equations of the in-
ternal metric for ¢ and r (0 < r < ) for dQ = 0:

2
o drde o
dr?  r(u—r)drdr
d*r U
T ()

Looking at points 0 < r < u, then by inspection of Equa-
tion 10 it is clear that an inertial observer at rest at ¢ will
remain at rest at ¢ (% =0if % =0).

Let us next demonstrate how the internal metric fits
with existing cosmological data and calculate various cos-

mological parameters using that data.

V. CALCULATION OF COSMOLOGICAL
PARAMETERS

In order to compare this model to cosmological data,
we must solve for v and find our current position in time
(ro) in the model. Reference [2] gives us transition red-
shift values ranging from z; = 0.337 to z; = 0.89, depend-
ing on the model used. We can use the expression for the
scale factor in Equation 7 to get the expression for cos-
mological redshift from some emitter at r measured by
an observer at rg [1]:

1+2=="= m (12)

Furthermore, the deceleration parameter is given by:

aa  4r
=5=—-3 13
(= 5= (13)
By setting Equation 13 equal to zero, we find that the
scale factor at the transition from decelerating to accel-
erating expansion a; is:

4 1
ay = 5—1:% (14)

Using Equations 12, 14, and the transition redshift es-
timate, we can get an expression for the present scale
factor:

1 + Zt
V3
Next, we find expressions for u and our current radius rg

by noting that the Universe has been found to be roughly
13.8 billion years old. Therefore, we can set a,, = u —

ap = a(1+2¢) = (15)
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ro = 13.8 and use Equations 7 and 15 to obtain the
following for v and rg:

u—To Opg 3ay,
= = = —2 16
To CL(Q) a% (1 + Zt)2 ( )
3
wmmron=an (lp+1) 07

Next we compute the CMB scale factor (acprp) and co-
ordinate time (rcpp) in this model where the redshift
of the CMB (z¢arp) is currently measured to be 1100:

ago

aens 14+ zcmB (18)
U

oM =Ty aE s 19)

We can next derive the Hubble parameter equation using
the scale factor. The Hubble parameter is given by (in
units of (Gy)™1):
a U
H = —-= ==
a 2r(u—r)

(20)
Table I below gives the values of u, ro, Hy, ag, g0, acym B,
romB, and qopp given the upper and lower bounds of
z¢ from [2] as well as the average of the upper and lower
bound values and assuming «,, = 13.8. All times are in

Gy and Hy is in (km/s)/Mpc.

zt Qrg |l v ro Ho a0 g acmB rcmMB qoMB
0.337 13.8(|37.0 23.2 56.6 0.77 -0.49 0.0007 36.95 0.99
0.614 13.8({29.7 15.9 66.2 0.93 -0.86 0.0008 29.65 0.99
0.89 13.8{|25.4 11.6 77.6 1.09 -1.17 0.0010 25.35 0.99

TABLE I. Limiting Cosmological Parameter Values Based on
z+ Measurement and a 13.8 Gy Age of the Universe

From the results in Table I, we see that the true tran-
sition redshift is likely between 0.614 and 0.89 given the
fact that the current value of the Hubble constant is
known to be in that range. Thus, more accurate mea-
surements of the transition redshift are needed to increase
the confidence of this model, though we do see that it is
able to reproduce measured results.

Table IT has the proper times from r = u to the current
time as well as the CMB for stationary, inertial observers
(dt = rdQ = 0) by integrating Equation 2. The column
Tior gives the time from r = u to r = 0. The expression
for T3¢+ turns out to be quite simple:

T
Tiot = U (21)

In Table IT below, the column Ty-¢main gives the time be-
tween r = rg and r = 0.
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Zt Qpg T0 Ttot Tremain TCMB
0.337 13.8{|42.2 58.1 159 8.6
0.614 13.8(||37.1 46.7 9.6 2.4
0.89 13.8/|33.7 39.9 6.2 2.3

TABLE II. Limiting Proper Times Based on z; Measurements
and an age of 13.8 Gy for the Universe (Time is in Gy)

Note that the proper time 7y of the current age of the
Universe is actually much larger than the coordinate time
u — 19. And even though we are presently only about
halfway through the “coordinate life” of the Universe (ac-
cording to Table I), the amount of proper time remaining
is actually much less than the amount of proper time that
has already passed (according to Table IT). This provides
a measurable prediction from the model: as telescopes
such as the JWST peer farther into the past with greater
accuracy, we should expect to find stars, galaxies, and
structures that are much older than expected because of
the increased amount of proper time available for such
things to form in the early Universe. Hints of this has
already been found with the star HD 140283, whose age
is estimated to be nearly the age of the Universe itself
[3].

Next we would like to use the u and ry values found to
create an envelope on a Hubble diagram to compare to
measured supernova and quasar data. First we need to
find r as a function of redshift. We can do this by solving
for r in Equation 12:

w14 2)?
TT 2+ 1+ 22 &)

We can derive the expression for ¢ vs. r along a null
geodesic where the geodesic ends at the current time 7q
and t = 0 by setting dr = rd2 = 0 in Equation 2 and
integrating:

"oy U—r
t= / dr = uln ( 0
o UW—T u—r
Next we substitute Equation 22 into Equation 23 to get
coordinate distance in terms of redshift:

2 1 2
t:ro+u[ln<a0+( —EZ) >_
14 aj

)+ro—r (23)

(1+2)?
ag + (1 +z2)?

| e

We need to convert the distance from Equation 24 to the
distance modulus, p, which is defined as:

D
= 5logyg <1é> (25)

