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Abstract: Urban floods is a typical urban disaster that threaten the economy and development of
cities. Sponge cities can improve the flood resistance ability and reduce the floods by setting low-
impact development measures (LID). Evaluating the floods reduction benefits is the basic link in the
construction of sponge cities. Therefore, it is of great significance to evaluate the benefits of sponge
cities from the perspective of different rain patterns. In this study, we investigated the urban runoff
of various rainfall patterns in Mianyang city using the Strom Water Management Model (SWMM).
We employed 2-100-year return periods and three different temporal rainfall downscaling methods
to evaluate rain patterns and simulate urban runoff in Mianyang, with and without the implemen-
tation of sponge city measures. After calibration, model performance was validated using multi-
source data concerning flood peaks and inter-annual variations in flood magnitude. Notably, the
effects of peak rainfall patterns on historical floods were generally greater than the effects of syn-
thetic rainfalls generated by temporal downscaling. Compared to the rainfall patterns of historical
flood events, the flood protection capacities of sponge cities tended to be overestimated when using
the synthetic rainfall patterns generated by temporal downscaling. Overall, an earlier flood peak
was associated with better flood sponge city protection capacity.

Keywords: SWMM, Low-impact development, Satellite observations, Temporal downscaling.

1. Introduction

Urbanization has greatly increased in the past century. As of 2011, the global urban-
ization rate was 52.1%; it will attain 67.2% by 2050 [1]. The proportions of populations
affected by floods are also increasing [2]. China is one of the world’s most urbanized coun-
tries; this urbanization is expected to become more pronounced [3]. Heavy rains and
floods compromise urban health. Often, the drainage system is old, while new urban areas
have changed the original runoff pattern; moreover, the population is concentrated, ren-
dering flooding and waterlogging problems increasingly serious. In recent years, water-
logging has become more common [4]. In 2012, heavy rain on 20 July in Beijing caused
10,660 houses to collapse; 1.602 million people were affected and the direct economic loss
exceeded 11.64 billion RMB [5]. In 2016, a rainstorm on 6 July in Wuhan affected 757,000
people and caused direct economic losses of 2.27 billion RMB [6]. In 2020, heavy rain on
22 May in Guangzhou caused suspension of the subway and great economic losses [7]. In
July 2021, Zhengzhou (Henan) was affected by a severe rainstorm that killed 51 people
and caused direct economic loss of RMB 65.5 billion [8]. Urban flooding has become
chronic in Chinese cities, severely restricting development. It is important to strengthen
research concerning urban rainstorms and waterlogging, while developing prevention
and mitigation measures [9].

Urban flooding is caused by urban construction that expands impervious surfaces
and thus reduces the area available for water retention; stormwater runoff exceeds the
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drainage capacity [10,11]. Flooding is sudden (caused by local heavy rain during strongly
convective weather), socially impactful (causing major loss of life and property, as well as
social unrest), and chaining (damaging the entire drainage system via flooding of key
points or key surfaces). It is difficult to study urban flooding in an experimental manner.
Urban storm/flood simulations provide the scientific basis for flood control. The models
include the Strom Water Management Model (SWMM), MIKE SHE, Soil and Water As-
sessment Tool (SWAT), and the Institute of Hydrology Distributed Model (IHDM). For
example, Merhawi et al. simulated urban flood inundation and recession affected by man-
holes [12], while Wu, et al. [13] simulated urban flooding by coupling the SWMM and
LISFLOOD-FP; Bai et al. [10] used the SWMM to study low-impact development (LID).
Although simulation is efficient, its reliability depends on accurate data from local hydro-
logical monitoring stations. There is only one verification method; this lacks versatility.
Remote sensing technology detects targets at great distances; it efficiently yields accurate
hydrological data. Recently, remote sensing has been used to monitor floods in small river
basins and to plan water resource allocation, however, it has seldom been used to study
urban flood management. The satellite data are verified by ground hydrological stations,
which maximizes accuracy and reliability [14]. Therefore, methods based on multi-source
observations should be considered.

To effectively control and mitigate urban flooding, in December 2013, Chinese Pres-
ident Xi Jinping launched the concept of sponge cities to comprehensively address water
scarcity and pollution, as well as urban flooding [15-17]. Sponge cities are similar to the
LID concept in the United States [18]. Runoff and pollution caused by heavy rain are man-
aged via decentralized, small-scale control mechanisms; the destructive impacts of devel-
opment on hydrological conditions are mitigated. Developers have key roles in urban
flood control in China because they are responsible for urban rainwater flood manage-
ment; this responsibility is a key Chinese policy [19]. Thirty pilot sponge cities were ap-
proved in 2015; great progress has been made in terms of urban flood control, but the
specific construction measures are not yet fully defined. Sponging must be quantified dur-
ing planning and before construction.

