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Abstract: Urban floods is a typical urban disaster that threaten the economy and development of 

cities. Sponge cities can improve the flood resistance ability and reduce the floods by setting low-

impact development measures (LID). Evaluating the floods reduction benefits is the basic link in the 

construction of sponge cities. Therefore, it is of great significance to evaluate the benefits of sponge 

cities from the perspective of different rain patterns. In this study, we investigated the urban runoff 

of various rainfall patterns in Mianyang city using the Strom Water Management Model (SWMM). 

We employed 2–100-year return periods and three different temporal rainfall downscaling methods 

to evaluate rain patterns and simulate urban runoff in Mianyang, with and without the implemen-

tation of sponge city measures. After calibration, model performance was validated using multi-

source data concerning flood peaks and inter-annual variations in flood magnitude. Notably, the 

effects of peak rainfall patterns on historical floods were generally greater than the effects of syn-

thetic rainfalls generated by temporal downscaling. Compared to the rainfall patterns of historical 

flood events, the flood protection capacities of sponge cities tended to be overestimated when using 

the synthetic rainfall patterns generated by temporal downscaling. Overall, an earlier flood peak 

was associated with better flood sponge city protection capacity. 

Keywords: SWMM, Low-impact development, Satellite observations, Temporal downscaling. 

 

1. Introduction 

Urbanization has greatly increased in the past century. As of 2011, the global urban-

ization rate was 52.1%; it will attain 67.2% by 2050 [1]. The proportions of populations 

affected by floods are also increasing [2]. China is one of the world’s most urbanized coun-

tries; this urbanization is expected to become more pronounced [3]. Heavy rains and 

floods compromise urban health. Often, the drainage system is old, while new urban areas 

have changed the original runoff pattern; moreover, the population is concentrated, ren-

dering flooding and waterlogging problems increasingly serious. In recent years, water-

logging has become more common [4]. In 2012, heavy rain on 20 July in Beijing caused 

10,660 houses to collapse; 1.602 million people were affected and the direct economic loss 

exceeded 11.64 billion RMB [5]. In 2016, a rainstorm on 6 July in Wuhan affected 757,000 

people and caused direct economic losses of 2.27 billion RMB [6]. In 2020, heavy rain on 

22 May in Guangzhou caused suspension of the subway and great economic losses [7]. In 

July 2021, Zhengzhou (Henan) was affected by a severe rainstorm that killed 51 people 

and caused direct economic loss of RMB 65.5 billion [8]. Urban flooding has become 

chronic in Chinese cities, severely restricting development. It is important to strengthen 

research concerning urban rainstorms and waterlogging, while developing prevention 

and mitigation measures [9]. 

Urban flooding is caused by urban construction that expands impervious surfaces 

and thus reduces the area available for water retention; stormwater runoff exceeds the 
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drainage capacity [10,11]. Flooding is sudden (caused by local heavy rain during strongly 

convective weather), socially impactful (causing major loss of life and property, as well as 

social unrest), and chaining (damaging the entire drainage system via flooding of key 

points or key surfaces). It is difficult to study urban flooding in an experimental manner. 

Urban storm/flood simulations provide the scientific basis for flood control. The models 

include the Strom Water Management Model (SWMM), MIKE SHE, Soil and Water As-

sessment Tool (SWAT), and the Institute of Hydrology Distributed Model (IHDM). For 

example, Merhawi et al. simulated urban flood inundation and recession affected by man-

holes [12], while Wu, et al. [13] simulated urban flooding by coupling the SWMM and 

LISFLOOD-FP; Bai et al. [10] used the SWMM to study low-impact development (LID). 

Although simulation is efficient, its reliability depends on accurate data from local hydro-

logical monitoring stations. There is only one verification method; this lacks versatility. 

Remote sensing technology detects targets at great distances; it efficiently yields accurate 

hydrological data. Recently, remote sensing has been used to monitor floods in small river 

basins and to plan water resource allocation, however, it has seldom been used to study 

urban flood management. The satellite data are verified by ground hydrological stations, 

which maximizes accuracy and reliability [14]. Therefore, methods based on multi-source 

observations should be considered. 