Where Dy, in Equation 25 is the luminosity distance. Lu-
minosity distance is inversely proportional to brightness
B via the relationship:
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The brightness is affected by two things. First, the spa-
tial expansion will effectively increase the distance be-
tween two objects at fixed co-moving distance from each
other. This will reduce the brightness by a factor of
(1+42)? (because the distance in Equation 26 is squared).
But there is also a brightening effect caused by the ac-
celeration in the time dimension. We define v = 3—; = %
as the temporal velocity of the inertial observer at some
r and the speed of light at that r as v, = % = a% The

ratio of these velocities gives us:

ve dtdr

dt a 1
= —— = — = — = — 2
v drdr dr a2 «a (27)

Equation 27 tells us how far a photon travels over a given
period of time measured by the inertial observer’s clock.
So we see that as light travels from the emitter to the
receiver, this speed decreases. This decrease in the speed
from emitter to receiver will result in an increased photon
density at the receiver relative to the emitter, increasing
the brightness. Therefore, this effect will increase the
brightness by a factor of:

@:I—i-z
a

(28)
This effect is not accounted for in the current relativistic
cosmological models and therefore gives a second predic-
tion that light from the distant Universe should appear
brighter than expected.

Taking these brightness effects into account, the total
brightness will be reduced by an overall factor of 1+ z
relative to the case of an emitter and receiver at rest
relative to each other in flat spacetime. Equation 26 in
terms of co-moving distance ¢ and redshift z becomes:

1 1
+z B

B o (t(1+2))? o t2(1+ z)

(29)

Giving the luminosity distance as a function of co-moving
distance t and redshift z:

Dy =t/1+z (30)

Which gives us the final expression for the distance mod-
ulus as a function of co-moving distance and redshift:

(31)

tv14 2z
10

p = 5logy, (

A plot of distance modulus vs. redshift is shown in Figure
5 below plotted over data obtained from the Supernova
Cosmology Project [4]. Curves calculated from all three
values of z; in Table I are plotted, giving an envelope for
the model’s prediction of the true Hubble diagram.
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FIG. 5. Distance Modulus vs. Redshift Plotted with Super-

nova Measurements

Note that the middle curve corresponds to z; = 0.614
and the lower curve corresponds to z; = 0.89. The super-
nova data is better fit by a curve between these values.
The curve halfway between (with z; = 0.75) gives us
Hy=71.6,a9=1.0, g = —1.0, u = 27.3, and rog = 13.5.

In [5], the authors analyze a large sample of quasar
data to obtain distance moduli at higher redshifts than
is possible with supernova data. Figure 6 shows the same
predicted envelope from Figure 5 for the Hubble diagram
plotted out to higher redshifts with the quasar data from
[5] also shown with error bars. The black diamonds in the
figure are the 18 high-luminosity XMM-Newton quasar
points described in [5].
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FIG. 6. Distance Modulus vs. Redshift Plotted with Quasar
Measurements

Finally, by subtracting ry from Equation 22 we can
calculate the lookback time for a given redshift. Figure 7
shows the lookback time vs. redshift for the three tran-
sition redshifts.

3
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FIG. 7. Lookback Time vs. Redshift

VI. THE ANGULAR TERM r2d0?

To understand the angular term of the internal metric,
let us first think about the external metric in a reference
frame attached to an observer in the gravitational field
of a star. In this frame, if the observer is in circular or-
bit around the star, then the star will appear to revolve
around the observer. But the star will also appear to re-
volve around the observer if the observer is just spinning
in place. In order to distinguish between these to cases,
we need a gyroscope.

We start by drawing a line between the observer and
the star and orient the axis of the gyroscope along this
line. In the frame of the observer, if the gyroscope main-
tains its orientation along this line as the star revolves
around the observer, then they know they are just spin-
ning in place and not actually orbiting the star. If how-
ever they see that the angle between the gyroscope axis
and connecting line changes as the star revolves around
the observer, then they know they are in orbit around the
star and their angular velocity as described by the angu-
lar term in Equation 1 will be the rate at which the angle
between the gyroscope axis and connecting line changes.
So the angle of the external metric describes the angle
between a gyroscope axis and a line connecting the ob-
server’s reference frame to the center of the source body
of the metric.

For the internal metric, there is no central body like the
star that can be referenced as the source of the metric.
Instead, we must use the distant surrounding Universe
as a reference, with the Cosmic Microwave Background
being an optimal reference in this case. Just like in the
external case, we can draw a line from the observer to
some point on the CMB and orient the gyroscope along
that line. As we move through empty space, the change
in angle between the gyroscope axis and the connecting
line will be the change in angle df) in Equation 2. In a
Newtonian Universe, this angle would never change be-
cause even if we moved around a curvilinear path through
space, the gyroscope would remain fixed in its orienta-
tion. But in Special Relativity, there is a kinematic effect
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known as Thomas Precession in which the orientation of
the gyroscope will change as a result of an acceleration
being applied to the observer at an angle to the observer’s
current velocity. The Thomas Precession is given by:

1 2
Gr = (7 )axﬁ (32)

2 v+1

Where

= —— (33)

At non-relativistic speeds, this precession is very small,
essentially zero at human scales. Also note that we do
not include dynamical relativistic precession effects such
as geodetic precession and frame dragging in this because
those effects are accounted for by the metrics describing
the curved spacetime that causes them. We discuss how
to find the total proper time of a worldline resulting from
the combined metrics in section XII. We can think of this
kinematic precession as the ’spin’ of an object since it is
an intrinsic rotation of the object’s reference frame.

Going back to the two-sheeted hyperboloid in Figure
2, we can keep our observer’s frame fixed at the apex
of the sheet and describe this precession as the sheet re-
volving around the apex (i.e. from the observer’s frame,
it appears the Universe is revolving around them). Like-
wise, we can describe motion in the ¢ dimension by again
keeping the observer fixed at the apex and hyperbolically
rotating the sheets under the observer in the direction of
travel. Given these interpretations of the motion in ¢ and
), it is notable that if an object had some intrinsic spin
already and started moving in ¢, the object would move
on a curved trajectory analogous to a charged particle
moving in a magnetic field.