How to quantify the benefits of sponge cities has always been a hot and difficult issue
in research. Shao et al. quantified the impact of urbanization on flooding [20]. Simth et al.
studied the hydrological response spectrum during storms in urban watersheds [21]. Fu
et al. studied the impact of permeable paving in an LID area on stormwater runoff [22].
Zhang et al. studied the outcomes of green infrastructure [23]. Feng et al. studied the effects
of LID measures on peak flood reductions according to return period [24]. However, the
rainfall data used in most studies is a single Chicago rain pattern, and the relevant char-
acteristics of actual rainfall include rain intensity, peak occurrence time, number of peaks,
etc., a single rain pattern lacks reliability, the effect of different rain patterns (peak occur-
rence time, rain intensity, and duration) on peak flood reduction in sponge cities needs to
be further confirmed, and the different characteristics of these rain patterns can trigger
different degrees of urban flooding. The study of the effects of different rain patterns on
the flood control capacity of sponge cities will help to have subsequent decisions on
sponge city construction and is important for improving the technology and layout of
sponge city projects.

Furthermore, how to validate the urban-scale rainfall flood management models is
also challenging, because the surface hydrological data are often lacking. Li et al. used the
average runoff pollution level to explore water quality [25]. Zhao et al. converted simulated
runoffs to water depths and compared them with the depths of submersion [26]. Although
both methods directly or indirectly measured urban water quantity, inter-annual varia-
tion was not considered. The satellite imagery-based hydrological model established by
Mark et al. accurately measures observed flows [27]. Multi-source validation improves the
accuracy of hydrological model; combinations of satellite observations with water balance
measures should be considered.

Mianyang is located in the middle reaches of the Fujiang River, one of the main trib-
utaries of the Yangtze River, in the middle of the city near the confluence of the Fujiang
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River and the Anchang River. Although Mianyang is not a pilot sponge city in China, it
has been selected as a "Science and Technology City" and is a local government supported
by the Sichuan government for sponge city construction. The city has a warm and humid
subtropical monsoon climate. The average annual temperature is 14.7-17.3 °C with an av-
erage annual precipitation of 826-1417mm. The number of rainfall days is 195, the rainy
season is mainly concentrated in June to September, and it is prone to short duration and
high intensity rainstorm events. Urbanization has increased the likelihood of heavy rain-
fall occurring in central urban areas, such as the 7.23 mega-storm in Mianyang in 2010 and
the 8.22 mega-storm in Mianyang in 2018, with most of the storm centers located in central
urban areas of Mianyang.

In order to investigate the benefits of sponge city under different rain patterns to
flood control, this study takes Mianyang city of Sichuan province as an example, simulates
flood runoff under different rain patterns using SWMM, constructs a sponge city LID
model according to Mianyang city sponge city planning, and rates and verifies the model
by studying the sponge city flood control effect and rainfall process in different return
periods and using satellite technology and water balance equation. The objectives of this
study are 1) To establish an urban flood simulation model applicable to Mianyang city 2)
To compare the benefits of sponge cities under different rainfall types. The aim is to pro-
vide a reference for urban scale rainfall and flood management models.

2. Materials and Methods

We collected hydrological, pipe network, and subsurface data regarding central
Mianyang. We then constructed an SWMM to simulate actual runoff conditions; we cali-
brated and validated the model using two different methods. Rainfall data for different
return periods were processed using three different temporal downscaling methods to
assess the impacts of different patterns on the flood control capacities of sponge cities. The
principal steps were (Figure 1):

(1) Database construction

The hydrological data include precipitation, evaporation, and river flows; the pipe
network data were collected from a drainage map provided by the local government,
while the subsurface data were land use and topography.

(2) Model validation

The SWMM outputs were converted into runoff depths and the water balance
method was used to quantify floods. Passive microwave remote sensing was employed to
measure surface inundation; the data were used to define the dynamic trends of historical
floods.

(3) Rainfall temporal downscaling

Three different downscaling methods were used to obtain rainfall patterns at differ-
ent rainfall intensities, along with flood coefficients and numbers to evaluate their effects
on the flood control capacity of sponge cities.

(4) Sponge City Simulation

The impact of four LID combinations on the runoff control in the central city of Mian-
yang was simulated in conjunction with the sponge city planning of Mianyang.

(5) Assessment of Flood Reduction Effect

Flood peak and volume are used as output variables to compare and analyze the
abatement effect of sponge cities on urban flooding under the action of different return
periods and different rain patterns. The flow chart is shown in Figure 1.
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Figure 1. Flowchart of assessment of Sponge City Flood Control capacity based on multi-source
validation and depends on different rainfall patterns.

2.1 Study area

This study is about the central city of Mianyang City, Sichuan Province, which in-
cludes Fucheng District and Youxian District of Mianyang City, with an area of 209.2 km?
and a population of about 4.8 million, and the population of the central city is about 1.8
million. The topography is high in the north and low in the south, high in the east and
west and low in the middle, with Fujiang River (from northeast to southwest), Anchang
River (from west to east) and Furong Creek (from east to west). The average slope in the
region is 6.5%, and the maximum slope is 10.3%, with a large area of shallow hills and
more obvious slope changes, and is distributed in strips.