To effectively control and mitigate urban flooding, in December 2013, Chinese Pres-

ident Xi Jinping launched the concept of sponge cities to comprehensively address water 

scarcity and pollution, as well as urban flooding [15-17]. Sponge cities are similar to the 

LID concept in the United States [18]. Runoff and pollution caused by heavy rain are man-

aged via decentralized, small-scale control mechanisms; the destructive impacts of devel-

opment on hydrological conditions are mitigated. Developers have key roles in urban 

flood control in China because they are responsible for urban rainwater flood manage-

ment; this responsibility is a key Chinese policy [19]. Thirty pilot sponge cities were ap-

proved in 2015; great progress has been made in terms of urban flood control, but the 

specific construction measures are not yet fully defined. Sponging must be quantified dur-

ing planning and before construction.  

How to quantify the benefits of sponge cities has always been a hot and difficult issue 

in research. Shao et al. quantified the impact of urbanization on flooding [20]. Simth et al. 

studied the hydrological response spectrum during storms in urban watersheds [21]. Fu 

et al. studied the impact of permeable paving in an LID area on stormwater runoff [22]. 

Zhang et al. studied the outcomes of green infrastructure [23]. Feng et al. studied the effects 

of LID measures on peak flood reductions according to return period [24]. However, the 

rainfall data used in most studies is a single Chicago rain pattern, and the relevant char-

acteristics of actual rainfall include rain intensity, peak occurrence time, number of peaks, 

etc., a single rain pattern lacks reliability, the effect of different rain patterns (peak occur-

rence time, rain intensity, and duration) on peak flood reduction in sponge cities needs to 

be further confirmed, and the different characteristics of these rain patterns can trigger 

different degrees of urban flooding. The study of the effects of different rain patterns on 

the flood control capacity of sponge cities will help to have subsequent decisions on 

sponge city construction and is important for improving the technology and layout of 

sponge city projects.  

Furthermore, how to validate the urban-scale rainfall flood management models is 

also challenging, because the surface hydrological data are often lacking. Li et al. used the 

average runoff pollution level to explore water quality [25]. Zhao et al. converted simulated 

runoffs to water depths and compared them with the depths of submersion [26]. Although 

both methods directly or indirectly measured urban water quantity, inter-annual varia-

tion was not considered. The satellite imagery-based hydrological model established by 

Mark et al. accurately measures observed flows [27]. Multi-source validation improves the 

accuracy of hydrological model; combinations of satellite observations with water balance 

measures should be considered. 

Mianyang is located in the middle reaches of the Fujiang River, one of the main trib-

utaries of the Yangtze River, in the middle of the city near the confluence of the Fujiang 
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River and the Anchang River. Although Mianyang is not a pilot sponge city in China, it 

has been selected as a "Science and Technology City" and is a local government supported 

by the Sichuan government for sponge city construction. The city has a warm and humid 

subtropical monsoon climate. The average annual temperature is 14.7-17.3 °C with an av-

erage annual precipitation of 826-1417mm. The number of rainfall days is 195, the rainy 

season is mainly concentrated in June to September, and it is prone to short duration and 

high intensity rainstorm events. Urbanization has increased the likelihood of heavy rain-

fall occurring in central urban areas, such as the 7.23 mega-storm in Mianyang in 2010 and 

the 8.22 mega-storm in Mianyang in 2018, with most of the storm centers located in central 

urban areas of Mianyang. 

In order to investigate the benefits of sponge city under different rain patterns to 

flood control, this study takes Mianyang city of Sichuan province as an example, simulates 

flood runoff under different rain patterns using SWMM, constructs a sponge city LID 

model according to Mianyang city sponge city planning, and rates and verifies the model 

by studying the sponge city flood control effect and rainfall process in different return 

periods and using satellite technology and water balance equation. The objectives of this 

study are 1) To establish an urban flood simulation model applicable to Mianyang city 2) 

To compare the benefits of sponge cities under different rainfall types. The aim is to pro-

vide a reference for urban scale rainfall and flood management models.  

2. Materials and Methods 

We collected hydrological, pipe network, and subsurface data regarding central 

Mianyang. We then constructed an SWMM to simulate actual runoff conditions; we cali-

brated and validated the model using two different methods. Rainfall data for different 

return periods were processed using three different temporal downscaling methods to 

assess the impacts of different patterns on the flood control capacities of sponge cities. The 

principal steps were (Figure 1): 

(1) Database construction 

The hydrological data include precipitation, evaporation, and river flows; the pipe 

network data were collected from a drainage map provided by the local government, 

while the subsurface data were land use and topography. 