In the frame of an observer with this intrinsic spin, they
see the entire Universe rotating around their gyroscope
as they move in a straight line (relative to the gyroscope
axis) in the spin plane. But from an external frame, the
particle with spin will move on a curved trajectory under
the influence of a fictitious cosmological Coriolis force
(the momentum vector of the particle rotates without an
external force being applied as a result of the precession
of the inertial frame). This effect could be related to the
Dark Matter effects observed in galaxy rotation curves.
If when the galaxies formed, the rotation of the gases was
high enough, they could have gained enough of this spin
such that as the stars that subsequently formed from the
gas migrated out from the center, they would experience
this Coriolis acceleration (27 x ¥) and maintain an orbit
about the galactic center with greater tangential velocity
than expected. At the present time, however, this is mere
conjecture and would require further study to verify.

The path of light should also be affected by the angular
term of the metric. When light is gravitationally lensed,
its momentum vector changes direction, so from the per-
spective of the light, the Universe has rotated around it.
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We can see the precise behaviour of lensed light by look-
ing at the geodesic equation for angular motion [1] (we
will examine the case for planar rotation d{2 = df).

2
®0__2d0dr 5
d\? rdX\ dA
For light, we will use A = r. If we consider light lensed by
a galaxy, as the light passes the galaxy at some coordinate
time rg, it will have some angular velocity 6y and initial
angle 6y as it leaves the galaxy. It is currently assumed
that the light then continues along a straight line as it
leaves the gravitational field, but as we shall see, this is
not the case. The 6y would be the angle caused only by
the gravitational lensing, without any additional effects
from the cosmological model (i.e. the angle we would
expect when only taking into account the mass of the
galaxy). Given these initial conditions, the solution to
Equation 34 is:

0(r) = 0o + foro (1 - 7’70) (35)

During expansion, both the bracketed expression and
0y will always be negative (because dr is negative and
ro > r) such that the second term is always positive.
Therefore, during expansion, the observed lensing angle
will be increased by the amount 0yrg ( — %0) as a result
of this effect (where r is the coordinate time at which the
light is observed).

We see that the ’excess angle’ is dependant on the lens-
ing rate 6y. So if we consider two cases where in one
case, the light is gently lensed over a large distance/time
by some angle 6y and in the other case, light is lensed
by a more dense mass the same 6y, the lensing rate 6y
would be higher in the second case relative to the first. So
even though the pure gravitational lensing angle 6y would
be the same in both cases, the observed angle would be
greater in the second case because the lensing rate 6,
would be greater in that case.

Note that Equation 34 would also apply to the preces-
sion of the inertial frames of the stars in the galaxies.

VII. UNDERSTANDING COSMOLOGICAL
MOTION: A THOUGHT EXPERIMENT

A very important fact about the internal metric is that
it is not centered in space, which is consistent with the
cosmological principle. The angular term of the metric,
which has a center in time at all space, must be thought
of differently than we usually think of spherical metrics
centered in space as was discussed in section II. We can
always put ourselves at the center of space ¢t = 0 and
if we pick an arbitrary direction at some fixed time r,
the t dimension is a linear (not radial) dimension that
extends infinitely in front of us in that direction as well
as infinitely behind us in the opposite direction. So even
though we are not centered in time in the metric, we can
always model ourselves as being at the center of space.

Understanding this is very important for visualizing what
the Universe looks like when we move cosmological dis-
tances.

Imagine a Universe full of Dark Stars (for reasons that
will be made apparent later, we will use the term ’Dark
Stars’ instead of 'Black Holes’), each one with a particle
moving in the star’s gravitational potential in arbitrary
ways. We will focus in on one such system. Let’s sur-
round our Dark Star and particle system with a larger
sphere containing both of them (call it a Cosmosphere)
centered on the Dark Star and large enough that the path
of the particle always remains inside it. The orientation
of the system is locked to the Cosmosphere so that if the
Cosmosphere moves or rotates, the system as a whole
moves and rotates with it.

We already know that Equation 1 describes the path
of the particle relative to the Dark Star and the 7’ and
Q' coordinates are measured relative to the Dark Star.
But the time coordinates of Equations 1 and 2 must be
related because we must be able to synchronize the times
in both metrics. So we therefore need first to define the
cosmological time.

The CMB shines on the Cosmosphere, and the tem-
perature monopole of that light is directly related to the
cosmological time r and therefore local time ¢'. When the
temperature monopole is zero, we are at r = t' = 0. So
the monopole temperature of the CMB gives us a mea-
sure of cosmological time.

We've already discussed the cosmological angular mo-
tion % as the Thomas Precession of a gyroscope relative
to the CMB. The magnitude of this spin may also be cor-
related to the observed CMB quadrupole. So this leaves

us with cosmological linear motion %. We can figure

out our cosmological velocity j—i by observing the mag-

nitude and orientation of the temperature dipole cast on
the Cosmosphere from the CMB. If the system is moving
through ¢, one side of the sphere will be more blue than
the monopole and the polar opposite side will be more
red than the monopole. The Dark Star, which is at rest
relative to the Cosmosphere can figure out how fast and
in which cosmological direction the Cosmosphere is mov-
ing in by observing the magnitude of the dipole as well
as the relative orientation of it.

So when an observer moves linearly in ¢, half the sky
will be blueshifted and the other half will be redshifted
and the circle perpendicular to the dipole direction will
have no red or blueshift. For simplicity, let’s assume all
galaxies are co-moving. If we are also co-moving and we
look at a set of galaxies surrounding us at a fixed r > rq,
these galaxies will be equally redhisfted in our frame as
time goes on. If we then move in ¢ in some direction, what
we would see is that we move closer to the galaxies in the
blueshifted portion of the sky and away from the galaxies
in the redshifted portion of the sky. How much closer or
farther away we move from a particular galaxy depends
on the magnitude of the red or blueshift in the direction
the galaxy sits in the sky. So if we shift our position
by moving in ¢ in some direction, when we later come
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to rest the galaixes that originally sat on a shell equally
distant in space and time from us will now each appear at
different distances and times from us depending on our
direction of travel. Figure 8 shows our pure motion in ¢
on the Kruskal coordinate chart.