2.2 Database

The hourly rainfall observations and river flows were collected from the Sichuan hy-
drological business platform [Fujiangqgiao Station (2015-2020)]; the daily rainfall records
were collected from the Global Surface Summary of the Day [GSSD (1973-2017)]; and the
monthly evaporation data were collected from the Mianyang Meteorological Bureau
(2015-2020). The geographical features (areas, widths, slopes, shapes, lengths, and offset
heights) of all sub-catchments were collected from the Advanced Spaceborne Thermal
Emission and Reflection Radiometer (ASTER-GDEM) 30-m resolution digital topography
GIS database. The land use map was based on a satellite image of Sentinel-2B (MSI Level-
1C; 10-m spatial resolution; acquired July 11, 2017) that was subjected to supervised image
classification. The land use types were water, reservoir, forest, building, road, cropland,
and grassland; the areal percentages of impervious regions in each sub-catchment were
calculated based on the map. The pipe network was simplified from the map for down-
town Mianyang (2017). The SSM/I data were provided by the National Ice and Snow Data
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Center in the form of cylindrical EASE-Grid projections with a resolution of 25 km,
resampled to 0.25°. The details are shown in Table 1.
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Figure 2. Location map of study area, Central part of Mianyang City.

Table 1. Data list for SWMM and validation

Function/Derived features/parame-

Item Data Source etc.
ters
GSSD (Daily 1973-2017)
Precipitation Fujianggiao Rain-gauge (Hourly Time Series, Validation
2015-2020)
. Mianyang Weather station (Monthly .
E
vaporation 2015-2020) Monthly Evaporation
Discharge 4 Hydrologzlgg(l)_sztg;loo)ns (Hourly Validation
ER- b —
Topography ASTER GDEM (30 m resolution dig Flow direction, Slope (gradient)
ital elv. )
Land use Sentinel-2B (10 m resolution) Manmng Coef, Permeability, Un-
derlying surface, Green cover
Pipe Network Printed map of pipe network Connection betvr\:;rllt each sub-catch-
Satellite Data SSM/I (25 km 1991-2020) Validation

2.3 Configuration of the urban runoff model

The SWMM was used to simulate the impacts of climate change and urbanization on
flood control, assuming that LID practices were in effect. We used the SWMM for Mian-
yang City of Li, et al. [28]. The study area (209.2 km?) was divided into 52 sub-catchments
based on topography, the pipe network, community boundaries, land use, the underlying
surface, slope direction, and extent of green cover. Rainfall runoff was simulated at 15-
min intervals. Certain sensitive model parameters (depression storage in impervious ar-
eas and infiltration parameters) were based on the flooding data for 2010. We confirmed
that the calibrated model reasonably simulated urban runoff. In the model, each sub-
catchment is conceptualized as a rectangular surface with a uniform slope s and width W.
The water balance and surface runoff are calculated as follows [29]:
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1 53
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where V, A, and h are the storage volume, storage area, and water depth of the sub-
catchment, respectively; rs is the surface runoff rate (calculated from the precipitation,
evaporation, and infiltration); Q is the slope outflow rate; n is the Manning roughness
coefficient; and hp is the depression storage depth. Each sub-catchment featured imper-
meable areas (road or urban land-use types) and permeable areas (forest, cropland, bare
land, or water bodies); infiltration in permeable areas was calculated using the Horton
equation. The parameters n and /i are given for each land-use type; these parameters were
then weight-averaged over the impermeable and permeable areas (depending on their
proportions). Then, the ratio of 1, and hp for impermeable and permeable areas are as-
signed to each sub-catchment as model parameters.

2.4 Multi-source validation

Two different methods were used to validate and calibrate the parameters set by
SWWM, One method is to construct the water balance equation from the ground hydro-
logical station observation data and use the runoff depth as the standard to verify the
model simulated runoff results, whose main advantage is to quantitatively verify the run-
off volume simulated by SWMM,; another method is to detect surface flooding by passive
microwave remote sensing and use the normalized difference frequency index (NDFI) to
detect flooding, an NDFI is the detected presence of surface water sensitivity, which has
the advantage of responding to the Inter-annual variation of the flood peak over time.