(2) Model validation 

The SWMM outputs were converted into runoff depths and the water balance 

method was used to quantify floods. Passive microwave remote sensing was employed to 

measure surface inundation; the data were used to define the dynamic trends of historical 

floods. 

(3) Rainfall temporal downscaling 

Three different downscaling methods were used to obtain rainfall patterns at differ-

ent rainfall intensities, along with flood coefficients and numbers to evaluate their effects 

on the flood control capacity of sponge cities.  

(4) Sponge City Simulation 

The impact of four LID combinations on the runoff control in the central city of Mian-

yang was simulated in conjunction with the sponge city planning of Mianyang. 

(5) Assessment of Flood Reduction Effect  

Flood peak and volume are used as output variables to compare and analyze the 

abatement effect of sponge cities on urban flooding under the action of different return 

periods and different rain patterns. The flow chart is shown in Figure 1. 
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* Chi-2, Chi-squared probability distribution rainfall patterns; Chicago, Chicago design storm; His, Historical patterns; LID, Low-impact development; GRs, Green 

roofs; PP, Permeable pavement; RGs, Rain gardens; RBs, Rain barrels; 

Figure 1. Flowchart of assessment of Sponge City Flood Control capacity based on multi-source 

validation and depends on different rainfall patterns. 

2.1 Study area 

This study is about the central city of Mianyang City, Sichuan Province, which in-

cludes Fucheng District and Youxian District of Mianyang City, with an area of 209.2 km2 

and a population of about 4.8 million, and the population of the central city is about 1.8 

million. The topography is high in the north and low in the south, high in the east and 

west and low in the middle, with Fujiang River (from northeast to southwest), Anchang 

River (from west to east) and Furong Creek (from east to west). The average slope in the 

region is 6.5%, and the maximum slope is 10.3%, with a large area of shallow hills and 

more obvious slope changes, and is distributed in strips. 

2.2 Database 

The hourly rainfall observations and river flows were collected from the Sichuan hy-

drological business platform [Fujiangqiao Station (2015-2020)]; the daily rainfall records 

were collected from the Global Surface Summary of the Day [GSSD (1973-2017)]; and the 

monthly evaporation data were collected from the Mianyang Meteorological Bureau 

(2015-2020). The geographical features (areas, widths, slopes, shapes, lengths, and offset 

heights) of all sub-catchments were collected from the Advanced Spaceborne Thermal 

Emission and Reflection Radiometer (ASTER-GDEM) 30-m resolution digital topography 

GIS database. The land use map was based on a satellite image of Sentinel-2B (MSI Level-

1C; 10-m spatial resolution; acquired July 11, 2017) that was subjected to supervised image 

classification. The land use types were water, reservoir, forest, building, road, cropland, 

and grassland; the areal percentages of impervious regions in each sub-catchment were 

calculated based on the map. The pipe network was simplified from the map for down-

town Mianyang (2017). The SSM/I data were provided by the National Ice and Snow Data 
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Center in the form of cylindrical EASE-Grid projections with a resolution of 25 km, 

resampled to 0.25°. The details are shown in Table 1. 

 

Figure 2. Location map of study area, Central part of Mianyang City. 

Table 1. Data list for SWMM and validation 

Item Data Source etc. 
Function/Derived features/parame-

ters 

Precipitation 

GSSD (Daily 1973-2017) 

Fujiangqiao Rain-gauge (Hourly 

2015-2020) 

Time Series, Validation 

Evaporation 
Mianyang Weather station (Monthly 

2015-2020) 
Monthly Evaporation 

Discharge 
4 Hydrological stations (Hourly 

2000-2020) 
Validation 

Topography 
ASTER-GDEM (30 m resolution dig-

ital elv. ) 
Flow direction, Slope (gradient) 