FIG. 8. Depiction of Linear Cosmological Motion

Time moves upward in this diagram, so we start at
t = 0 and see two galaxies in each direction equidistant in
both space and time from us connected by equal length
null geodesics (dashed lines). The galaxies we see are
assumed to be co-moving in this example. Then we move
in t along some direction as we fall through time. The
diagram shows us how our view of the galaxies along our
direction of motion changes due to this motion. When we
are at some r < rg later, we no longer see the two galaxies
equidistant in time and space from us. We see the galaxy
we moved toward at a closer distance in both space and
time to us than we did at the beginning. Conversely, we
see the galaxy we moved away from at a greater distance
in both space and time than we did originally (though we
still see a future version of the galaxy relative to when
we saw it at the beginning). But we can always define
our position as ¢t = 0 and we can do this by shifting the 3
points depicting the end of the motion in Figure 8 along
hyperbolas of constant r by the amount ¢ we moved. In
this depiction, we would remain at t = 0 and the galaxies
would be the things moving in our reference frame (i.e.
we would hyperbolically rotate the galaxies). It would
look like one galaxy is moving toward us while the other
is moving away.

If we were to imagine that we are revolving around
some point in space in a circle and defined our t coor-
dinate as 0 in the Kruskal diagrams for the entire mo-
tion, the worldlines of the galaxies in all directions would
be sine waves along their lines of constant ¢ with the
phase of a given wave being a function of direction. In
other words, the entire Universe would appear to wob-
ble around us (which manifests itself as the CMB dipole
sweeping across the CMB). Note that dt # 0 on a circu-
lar path since ¢ is a hyperbolic angle, not a radius. Very
importantly though, the angle we sweep as we go around
that circle is not the angle in the metric. As has been
discussed, the actual angle that would go into the met-
ric would be much smaller than the angle of revolution
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around the point. It would be the result of the Thomas
Precession caused by the angular motion.

In Figure 9, we show a visualization of a circular orbit
to help illustrate the role of the t and €2 coordinates along
a curved path (sequential parts of the cycle are numbered
in ascending order).

1 2 3

N
/| \
N

4 5

FIG. 9. Visualization of Circular Orbit

At the left side of the figure, we are at the start of the
orbit where the large circle represents a set of galaxies
equidistant from the orbiter at that point. The smaller
dashed circle represents the orbit and the arrow repre-
sents the direction of motion of the orbiter at a given
moment. As we move left to right, we show the orbiter
as fixed with the space moving beneath it. What is being
shown here is that the best way to view the orbit is to
imagine the entire space moving beneath the orbiter (the
orbit and distant galaxies are fixed together and the or-
bit is moved beneath the orbiter). The small bold cross-
hairs attached to the observer represent the orientation
of the orbiter’s gyroscope. As we look left to right on
the figure, we see these cross-hairs rotating slightly and
this rotation represents the df2 of the orbiter such that as
the orbiter returns to its initial position at the far right,
the cross-hairs are rotated relative to the far left of the
figure. Finally, it is important to emphasize the dt is a
hyperbolic angle, not a traditional arc length or radius.
So if we imagine travelling around a ¢ x ¢ square, we
would do a hyperbolic rotation through angle ¢ in one di-
rection, then another hyperbolic rotation through angle
t in a perpendicular direction, and so on until we return
to the initial position. In the case of a circular or gen-
eral curved orbit, we just do the limiting process of this
where we apply continuous hyperbolic rotations through
infinitesimal angles dt in continuously varying directions.
This is why a circular orbit does not have a constant ¢
(and therefore, we still see a CMB dipole while moving
in a circular orbit).
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VIII. THE ANTI-UNIVERSE

Figure 10 shows the full Schwarzschild metric in
Kruskal-Szekeres coordinates. The diagram can be split
in two along the diagonal where in the top right half,
forward time points up in both the internal and exter-
nal regions while in the bottom right half, forward in
time points down. The direction of positive space is also
swapped when looking at the upper and lower halves.
For the external metric, the radius increases to the right
in the upper half and to the left in the lower half. For the
internal metric, the spatial ¢ coordinate goes from —oo
to oo from left to right in the upper half and from right
to left in the lower half.

T 7
Universe V7

A

=

'
FIG. 10. Universe and Anti-Universe

We can therefore conjecture that the diagram is de-
scribing both a Universe expanding up from the center
and an anti-Universe expanding down from the center,
each one moving toward a singularity. We expect that
the anti-Universe is made of mostly anti-matter because
the directions of both time and space are reversed rela-
tive to each other and therefore we expect the particles
of the second Universe to have opposite charges relative
to the first. This interpretation provides a resolution to
the question of why we only tend to see matter in our
Universe. It is because the equivalent amount of anti-
matter is moving away from us as a mirror Universe in
the opposite direction of time. The lower hyperboloid
sheet in Figure 3 therefore represents a 2D slice of the
Anit-Universe at a given time.

Thus, the pair of Universes (or 'Duoverse’) satisfies
CPT symmetry and the Kruskal coordinates T" and X in
Figure 10 represent cardinal directions of space and time.

IX. COMPLEX SPACETIME

Notice that the dr and rdf) terms in Equation 2 have
opposite signs. As is the case in Equation 1, we would
expect the angular and pure radius terms to have the
same sign. We can remedy this by changing Equation 2
to:

u
dr? = —

a2+ T dr? ()20 (36)
T r

Equation 36 implies that the radius of the internal metric
is the imaginary counterpart of the radius of the external
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metric. This is consistent with the fact that the internal
metric can be represented as collections of 2-sheeted hy-
perboloids.