2.4.1 Water balance for calibration

Some sensitive model parameters were calibrated using data from a 2010 flood, as
reported by Li et al. (2020). Considering the lack of flood discharge data for central Mian-
yang, the model parameters were calibrated based on the maximum discharge of the en-
tire study area in 2010, as inferred from a water balance calculation that included the sur-
rounding tributaries and river branches. The basic concept of a water balance calculation
is shown in Figure 3 [29], the calculation steps are as follows:

A
Re=8Q(55) ®)
AQ = Q3 - (Ql + Q2 + Q4) (4)
AA=Az- (A1 +Ar+Ay) ®)

where Rest is the runoff from the target area, to be estimated by water balance calcu-
lation; Ac is area of the model domain, Q1, Q2 and Qs are the peak flow at Fujianggiao,
Anchang and Fenggu gauging station respectively. The peak flow from branch Qs is esti-
mated by assuming similar specific discharge of this branch to that of the Furongxi gaug-
ing station (Q1). Hence, Rest is estimated peak flow as 189.6 m?/s, and hereafter, this value
is referred to as the “estimated runoff” and used as a reference for calibrating the model.
The estimated runoff is also representing runoff generation from study area; central part
of Mianyang city.
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Figure 3. Schematics of water balance analysis [28].

2.4.2 Satellite observations for validation

Passive microwave remote sensing effectively detects surface moisture and flooding.
The 19- and and 22-GHz vertical and horizontal polarization channels, respectively, of the
dedicated special sensor microwave imager (SSM/I) are sensitive to surface moisture and
flooding because they are minimally affected by cloud interference; we used these data
from 1991 to 2020 (provided by the National Snow and Ice Data Center) as equal-volume
cylindrical EASE-Grid projections with a resolution of 25 km, resampled to 0.25° (i.e., the
grid size of our analysis). The Normalized Difference Frequency Index (NDFI) is used to
detect surface moisture and flooding. NDFI is a sensitivity index for detecting the presence
of surface water [30,31] and is expressed as follows:
TBoy - TBygy

NDFI=_=—=" """ 6
TByyy + TBygy ©)

where TBzv and TBiv are the brightness temperatures with vertical polarization at
22 and 19 GHz, respectively. The maximum NDFI (NDFIm) at each pixel during summer
was calculated for each year.

Flood magnitude was quantified based on the deviation (anomaly) of the NDFIm
from the long-term average for 2015-2020. Anomalies were calculated as follows.

NDFIm, .. (X,y) - X,
NDFlm. = year () =ty per (X,Y) ”

year ONDEIm (X, Y)

where the subscript denotes the target year, x and y give the pixel location (longitude
and latitude, respectively), NDFImyear (X, y) is the maximum NDFI over the June to Sep-
tember, and unorm (X, y) and onorim (X, y) are the multi-year (1991-2020) average and stand-
ard deviation of NFDIm (X, y), respectively. As aNDFIm become more positive for a given
year, NDFIm increase markedly in that year compared to other years. Higher-anomaly
regions experienced extraordinarily intense or high-volume surface flooding. We have ex-
tracted the NDFI data from Li, et al. [32].

2.5 Rainfall observation data and design rainfall scenarios

Hourly rainfalls were obtained from the Fujiangqiao station of the Sichuan Water
Business Platform; these data were combined with GSSD data to calculate the annual max-
imum daily rainfall intensities for different return periods, using the daily rainfall records
from 1973 to 2017. The probability density function was normally distributed, and fre-
quency analysis was thus performed using the Rainbow packing tool [33]. Next, three
different downscaling methods were used to generate hourly rainfall time series for runoff
analysis of different return periods.

2.5.1 Historical patterns

The historical patterns are the maximum daily rainfalls for each month. The hourly
rainfall time series of the eight maximum flood events from June to September 2015-2020
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were separately analyzed; four were single-peak cases and the other four were multi-peak
cases.

2.5.2 Chi-squared probability distribution rainfall patterns

The chi-squared probability distribution rainfall patterns were developed by Ye, et al.

[34] and applied to flood simulation for Mianyang by Li et al. (2021a); they consider all

rainfall fields in each month. The data were then input to the urban runoff simulation

model. The temporal downscaling process is outlined in Figure 4. The temporal pattern

of hourly rainfall is assumed to exhibit a chi-squared probability distribution (Eq. 10), and
the peak intensity and duration of hourly rainfall are modeled as follows:

T=a+BIn(P) 8)

P=a+bP, )

x051-14-05x

SR 0
X2(x:n)=12057r05m ’ x>
I'(s)= f0+°°t5'1e'fdt, §>0 (11)

where T is the duration of precipitation (h); P is the total daily precipitation (mm); Pa
is the maximum precipitation intensity (mm/h); and «, § and 4, b are model parameters.
Because the degrees of freedom (1 values) of the output varies with T, the shape of the
chi-square distribution also varies with T through changes in 1, as shown in Figure 4 and
Table 2. Parameters «, f and a, b were calculated for each month, based on the hourly
precipitation data recorded at the meteorological station in Fujiangqiao during the period
2015-2020. With this downscaling method, P4 and T are estimated based on P using Egs.
(8) and (9). The temporal pattern of hourly precipitation over time T is based on the chi-
squared distribution, but the peak intensity Pa is not. Finally, the hourly precipitation time
data (with the exception of P4 ) were adjusted to ensure that the total precipitation over T
was equal to P.

p()

p(t) =P

,
.
1
1
1
:
. ||
=
T
"M’"’
[=]

_--- following Chi-sq.
distribution

hourly precip.