Land use Sentinel-2B (10 m resolution) 
Manning Coeff., Permeability, Un-

derlying surface, Green cover 

Pipe Network Printed map of pipe network 
Connection between each sub-catch-

ment 

Satellite Data SSM/I (25 km 1991-2020） Validation 

2.3 Configuration of the urban runoff model  

The SWMM was used to simulate the impacts of climate change and urbanization on 

flood control, assuming that LID practices were in effect. We used the SWMM for Mian-

yang City of Li, et al. [28]. The study area (209.2 km2) was divided into 52 sub-catchments 

based on topography, the pipe network, community boundaries, land use, the underlying 

surface, slope direction, and extent of green cover. Rainfall runoff was simulated at 15-

min intervals. Certain sensitive model parameters (depression storage in impervious ar-

eas and infiltration parameters) were based on the flooding data for 2010. We confirmed 

that the calibrated model reasonably simulated urban runoff. In the model, each sub-

catchment is conceptualized as a rectangular surface with a uniform slope s and width W. 

The water balance and surface runoff are calculated as follows [29]: 
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dV

dt
 = A

dh

dt
 = Ars - Q                                                               (1) 

Q = W
1

n
(h - hp)5/3s1/2                                                              (2) 

where V, A, and h are the storage volume, storage area, and water depth of the sub-

catchment, respectively; rs is the surface runoff rate (calculated from the precipitation, 

evaporation, and infiltration); Q is the slope outflow rate; n is the Manning roughness 

coefficient; and hp is the depression storage depth. Each sub-catchment featured imper-

meable areas (road or urban land-use types) and permeable areas (forest, cropland, bare 

land, or water bodies); infiltration in permeable areas was calculated using the Horton 

equation. The parameters n and hp are given for each land-use type; these parameters were 

then weight-averaged over the impermeable and permeable areas (depending on their 

proportions). Then, the ratio of n, and hp for impermeable and permeable areas are as-

signed to each sub-catchment as model parameters.  

2.4 Multi-source validation 

Two different methods were used to validate and calibrate the parameters set by 

SWWM, One method is to construct the water balance equation from the ground hydro-

logical station observation data and use the runoff depth as the standard to verify the 

model simulated runoff results, whose main advantage is to quantitatively verify the run-

off volume simulated by SWMM; another method is to detect surface flooding by passive 

microwave remote sensing and use the normalized difference frequency index (NDFI) to 

detect flooding, an NDFI is the detected presence of surface water sensitivity, which has 

the advantage of responding to the Inter-annual variation of the flood peak over time.  

2.4.1 Water balance for calibration 

Some sensitive model parameters were calibrated using data from a 2010 flood, as 

reported by Li et al. (2020). Considering the lack of flood discharge data for central Mian-

yang, the model parameters were calibrated based on the maximum discharge of the en-

tire study area in 2010, as inferred from a water balance calculation that included the sur-

rounding tributaries and river branches. The basic concept of a water balance calculation 

is shown in Figure 3 [29], the calculation steps are as follows: 

Rest = ∆Q (
Ac

∆A
)                                                                        (3) 

∆Q = Q
3
 - (Q

1 
+ Q

2
 + Q

4
)                                                             (4) 

∆A = A3 - (A1 + A2 + A4)                                                              (5) 

where Rest is the runoff from the target area, to be estimated by water balance calcu-

lation; Ac is area of the model domain, Q1, Q2 and Q3 are the peak flow at Fujiangqiao, 

Anchang and Fenggu gauging station respectively. The peak flow from branch Q4 is esti-

mated by assuming similar specific discharge of this branch to that of the Furongxi gaug-

ing station (Q1). Hence, Rest is estimated peak flow as 189.6 m3/s, and hereafter, this value 

is referred to as the “estimated runoff” and used as a reference for calibrating the model. 

The estimated runoff is also representing runoff generation from study area; central part 

of Mianyang city. 
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Figure 3. Schematics of water balance analysis [28]. 

2.4.2 Satellite observations for validation 

Passive microwave remote sensing effectively detects surface moisture and flooding. 

The 19- and and 22-GHz vertical and horizontal polarization channels, respectively, of the 

dedicated special sensor microwave imager (SSM/I) are sensitive to surface moisture and 

flooding because they are minimally affected by cloud interference; we used these data 

from 1991 to 2020 (provided by the National Snow and Ice Data Center) as equal-volume 

cylindrical EASE-Grid projections with a resolution of 25 km, resampled to 0.25° (i.e., the 

grid size of our analysis). The Normalized Difference Frequency Index (NDFI) is used to 

detect surface moisture and flooding. NDFI is a sensitivity index for detecting the presence 

of surface water [30,31] and is expressed as follows: 

NDFI = 
TB22V - TB19V

TB22V + TB19V

                                                               (6) 

where TB22V and TB19V are the brightness temperatures with vertical polarization at 

22 and 19 GHz, respectively. The maximum NDFI (NDFIm) at each pixel during summer 

was calculated for each year. 