Consider once again Equation 6 along with Figure 3.
Let’s define D as the unitless diameter of the projection
in Figure 3 (this is a unitless diameter of the observable
Universe at some time r). This diameter comes from
calculating R where the past light cone of the co-moving
observer at t = 0 and r = ro intersects the » = u cone.
From the geometry, we can see that R at this intersection
will be % where Ty is the T' coordinate of the co-moving
observer at some time r = rg. Therefore, D = 2R = Ty,
where Ty can be solved for by setting R = 0 in equation
6:

D=Ty=+ (1—%’)@% (37)

Note that D will range from 0 at » = u to 1 at » = 0.
We can plot the relationship between D and ¢’ on the
complex plane in Figure 11 for both the Universe and
anti-Universe (we choose units where u = 1 here so that
the magnitude r’ ranges from 0 to 1):

Antimatter Matter

FIG. 11. The Universe (Right) and anti-Universe (Left) in
the Complex Plane

The two Universes are coincident at i, representing the
event horizon/Big Bang era (in the rest of this paper, the
Big Bang will be referred to as Annihilation). Here, we
can say the matter and antimatter of the two Universes
have annihilated with each other and new pairs of matter
and antimatter filled Universes are created from the anni-
hilation, creating the two Universes travelling in opposite
directions of time. Over time, the imaginary radii of the
Universes decrease while the real diameters increase up
to the singularity, where the imaginary radii are 0 and
the magnitude of the real diameters are 1.

The anti-Universe moves in the opposite direction of
time relative to the Universe, and so we expect their
vectors on this plane to rotate in opposite directions as
shown.

Looking at Figure 11, we can mirror the curves in the
real axis to account for the —ir’ space. Doing so would
indicate that right as the Universes reach maximum ex-
pansion, the geodesics reverse in time and the Universes
begin to re-collapse toward each other until they collide
once again and annihilate.
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X. NEWTONIAN ANALOG

This entire system is the temporal equivalent of two
masses initially moving apart from one another until they
reach a maximum separation distance u. At that point
they will start falling toward each other again due to
mutual gravitational attraction. When they meet at their
common center, they annihilate, creating new pairs of
matter/antimatter particles and begin moving away from
each other again, as if they’ve bounced off each other.
It is equivalent to the exchange of potential and kinetic
Energy, but in the time dimension.

Now consider the Newtonian example of a ball in a
gravitational field rising to a maximum height A and then
falling back to the ground. % will be positive on the way
up, negative on the way down and zero at max height.
But this also means that j—fb will be infinite at the max-
imum height because dh = 0 there. We might think
that when comparing this to the present case, t — 7 and
h — r, but this is incorrect. We know that r is our time
coordinate and 7 is the distance along the geodesic, so
h — 7 and t — r. So from Equation 8, we see that,
just like in the Newtonian example, Z—: =0 and g—: =00
at the singularity because in this case dr = 0 at the
turnaround.

XI. CONDENSATION AND EVAPORATION

We will now describe in detail the physical meaning
behind the ’Expansion’ and ’Collapse’ phases of the Uni-
verse. Looking at Equation 10, we see that the ﬁ
term is always positive. During the expansion phase, g—:
is negative and therefore ‘Z—Zf will always be in the op-

posite direction of %. Therefore, this tells thus that
the peculiar velocities of cosmological objects will be re-
duced over time when no forces act upon them. Equa-
tion 10 describes an inertial force acting on all objects,
slowing them down during the expansion phase. If the
Universe is far from r = v and r = 0, it only has no-
ticeable effects at very large time scales and velocities
(because ﬁ = 2H is very small for human veloc-

ity and time scales. For instance, currently H ~ 71.6
km/s/Mpc so converting that to 1/s gives a value on the
order of ~ 107!®). During collapse, 4 is positive and
now the acceleration acts in the direction of motion of
the object and therefore increases its velocity over time
in that phase.

So we can view the expansion phase as a condensa-
tion of the Universe. The Universe starts out as a hot
plasma after the annihilation event, after which it cools
and motion of the particles slow down. At the beginning
of expansion, the deceleration is large (infinite at r = u
allowing null geodesics to become timelike), then for a
long period the deceleration is small, and on approach to
the signularity it once again goes to infinity. For just a
moment at the singularity, all motion stops completely.
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The particles stop completely at the singularity because

ﬁ, j—: and therefore Cé—it become infinite there putting
an infinite inertial drag force on all objects. This is true
even for objects with a proper acceleration. So the ex-
pansion counter-intuitively effectively stabilizes gravita-
tional structures more and more as time moves forward,
promoting this condensation.

Likewise, the collapse phase can be viewed as an evap-
oration. After condensation, the Universe begins the col-
lapse phase. As the Universe emerges from the singu-
larity, the inertial force that now tends to accelerate is
extremely large (falling from infinity at the singularity),
but the % of everything is zero, so there is no initial
acceleration at the very beginning of collapse. But any
perturbation to a particle’s state of rest will induce an
inertial acceleration in the direction of motion. There-
fore, particles will naturally gain momentum over time
and the Universe will heat up as gravitationally bound
structures begin to break down and the Universe tends
back toward a state of hot plasma as itd approaches the

T

annihilation event. Once again T dr and therefore
&t

7> become infinite at the annihilation event, sending all
particles toward light-like geodesics as though they effec-
tively lose all their mass.

Now let us consider this from the perspective of the
external metric. Consider a star that has collapsed to
form a Black Hole. As will be demonstrated, the star
can never actually form an event horizon, but we can
imagine that the star is massive enough that it becomes
a 'Dark Star’.