T

Figure 4. Chi-square distribution probability density function plot [29].

Table 2. The rainfall ephemeris corresponds to the degree of freedom [29]

T[hl (1,8]* (8,111 (11,14] (14,16] (16,18] (18,24]
n 3 4 5 6 7 8
*(1,8]:1<T<8.

2.5.3 Chicago design storm

The Chicago design storm is widely used when modeling rainfall scenarios for Chi-
nese sponge cities [35], the rainfall pattern is determined by Eqs (8) and (12). Considering
the empirical storm equation provided by the local government of Mianyang, we em-
ployed the Chicago design storm as follows:

;o 528(1+0721 logP)
(t+4.724) 0.501 (12)
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where: i is the peak intensity of rainfall in mm/min; ¢ is the rainfall calendar time in
min; P is the return period of daily rainfall in years.

First, the peak coefficients were defined as the ratios of the time of flood peaking to
the total rainfall duration. Four single-peak rain types with different peak times were
used, corresponding to rainfall peak coefficients of 0.2, 0.4, 0.6, and 0.8; six rainfall return
periods of P=1, 2, 5,10, 20, 50, and 100 years were adopted. The rainfall pattens are shown
in Figure 5. We used the same peak coefficient (0.5) for two multi-peak rain patterns (i.e.,
with two and three peaks); we employed six rainfall return periods. The process is shown

in Figure 6.
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Figure 5. Single peak Chicago design storm by different peak coefficient.
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Figure 6. Multi-peak Chicago design storm by different peak coefficient.

2.6 Planning of LID Measures for Sponge City in Mianyang City

The Mianyang Sponge City Special Plan (2016) states that the following four LIDs
will be installed:

(1) Green rooves (GRs): vegetated soil above drainage mats that serve to convey
stormwater [36].

(2) Permeable pavement (PP): pavement of high porosity and permeability that al-
lows some rainwater through [37].

(3) Rain gardens (RGs): water is retained in surface depressions filled with vegetated
soil on a gravel storage bed [38].

(4) Rain barrels (RBs): water tanks are used to capture runoff, typically via pipes from
rooftops [39].

The areas and percentages of each LID facility (for the entire study area) are shown
in Table 3. The RB unit is m? but was converted to m? by setting the rain barrel height to
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1.0 m. The parameters were derived from design sheets, SWMM manuals, and other liter-
ature [40-42].

Table 3. Type of LIDs and Coverage

Type of LIDs Green Roofs Permeable Pavement Rain Gardens Rain Barrels
(GRs) (PP) (RGs) (RBs)
Description Precip,l IEvap, OVE%"V Pr(?(:|p~l IEvap. PTECIpl IEvap O{VGQW f Oveﬁw
uf i 3
Drain Drain ran
Area (km?) 9.95 24.50 27.12 3.11
Ratio (%) 476 11.71 12.96 1.49

2.7 Experimental design

Rainfall may exhibit one or more peaks. The single-peak falls are divided into two
groups that differ in terms of intensities and peak coefficients; the multi-peak falls are
divided into two groups that differ in terms of rainfall intensities and peak numbers. The
groupings are shown in Table 4; the design precipitation levels for 2, 5, 10, 20, 50 and 100-
year return periods were considered first. Each experiment was repeated 24 times based
on the different return periods for the months of June to September inclusive.

Table4. Experimental design

Number of Peak coeffi-

Experiments Peak types Peaks cients Methods
El Single 1 0.3--0.7 His
E2 Single 1 0.2--0.3 Chi-2
E3 Single 1 0.2 Chicago
E4 Single 1 0.4 Chicago
E5 Single 1 0.6 Chicago
E6 Single 1 0.8 Chicago
E7 Multi 2--4 0.2—-1 His
E8 Multi 2 0.5 Chicago
E9 Multi 3 0.3 Chicago

The specific description of the experimental group is as follows

(1) Single-peak Extreme rainfall (E1-2)

The E1 single peak historical patterns served as the June-to-September single-peak
extreme rainfall scenario. In E2, the chi-squared probability distribution of single-peak
rainfall pattern was employed; this is the June-to-September average rainfall.

(2) Single-peak Peak coefficients (E3-6)

In E3-6, the Chicago design storm single-peak rainfall patterns created by weather
generator [33] were used; these are the flood peaks with coefficients of 0.2, 0.4, 0.6, and 0.8
from June to September.

(3) Multi-peak (E7-9)

In E7, an historical multi-peaked rainfall rain pattern was used; this is the June-to-
September multi-peak extreme rainfall scenario. In E8, the Chicago design storm multi-
peak rainfall pattern created by the weather generator was used to represent the June-to-
September average double-peak rainfall pattern when the average number of peaks was
2. In E9, the Chicago design storm multi-peak rainfall rain pattern created by the weather
generator was also used; the mean peak number was 3 for June-to-September.