Flood magnitude was quantified based on the deviation (anomaly) of the NDFIm 

from the long-term average for 2015-2020. Anomalies were calculated as follows. 

aNDFImyear = 
NDFImyear(x,y) - μ

NDFIm
(x,y)

σNDFIm(x,y)
                                       (7) 

where the subscript denotes the target year, x and y give the pixel location (longitude 

and latitude, respectively), NDFImyear (x, y) is the maximum NDFI over the June to Sep-

tember, and μNDFIm (x, y) and σNDFIm (x, y) are the multi-year (1991-2020) average and stand-

ard deviation of NFDIm (x, y), respectively. As aNDFIm become more positive for a given 

year, NDFIm increase markedly in that year compared to other years. Higher-anomaly 

regions experienced extraordinarily intense or high-volume surface flooding. We have ex-

tracted the NDFI data from Li, et al. [32]. 

2.5 Rainfall observation data and design rainfall scenarios 

Hourly rainfalls were obtained from the Fujiangqiao station of the Sichuan Water 

Business Platform; these data were combined with GSSD data to calculate the annual max-

imum daily rainfall intensities for different return periods, using the daily rainfall records 

from 1973 to 2017. The probability density function was normally distributed, and fre-

quency analysis was thus performed using the Rainbow packing tool [33]. Next, three 

different downscaling methods were used to generate hourly rainfall time series for runoff 

analysis of different return periods. 

2.5.1 Historical patterns 

The historical patterns are the maximum daily rainfalls for each month. The hourly 

rainfall time series of the eight maximum flood events from June to September 2015-2020 
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were separately analyzed; four were single-peak cases and the other four were multi-peak 

cases. 

2.5.2 Chi-squared probability distribution rainfall patterns 

The chi-squared probability distribution rainfall patterns were developed by Ye, et al. 

[34] and applied to flood simulation for Mianyang by Li et al. (2021a); they consider all 

rainfall fields in each month. The data were then input to the urban runoff simulation 

model. The temporal downscaling process is outlined in Figure 4. The temporal pattern 

of hourly rainfall is assumed to exhibit a chi-squared probability distribution (Eq. 10), and 

the peak intensity and duration of hourly rainfall are modeled as follows: 

T = α + β ln(P )                                                                 (8) 

P = a + b PA                                                                       (9) 

X2
(x : n) = {

x 0.5 n - 1 e - 0.5 x

 2 0.5 n Γ(0.5 n) 
  ,      x > 0

           0         ,      x ≤ 0
                                                 

(10) 

Γ(s) = ∫ t s - 1e - t
+∞

0
dt ,       s > 0                                                  (11) 

where T is the duration of precipitation (h); P is the total daily precipitation (mm); PA 

is the maximum precipitation intensity (mm/h); and α, β and a, b are model parameters. 

Because the degrees of freedom (n values) of the output varies with T, the shape of the 

chi-square distribution also varies with T through changes in n, as shown in Figure 4 and 

Table 2. Parameters α, β and a, b were calculated for each month, based on the hourly 

precipitation data recorded at the meteorological station in Fujiangqiao during the period 

2015–2020. With this downscaling method, PA and T are estimated based on P using Eqs. 

(8) and (9). The temporal pattern of hourly precipitation over time T is based on the chi-

squared distribution, but the peak intensity PA is not. Finally, the hourly precipitation time 

data (with the exception of PA ) were adjusted to ensure that the total precipitation over T 

was equal to P. 

 

Figure 4. Chi-square distribution probability density function plot [29].  

Table 2. The rainfall ephemeris corresponds to the degree of freedom [29] 

T [h] (1,8]* (8,11] (11,14] (14,16] (16,18] (18,24] 

n 3 4 5 6 7 8 
* (1, 8] : 1 < T ≤ 8. 