The Schwarzschild metric depicted in Figure 1 de-
scribes an ’eternal’ Dark Star. But we could also say
that it describes a Dark Star from the beginning of the
Universe to the end of the Universe, with the beginning
of the Universe being marked by the ¢ = —oo line and
the end being the #' = oo line. The Schwarzschild metric
is asymptotically Minkowskian, so it does not truly rep-
resent the spacetime around a real spherically symmetric
mass since the background Universe has been observed
to be non-Minkowskian, but we can use this metric along
with what has been determined from Equation 10 to ap-
proximate the expected trajectory for a freefalling object
in the field of a Dark Star over the expansion and col-
lapse phases of the Universe. The path ‘fi—:: of an object
in freefall in the field of a Dark Star as seen by a distant
observer is given by [6]:

’ r_ N~
dr:i(r r/“’) ro(ry —1') (38)

dt/ r'(ry —rs)

Where 7{, is the radius at which the object begins falling
from rest and rg is the Schwarzschild radius. The fo-
cus here is not on the equation itself, which is a well-
known solution, but at the + in front of it that comes
from taking the square root. We first note that dt’
in the external metric is the proper time interval of
an observer at infinity. In the cosmological case, this
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interval is the proper time of the co-moving observer
dt’ = dTeo—moving = i%dr. Therefore, we can modify
Equation 38 as follows:

1 ! o ! !l
dr’j:adr<r T,’") L

r(ry —rs)

For an observer falling in the external metric from some
t' < 0, dt’ is always positive. But we know that dr is
negative during expansion and positive during collapse.
Therefore, if we take the positive root of Equation 39, we
see that during expansion dr’ will be negative (because
dr is negative) and during collapse dr’ will be positive.
We assert that the time at which the Universe changes
from expansion to collapse is at ¢ = 0 and therefore the
expansion occurs in the ¢’ < 0 region and collapse occurs
in the ¢’ > 0 region.

So during collapse, freefalling objects are ejected sym-
metrically out of the gravitational field of the object rel-
ative to expansion. We also note that at ' = r = 0,
a — oo and therefore dr’ = 0. So we can say that as
an object approaches ¢’ = 0, its worldline must become
tangent to the r’ hyperbola closest to it. And as collapse
begins, it will smoothly and symmetrically curve in the
opposite direction. Furthermore it should be noted that
since the expansion phase takes place in the ¢’ < 0 re-
gion, an event horizon can never form because that would
require faster than light motion to achieve.

An approximate example of a real geodesic for an ob-
ject in freefall in such a gravitational field is shown by the
dark black line in Figure 12 through both the expansion
and collapse phases of the Universe.

FIG. 12. Schwarzschild Freefall in Expanding and Collapsing
Spacetime

The conclusion we can draw from this is as follows.
During expansion, the background of the Universe glows
with decreasing temperature and brightness over time
via the CMB as gravitational structures stabilize and
galaxies form. During this phase, some stars will col-
lapse to form Dark Stars that we presently think of as
Black Holes. By the time we reach the singularity, the
Universe will be fully condensed and inert. At the sin-
gularity, light from the CMB will be infinitely redshifted
such that it is no longer detectable and the background
Universe becomes black (because ag in Equation 12 be-
comes infinite there). The observer will see a completely
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dark Universe at the singularity and over time, the Dark
Stars will begin to glow like candles lighting up the dark-
ness as the geodesics of the particles that were falling
toward their centers during expansion reverse and now
move outward (unabsorbed light will also be reflected
back outward during collapse). Shadow becomes flame.
These former ”Black Holes” effectively become ”White
Holes”, with matter radiating from them, seemingly out
of the vacuum, even though the radiation is coming from
matter that had accumulated in that region during ex-
pansion. As the collapse proceeds, these White Holes will
grow brighter and shrink as the matter and energy mak-
ing them up escapes to the external Universe at higher
and higher energies due to the increasing inertial acceler-
ation from Equation 10. The Universe effectively evapo-
rates as all gravitational structures break down. By the
end of collapse, the Universe has returned to a state of
increasingly dense plasma until it collides with the anti-
Universe at the annihilation horizon.

We can summarize as follows: We know from Equa-
tion 10 that the worldlines of all matter become null at
the end of collapse, so by symmetry, they will begin the
expansion as null geodesics as well at 7 = u. They enter
the singularity parallel to the ¢ coordinate per Equation
10 at the end of expansion. The geodesics then begin
to move from r = 0 to increasing r during the collapse
(interpretation of the infinite curvature is given in sec-
tion XIV), accelerating inertially over time per Equation
10. Observers are inertially accelerated to become null
geodesics as they approach the annihilation event at the
end of collapse per Equation 10.

Note that if the Universe collapses over the same mani-
fold on which it expanded, this would suggest we live in a
'presentist’ Universe as opposed to a 'block’ Universe be-
cause if that were not true, the collapsing matter would
collide with the expanding matter.

XII. TOTAL PROPER TIME

The proper time in Equation 1 implicitly assumes the
local gravitational field is in a co-moving cosmological
frame. This is because ' must be a function of cos-
mological time r. In fact, we know that as ' — oo
the proper time interval of the co-moving observer dr
has to be equal to the t’ interval, we can choose dt’ to
be dt’ = dTco—moving- But there is no reference to the
spacelike t and €2 cosmological dimensions in the internal
metric. If the source of the gravitational field has cos-
mological motion, the true proper time will be reduced
relative to Equation 1 due to time dilation effects. The
total proper time interval is found by multiplying d7’ by
the ratio of Z—: for the actual cosmological motion of the

field source and ‘;—: of a co-moving frame:

dr (dr
thOt = dTlf () (40)
dr dr co—moving
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Which becomes:

2 2
dTior = dT'\/l — (aiji) — (ar(f;}) (41)