In all experiments, urban runoff simulations were performed when LID practices
were and were not implemented. The effects of LIDs on flood control were assessed by
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calculating the “reduction rates” of flood peak and volume; each rate is the difference in
flood peak or volume between the presence and absence of the LID initiatives.

3. Results and Discussion
3.1 Validation

3.1.1 Water balance

Model reliability was quantitatively assessed using the runoff depth derived via wa-
ter balancing, although the simulated annual maximum discharge Rcal of the model using
the default parameters (156.7 m3/s) was underestimated by 17% compared to the esti-
mated runoff. However, the model reasonably yielded discharge outputs from rainfall
inputs. To improve model performance, a (sensitive) parameter (the depth of depression
storage in impervious areas) and the infiltration parameters were re-evaluated (i.e., cali-
brated) to reduce the difference between Rcal and Rest. The sensitive parameters were
identified via literature review [43] and used for preliminary model simulation (parame-
ter sensitivity analysis). Rcal became 164.9 m3/s (a 13% underestimate) after parameter
calibration.

3.1.2 Satellite observations

Simulation reasonably represented both the flood peak for a specific flood event (in
2010, validated by the water balance) and the differences in flood magnitudes. After sen-
sitive parameters had been determined using the water balance equation, remote sensing
data were introduced to further evaluate accuracy and reliability. The results are shown
in Figure 7. When comparing the annual maximum flood events aNDFImyear and the
simulated discharge of the no-LID SWMM CASE in 2015-2020, the inter-annual variation
correlation coefficient was strong (0.6); the SWMM simulations were consistent with the
satellite data.

—Simulated Dicharge

—aNDFI
2000 12
£
S 1500 t 109
g =
=
: s
Z 1000 {06 =
=
&
=
Z 500 1 0.
s 0.3
"
0 0

2015 2016 2017 2018 2019 2020
Years

Figure 7. Annual maximum flood events aNDFImyear and simulated discharge.
3.2 Effect of single peak
3.2.1 Extreme and average conditions

Rainfall patterns analysis

Both E1 and E2 have return periods of 2-100 years and consider the June-to-Septem-
ber single-peak rainfalls; the rainfalls were equal except in July (where the rainfall dura-
tion was less in E1 than in E2, indicating that the average rainfall intensity was greater in
E1 than in E2). The principal reason for the difference between July and other months is
that the rainfall duration of the field representing the extremes in July is long and the
rainfall distribution is extremely uneven. However, the flood rainfall intensity is generally
greater in E1 than in E2, consistent with the concept that E1 represents monthly extreme
rainfall and E2 represents monthly average rainfall. Notably, the flood rainfall intensity is
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slightly greater in E2 than in E1 during the 2-20-year return periods because of the gener-
ally long duration and low intensity of rainfall in September. The PEAK BIAS was defined
as the difference in rainfall peak intensities. The average BIAS was the experimental dif-
ference in average rainfall intensities. The PEAK BIAS values of E2 compared to El in
June-to-September were minus 33-34%, minus 65-66%, minus 36-38%, and plus 5-9%, re-
spectively. The average BIAS values were minus 50-59%, plus 28-53%, minus 38-47%, and
minus 53-59% in June-to-September, respectively (Figure 8, Tables 5 and 6).
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Figure 8. Extreme and average rainfall patterns analysis.
Table 5. PEAK BIAS and Average BIAS for E1 and E2
Months JUN JUL AUG SEP
PEAK-BIAS (%)  [-34,-33] [-66,-65] [-38,-36] [5,9]
Average-BIAS (%) [-59,-50] [28,53] [-47,-38] [-59,-53]
Table 6. Extreme and average rainfall patterns analysis
Experiments Month Return period Duration (h) Peak Intensity Average Intensity
(y) (mm/h) (mm/h)
JUN 2-100 7 54.0-140.9 14.1-36.7
E1 JUL 2-100 23 59.6-155.6 4.3-11.2
AUG 2-100 8 51.7-134.9 12.3-32.1
SEP 2-100 9 13.9-36.2 10.9-28.6
JUN 2-100 14-17 35.9-92.6 7.0-15.1
B2 JUL 2-100 15-18 20.6-48.2 6.6-14.3
AUG 2-100 13-15 33.2-83.6 7.6-17.1
SEP 2-100 19-22 15.2-38.0 5.2-11.7

Flood control analysis

The experimental peak reduction rate was the peak difference between the LID and
no-LID cases divided by the peak of the no-LID case; the volume reduction rate was the
total volume difference between the LID and no-LID case divided by the total volume of
the no-LID case. For E1, the peak and volume reduction rates exhibited decreasing trends
in all months as the return period increased. Thus, under the rain pattern of monthly ex-
treme rainfall, the LID facilities became saturated within the 2-year return period. As rain-
fall increased, the LID facilities could not manage the excess. Importantly, September ex-
hibits a long rainfall duration but a low flood rain intensity; accordingly, the peak reduc-
tion rate in September increased slowly during the 2—20-year return period and decreased
sharply thereafter, indicating that the LID facilities were saturated during only the 20-50-
year return period under September rain pattern conditions. Because the average Septem-
ber rain intensity is also low, the decreasing trend of the volume reduction rate is also
smaller than the decreasing trends in other months.