2.5.3 Chicago design storm 

The Chicago design storm is widely used when modeling rainfall scenarios for Chi-

nese sponge cities [35], the rainfall pattern is determined by Eqs (8) and (12). Considering 

the empirical storm equation provided by the local government of Mianyang, we em-

ployed the Chicago design storm as follows: 

i = 
5.28 ( 1 + 0.721 log P )

( t + 4.724 ) 0.501
                                                            (12) 
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where: i is the peak intensity of rainfall in mm/min; t is the rainfall calendar time in 

min; P is the return period of daily rainfall in years. 

First, the peak coefficients were defined as the ratios of the time of flood peaking to 

the total rainfall duration. Four single-peak rain types with different peak times were 

used, corresponding to rainfall peak coefficients of 0.2, 0.4, 0.6, and 0.8; six rainfall return 

periods of P = 1, 2, 5, 10, 20, 50, and 100 years were adopted. The rainfall pattens are shown 

in Figure 5. We used the same peak coefficient (0.5) for two multi-peak rain patterns (i.e., 

with two and three peaks); we employed six rainfall return periods. The process is shown 

in Figure 6. 

 

Figure 5. Single peak Chicago design storm by different peak coefficient. 

 

Figure 6. Multi-peak Chicago design storm by different peak coefficient. 

2.6 Planning of LID Measures for Sponge City in Mianyang City 

The Mianyang Sponge City Special Plan (2016) states that the following four LIDs 

will be installed: 

(1) Green rooves (GRs): vegetated soil above drainage mats that serve to convey 

stormwater [36].  

(2) Permeable pavement (PP): pavement of high porosity and permeability that al-

lows some rainwater through [37].  

(3) Rain gardens (RGs): water is retained in surface depressions filled with vegetated 

soil on a gravel storage bed [38].  

(4) Rain barrels (RBs): water tanks are used to capture runoff, typically via pipes from 

rooftops [39]. 

The areas and percentages of each LID facility (for the entire study area) are shown 

in Table 3. The RB unit is m3 but was converted to m2 by setting the rain barrel height to 
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1.0 m. The parameters were derived from design sheets, SWMM manuals, and other liter-

ature [40-42]. 

Table 3. Type of LIDs and Coverage 

Type of LIDs Green Roofs 

(GRs) 

Permeable Pavement 

(PP)  

Rain Gardens 

(RGs) 

Rain Barrels 

(RBs) 

Description 

  
  

Area (km2) 9.95 24.50 27.12 3.11 

Ratio (%) 4.76 11.71 12.96 1.49 

2.7 Experimental design 

Rainfall may exhibit one or more peaks. The single-peak falls are divided into two 

groups that differ in terms of intensities and peak coefficients; the multi-peak falls are 

divided into two groups that differ in terms of rainfall intensities and peak numbers. The 

groupings are shown in Table 4; the design precipitation levels for 2, 5, 10, 20, 50 and 100-

year return periods were considered first. Each experiment was repeated 24 times based 

on the different return periods for the months of June to September inclusive. 

Table4. Experimental design 

Experiments Peak types 
Number of 

Peaks 

Peak coeffi-

cients 
Methods 

E1 Single 1 0.3--0.7 His 

E2 Single 1 0.2--0.3 Chi-2 

E3 Single 1 0.2 Chicago 

E4 Single 1 0.4 Chicago 

E5 Single 1 0.6 Chicago 

E6 Single 1 0.8 Chicago 

E7 Multi 2--4 0.2—1 His 

E8 Multi 2 0.5 Chicago 

E9 Multi 3 0.3 Chicago 

 

The specific description of the experimental group is as follows  

(1) Single-peak Extreme rainfall (E1-2) 

The E1 single peak historical patterns served as the June-to-September single-peak 

extreme rainfall scenario. In E2, the chi-squared probability distribution of single-peak 

rainfall pattern was employed; this is the June-to-September average rainfall. 

(2) Single-peak Peak coefficients (E3-6) 

In E3-6, the Chicago design storm single-peak rainfall patterns created by weather 

generator [33] were used; these are the flood peaks with coefficients of 0.2, 0.4, 0.6, and 0.8 

from June to September. 