Recognizing that a% is the linear cosmological speed of
light (Equation 9), we can define % = v and the cos-

mological linear speed of light ?12 = v.. We also define
the angular speed % = w and the cosmological angular
null geodesic as i = w, (by solving for % in Equation
2 with dr = dt = 0), then we can write Equation 41 as:

dnm:d#¢1—<i>2—<i>2 (42)

2
If we multiply % by I, and recognize that (”) +

We r? Ve

2
(:“jC) = V2 is the total cosmological velocity (because
rw is the tangential velocity which is perpendicular to the
linear velocity), then we recover the Minkowski form of
the length contraction equation where the speed of light

varies over cosmological time:

thot = d’T/ \Y4 1-— V2 (43)

This is telling us that the worldlines in metrics such as
the external Schwarzschild metric are contracted by the
system’s cosmological motion. So we see that the cos-
mological model is essentially a collection of systems de-
scribed by metrics like the external Schwarzschild metric
in a hyperbolic background that is a quasi-Minkowski
metric with a time dependant speed of light.

In order for Equation 42 to be real, the quantity under
the square root must be positive and therefore

v < v, 1—(”)2 (44)

We

And so we see that the upper speed limit of an object de-
pends on its spin. In other words if and object is spinning
about the time dimension while moving in a straight line,
its maximum speed will be reduced per Equation 44. It’s
as though this spin has increased the mass of the parti-
cle, and perhaps even gives mass to a massless particle.
The mass would be related to the precession of the iner-
tial frame about the time axis. Note that according to
Equation 44, massless particles, which move with speed
Ve, cannot have any such precession (massless particles
also lack an inertial reference frame to precess).

XIII. ’SPAGHETTIFICATION’, AND A SELF

PORTRAIT OF THE UNIVERSE

We will now take a closer look at what actually hap-
pens at the singularity in the cosmological context. When
approaching the singularity, the df) term vanishes and
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proper distances go to infinity. This is often referred
to as ’spaghettification’. In the conventional context of
falling into a Black Hole, this is interpreted as an ob-
server approaching the singularity getting both infinitely
stretched and squeezed and then they just cease to exist
at the singularity. But when we interpret the internal
metric as the cosmological solution, we find that the true
nature of the metric behavior at the singularity is in fact
much more mundane, yet incredibly revealing.

Let us now consider the singularity. The light cone
opening angle v at a given cosmological time is given by:

dt 1
= 2 -1 —_— == 2 -1 = 4
P tan (drlight) tan (aQ) (45)

Figure 13 shows the light cone angle ¢ as function of
r as we move along the r axis with decreasing r during
expansion, through the singularity, and then in increasing
r during collapse.

"3

Expansion Collapse

r=u r=9=0 r=u
FIG. 13. Local light cone angles over time

We begin expansion at the left side of the diagram
where the light cone is totally open (¢p = ), because
Equation 9 goes to co there. As we move through time,
the angle closes until at the singularity, light no longer
travels through ¢ (1) = 0), which is why Equation 9 goes
to zero there. At the singularity, light no longer travels
through space and everything becomes spacelike. But
also recall that motion has stopped at this point and all
light is infinitely redshifted, so there isn’t really a phys-
ical stretch happening, its only that adjacent points in
space are unable to communicate with each other at that
instant. Then as we pass the singularity and continue
moving now with increasing r during collapse, the light
cone will start opening in a symmetric way to how it
closed during expansion.

Therefore, space is not expanding the way we cur-
rently think about it in terms of a stretching of space.
What is changing is how quickly different points in space
are able to communicate with each other. The image of
space itself compressing to a point or ripping itself apart
is misleading. At the beginning of expansion, we have
a normal 3D space of particles that can communicate
instantly with all other particles regardless of distance
because the speed of light is infinite there. This com-
munication speed drops as expansion proceeds and local
gravitational structures are able to form. When reaching
the singularity where the scale factor is infinite, space is
not ripped apart but rather the light cone angles have
closed completely such that adjacent regions of space are
unable to communicate with each other which manifests
as infinite proper distances.


https://doi.org/10.20944/preprints202201.0301.v13

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 January 2023

Finally, let us return to Equation 7 and track the
proper distance s of a point a fixed coordinate distance ¢
away from us for the duration of the expansion and col-
lapse. If we plot this proper distance vs the imaginary
version of r = 47’ similar to what was done in Figure 11,
we get a clean picture of how the expansion and collapse
of the Universe would appear to a co-moving observer
(expansion and collapse proceeds from top to bottom).
The reader’s current position is marked with 'x’:

-5 s

FIG. 14. Self Portrait of the Expansion and Collapse of the
Universe with the Reader’s Current Position Marked with ’x’

Note that this is not the Universe and anti-Universe.
When the Universe is at r = i’ = u, that is where the
Duoverse collides.

XIV. THE MANY WORLDS

The Duoverse described thus far contains all the events
in the Universe and anti-Universe for a single expansion
from beginning to end. However, the Duoverse then re-
collapses, annihilates, and pair produces a brand new
Duoverse. Therefore, we can think of each successive ex-
pansion and contraction of the Duoverse as happening
along another dimension which is discrete. This dimen-
sion essentially labels the different countably infinite ran-
dom set of Duoverses.

Since each Duoverse begins with annihilation, this
means each Duoverse begins with a random configuration
after annihilation. Therefore, there is no cause and effect
relationship between Duoverses from cycle to cycle. This
means the cycles cannot be ordered sequentially because
there is no way to know which cycle preceded or will fol-
low the current cycle. If we cannot order the cycles in a
sequence, then we can think of them all as being parallel
to each other. While events within a cycle can have cause
and effect relationships (i.e. the events 'happen’ at given
times), the various cycles themselves do not ’happen’,
they just exist along side all other cycles. Thus we can
think of the annihilation events as being a single event
from which infinite Duoverses emerge and to which they
return. This implies that finding ourselves in a particular
Duoverse is completely probabilistic where the probabil-
ity that we find ourselves in a Duoverse with a particular
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configuration depends on how likely that configuration
is across all possible configurations. This gives us the
many worlds that have been invoked to explain quantum
probability in the Everett many worlds interpretation of
QM. The parallelism of the cycles also resolves the para-
dox that would come with infinite sequential cycles: If
the Universes cycled in series, that would mean that an
infinite amount of cycles would need to occur before our
cycle, which is a logical paradox.