For E2, as the return period increased, the peak and volume reduction rates tended
to first increase and then decrease in each month; these findings indicated that, under the
chi-squared rain pattern, the return periods at which the LID facilities became saturated
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varied according to the month. The critical point peak reduction rates of June, July, Au-
gust, and September were 10-20 years, 50-100 years, 10-20 years, and 50-100 years, respec-
tively. June and August are similar; the flood peaks and average rainfall intensities are
much higher in these months than in other months. July and September are similar; the
flood peaks and average rainfall intensities are much lower in these months than in other
months. Thus, regardless of similar total rainfall, greater peak and average rainfall inten-
sities are associated with an earlier return period at which the LID facilities become satu-
rated.

The peak E1 reduction rate is 13.8-31.3% and the volume reduction rate is 22.6-30.7%;
the peak E2 reduction rate is 25.6-30.9% and the volume reduction rate is 28.7-31.2%. The
El figures are smaller than the E2 figures, indicating that urban runoff accumulation
caused by natural extreme rainfall is greater under average rainfall conditions, while the
response of LID facilities is weaker (Figure 9).

Peak Reduction Volume Reduction

100 100

Return Period (years)
Return Period (years)
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Reduction Rate (%)

N 222 e

5 11 17 23 29 35

Figure 9. Extreme and average flood control analysis.
3.2.2 Different peak timing

Rainfall patterns analysis

E3-E6 are all single-peak rainfall types with equal total rainfall from June to Septem-
ber of the 2-100-year return periods; the only differences are in peak timing (peak coeffi-
cients of 0.2, 0.4, 0.6, and 0.8, respectively). Thus, the intensity of the Chicago rainfall pat-
tern is lower than the intensity of the natural extreme rainfall pattern. Compared to E1,
the PEAK BIAS values of E3-E6 were minus 56-62%, minus 60-65%, minus 52-60%, and
plus 30-50% in June-to-September, respectively; the average BIAS values were minus 50-
59%, 28-53%, minus 38-47%, and minus 53-59% (Figure 10, Tables 7 and 8).

Figure 10. Different peak timing rainfall patterns analysis.

Table 7. PEAK BIAS and Average BIAS for E1, E3, E4, E5, and E6
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Months JUN JUL AUG SEP
PEAK-BIAS (%)  [-62,-56] [-65,-60] [-52,-60] [30, 50]
Average-BIAS (%) [-59,-50] [28,53] [-47,-38] [-59,-53]

Table 8. Different peak timing rainfall patterns analysis

Return period ) Peak Intensit Average Intensit
(YI; Duration (h) (mm/h) y (il m/h) y

JUN 2-100 14-17 22.4-56.7 7.0-15.1

JUL 2-100 15-18 20.7-55.1 6.6-14.3

AUG 2-100 13-15 24.8-54.2 7.6-17.1

SEP 2-100 19-22 19.2-49.8 5.2-11.7

Experiments Month

E3-E6

Flood control analysis

Considering the lags in flood time, the peak and volume reduction rates of E3-E6 all
exhibit decreasing trends for return periods greater than 10 years. Thus, at the longer
times, the LIDs are saturated at a peak coefficient of 0.2; with increasing lag in flood time,
the ability of LID facilities to cope becomes increasingly weaker. The peak reduction rates
of E3-E6 are 24.4-30.7% and the volume reduction rates are 28.0-31.3%. As the return pe-
riod increases, the reduction rate of E1 becomes smaller than the reduction rate of E3-Eé6.
Thus, a larger return period (relative to the Chicago rainfall type conditions) is associated
with a larger difference between urban runoff accumulation caused by natural extreme
rainfall and accumulation caused by the Chicago rainfall type, as well as a weaker re-
sponse of the LID facilities (Figure 11).
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Figure 11. Different peak timing flood control analysis.
3.3 Effect of multi peak

Rainfall patterns analysis

E7, E8, and E9 are 2-100-year return period June-to-September multi-peak rainfall
patterns with equal total rainfall. The rainfall frequency and average rain intensity are
similar for each month; E7-E9 differ in peak numbers and flood rain intensities. E8 is the
uniform double-peaked rainfall of the Chicago rain pattern, while E9 is the uniform multi-
peaked rainfall of the Chicago rain pattern. The peak intensity is E7 > E8 > E9. In addition,
the PEAK BIAS values of E8 over E7 were minus 45%, minus 51%, minus 47%, and minus
7% in June to September, respectively; the PEAK BIAS values of E9 over E7 were minus
57%, minus 58%, minus 43%, and minus 27% in those months (Figure 12, Tables 9 and 10).
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Figure 12. Multi peak rainfall patterns analysis
Table 9. PEAK BIAS for E7, E8, and E9
PEAK-BIAS JUN JUL AUG SEP
E7 & E8 -45 51 -47 -7
E7 & E9 -57 58  -43 -27
Table 10. Multi peak rainfall patterns analysis
Experiments Month Return period Duration (h) Peak Intensity Average Intensity
(y) (mm/h) (mm/h)
JUN 2-100 19 27.0-70.4 5.2-13.5
E7 JUL 2-100 21 29.0-75.7 4.7-12.2
AUG 2-100 16 23.7-62.0 6.2-16.1
SEP 2-100 23 14.6-38.1 4.3-11.2
JUN 2-100 19 15.0-39.1 5.2-13.5
E8 JUL 2-100 21 14.1-36.9 4.7-12.2
AUG 2-100 16 12.6-33.0 6.2-16.1
SEP 2-100 23 13.6-35.5 4.3-11.2
JUN 2-100 19 11.7-30.5 52-13.5
E9 JUL 2-100 21 12.1-31.5 4.7-12.2
AUG 2-100 16 13.6-35.6 6.2-16.1
SEP 2-100 23 10.7-28.0 4.3-11.2

Flood control analysis

For E7, the peak reduction rate increases with increasing return periods in June and
August; thus, when peaks are more than 10 h apart, they exhibit minimal interaction and
the LID facilities are not saturated. In July, the peak reduction rate begins to decrease at
return periods of 5-10 years because the July flood peaks are only 1 h apart and the peak
rain intensity is highest in that month. In September, the peak reduction rate also begins
to decrease after return periods of 5-10 years; this reduction is less than in July because
there are more continuous flood peaks in September. For E8, the peak reduction and vol-
ume reduction rates first increase, and then decrease; the LID saturation thresholds in
June and September both occur at return periods of 10-20 years. The volume reduction
rates differ slightly; the July threshold has a return period of 10-20 years, while the other
months have return periods of 5-10 years. For E9, the saturation thresholds for the LID
facilities at the reduced peak rates all occurred in the 50-100-year return periods, while
the saturation thresholds for LID facilities of reduced capacity occurred at the 5-10-year
return periods.

The peak E7 reduction rate is 14.5-30.4% and the volume reduction rate is 26.1-30.9%;
the peak E8 reduction rate is 21.6-31.0% and the volume reduction rate is 27.0-31.0%; the
peak E9 reduction rate is 19.9-29.8% and the volume reduction rate is 24.9-30.9%. A com-
parison of E8 and E9 revealed that a higher number of wave peaks was associated with
lower flood rainfall intensity, as well as smaller peak and volume reduction rates. The
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difference in urban runoff caused by natural extreme rainfall and Chicago rain type uni-
form multi-peak rainfall under multi-peak conditions is not substantial, except under par-
ticularly extreme conditions, such as when flood peaks are very close in July and the flood
rain intensity is maximal, with a return period of 100 years (Figure 13).
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Figure 13. Effect of multi peak flood control analysis

4. Conclusion

We studied the Mianyang Sponge City of Sichuan Province. We used different return
periods and rain types (historical, chi-squared, and Chicago rain types) to evaluate the
effects of LID measures on peak reduction from both single- and multi-peak perspectives;
we validated our model using water balance and remote sensing techniques. Our princi-
pal conclusions were:

(1) The model underestimates hourly runoff over large areas by approximately 13%,
as verified by water balancing and remote sensing. The simulated runoff trend was
strongly correlated with the satellite observations.

(2) The flood peak and mean rainfall intensities were generally larger for single-peak
historical rainfalls than for the chi-squared rain pattern; the difference in bias was sub-
stantial, except for the peak bias in September (long continuous rainfall). The peak and
average rainfall intensities were also generally lower for the single-peak Chicago rainfall
type than for the single-peak historical rainfall; the peak and average biases were equally
large. The multi-peak historical rainfall pattern was identical to the multi-peak Chicago
pattern, but the flood rainfall intensity was generally larger in the multi-peak historical
pattern than in the multi-peak Chicago rainfall pattern.

(3) Simulation revealed that the ability of LID facilities to control flood peaks and
volumes was weaker under the single-peak chi-squared rainfall pattern than under the
historical rainfall pattern. Control became weaker as the flood peaks became closer. For
multi-peak rainfall, the difference in urban runoff caused by natural extreme rainfall and
the uniform multi-peak rainfall of the Chicago rain type was not substantial; the ability of
LID facilities to control flood peaks and volumes became progressively weaker as the av-
erage wave peak increased.

In contrast to the natural extreme rainfall rain patterns, artificial rain patterns over-
estimate the ability of LID facilities to control flood peaks and flood volumes. During
sponge city design, LID facilities should be optimally placed with reference to local to-
pography and both spatial and temporal rainfall characteristics to ensure effective flood
control.
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