We can visualize the geometry of time with the many
worlds and infinite curvature by imagining a 2D surface
with a finite height and infinite width as shown in Figure
15:

|
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y { Universe
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7

Universe ,
.

7

, / P
,f Anti-Universe " Anti-Universe }
. .

<m0 L

Expansion Collapse

FIG. 15. The Many Worlds Parallel Time Surface

We see both the Universe and Anti-Universe with nor-
mal vectors representing which side of the (infinitely thin)
surface they are on (with matter pointing in one direc-
tion and antimatter pointing in the opposite direction).
They move from r = u to r = 0 during expansion and
vice versa during collapse along the dotted line on the
surface. The curvature is infinite at » = 0 and this corre-
sponds to the normal vectors representing the Universes’
orientation relative to the surface flipping direction at
that point. So we can imagine one vector pointing up
and the other pointing down at the solid center line of
the sheet, and as expansion progresses, these vectors are
transported along the dashed line toward r = 0 (moving
in opposite directions). At r = 0, the vectors flip their
directions and move back toward the center line during
collapse (where the direction flip reflects the idea that
the Universes are now on the opposite side of the surface
they were on during expansion).

Each point on the dashed line maps to a 3D space
representing the Universe or Anti-Universe at a specific
time. The many worlds would be lines on the surface
parallel to the dashed lines of Figure 15. There would
be countably infinitely many such lines (i.e. this quasi-
dimension is discrete where its coordinates is the set of
integers, not real numbers), one for each of the infinite
parallel Universes (this is why the width of the surface in
Figure 15 is infinite). Thus, the width of the sheet would
represent a kind of ”possibility space”.

XV. ON THE ABSOLUTE IMPOSSIBILITY OF
BLACK HOLES

In this paper, it has been shown that Black Holes
can never form as a result of the finite time over which
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the Universe expands before our motion through time
reverses and gravity becomes repulsive. But it will
be argued here that even if the cosmological spacetime
Minkowskian, Black Holes would still not be a valid in-
terpretation of the Schwarzschild metric.

Consider a spherically symmetric shell collapsing to-
ward its Schwarzschild radius. At the beginning of
collapse, the radius of the shell is greater than the
Schwarzschild radius and we place two rods inside the
shell whose rest lengths are the Schwarzschild radius of
the shell with one end of each rod placed at the center of
the shell. Let us place two observers, Scout and Jem, on
opposite sides of the shell in free fall with it as depicted
in Figure 16.

FIG. 16. Scout and Jem on a Collapsing Shell

According to Birkhoff’s theorem, the spacetime inside
the collapsing shell in Minkowskian and the rods are at
rest relative to the collapsing shell. As the shell collapses,
the velocities of both Scout and Jem will increase relative
to the rods. But in the frame of Scout or Jem, it is the
rods that are moving toward them. Therefore, the rods
will become increasingly length contracted in both Scout
and Jem’s frames as the shell collapses due to the relative
velocities between the rods and the observers.

Let us consider a set of hovering observers which re-
main at rest relative to the rods. As the shell passes one
of these observers, the hovering observer must accelerate
to remain at r with proper acceleration [7]:

Ts

0= ———r (46)

2r2,/1 — L=
-
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This is the acceleration that the hovering observer at r
will measure the shell having as it passes. When the shell
is at r, the proper time interval of the rods will equal
that of the hovering observer at r and the acceleration
of the shell relative to the rods will therefore also be
equal to Equation 46. Thus, as the shell approaches its
Schwarzschild radius, the relative velocity of the shell
with respect to the rods will approach the speed of light
because the relative acceleration goes to infinity there.
Thus, the lengths of the rods in Scout and Jem’s frames
will contract to zero length as they reach the horizon.

Therefore, when the shell reaches the Schwarzschild ra-
dius, the space between Jem and Scout as observed by
Scout and Jem will be relativistically contracted to zero
and in their frames, and they will be coincident. What
this tells us is that in the frame of the material falling
to form a Black Hole, there is no spacetime beyond the
Schwarzschild radius. In that frame, when the material
reaches the Schwarzschild radius, then the material has
been compressed to a point and there is nowhere else
to fall. Therefore, even in the case of a Minkowski cos-
mology, Black Holes have no interior. The Schwarzschild
radius as viewed by an infinite observer corresponds to
zero radius in the frame of free falling particles.

Furthermore, consider two observers that begin falling
in the Schwarzschild metric at the same time from differ-
ent radii. Looking at the dashed X = T line represent-
ing the Schwarzschild radius in the top right quadrant of
Figure 1, we can see that if both observers started falling
from different r at the same ¢ > 0, their worldlines will in-
tersect the dashed line at different points on this diagram.
However, we must note that when their worldlines inter-
sect the dashed line, this means that they are at the same
spatial coordinate r = rg, and separated by zero proper
distance (because the dashed line is a null geodesic). This
means that even though the worldlines on the spacetime
diagram do not seem to intersect, the observers are in fact
coincident there, regardless of when/where they started
falling relative to each other.

We can conclude from these arguments that the
Schwarzschild radius represents the end point of collapse
and that there is no physical space beyond that in which
to continue falling. In the frame of observers approach-
ing the Schwarzschild radius, all infalling material would
become infinitely dense there.
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