(3) Multi-peak (E7-9) 

In E7, an historical multi-peaked rainfall rain pattern was used; this is the June-to-

September multi-peak extreme rainfall scenario. In E8, the Chicago design storm multi-

peak rainfall pattern created by the weather generator was used to represent the June-to-

September average double-peak rainfall pattern when the average number of peaks was 

2. In E9, the Chicago design storm multi-peak rainfall rain pattern created by the weather 

generator was also used; the mean peak number was 3 for June-to-September. 

In all experiments, urban runoff simulations were performed when LID practices 

were and were not implemented. The effects of LIDs on flood control were assessed by 

Surface
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Drain

Overflow
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Soil

Storage

Precip. Evap.
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calculating the “reduction rates” of flood peak and volume; each rate is the difference in 

flood peak or volume between the presence and absence of the LID initiatives. 

3. Results and Discussion 

3.1 Validation 

3.1.1 Water balance 

Model reliability was quantitatively assessed using the runoff depth derived via wa-

ter balancing, although the simulated annual maximum discharge Rcal of the model using 

the default parameters (156.7 m3/s) was underestimated by 17% compared to the esti-

mated runoff. However, the model reasonably yielded discharge outputs from rainfall 

inputs. To improve model performance, a (sensitive) parameter (the depth of depression 

storage in impervious areas) and the infiltration parameters were re-evaluated (i.e., cali-

brated) to reduce the difference between Rcal and Rest. The sensitive parameters were 

identified via literature review [43] and used for preliminary model simulation (parame-

ter sensitivity analysis). Rcal became 164.9 m3/s (a 13% underestimate) after parameter 

calibration. 

3.1.2 Satellite observations 

Simulation reasonably represented both the flood peak for a specific flood event (in 

2010, validated by the water balance) and the differences in flood magnitudes. After sen-

sitive parameters had been determined using the water balance equation, remote sensing 

data were introduced to further evaluate accuracy and reliability. The results are shown 

in Figure 7. When comparing the annual maximum flood events aNDFImyear and the 

simulated discharge of the no-LID SWMM CASE in 2015-2020, the inter-annual variation 

correlation coefficient was strong (0.6); the SWMM simulations were consistent with the 

satellite data.  

 

Figure 7. Annual maximum flood events aNDFImyear and simulated discharge. 

3.2 Effect of single peak 

3.2.1 Extreme and average conditions 

Rainfall patterns analysis 

Both E1 and E2 have return periods of 2-100 years and consider the June-to-Septem-

ber single-peak rainfalls; the rainfalls were equal except in July (where the rainfall dura-

tion was less in E1 than in E2, indicating that the average rainfall intensity was greater in 

E1 than in E2). The principal reason for the difference between July and other months is 

that the rainfall duration of the field representing the extremes in July is long and the 

rainfall distribution is extremely uneven. However, the flood rainfall intensity is generally 

greater in E1 than in E2, consistent with the concept that E1 represents monthly extreme 

rainfall and E2 represents monthly average rainfall. Notably, the flood rainfall intensity is 
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slightly greater in E2 than in E1 during the 2–20-year return periods because of the gener-

ally long duration and low intensity of rainfall in September. The PEAK BIAS was defined 

as the difference in rainfall peak intensities. The average BIAS was the experimental dif-

ference in average rainfall intensities. The PEAK BIAS values of E2 compared to E1 in 

June-to-September were minus 33-34%, minus 65-66%, minus 36-38%, and plus 5-9%, re-

spectively. The average BIAS values were minus 50-59%, plus 28-53%, minus 38-47%, and 

minus 53-59% in June-to-September, respectively (Figure 8, Tables 5 and 6). 

 

Figure 8. Extreme and average rainfall patterns analysis. 

Table 5. PEAK BIAS and Average BIAS for E1 and E2 

Months JUN JUL AUG SEP 

PEAK-BIAS (%) [-34, -33] [-66, -65] [-38, -36] [5, 9] 

Average-BIAS (%) [-59, -50] [28, 53] [-47, -38] [-59, -53] 

Table 6. Extreme and average rainfall patterns analysis 

Experiments Month 
Return period 

(y) 
Duration (h) 

Peak Intensity 

(mm/h) 

Average Intensity 

(mm/h) 

E1 

JUN 2-100 7 54.0-140.9 14.1-36.7 

JUL 2-100 23 59.6-155.6 4.3-11.2 

AUG 2-100 8 51.7-134.9 12.3-32.1 

SEP 2-100 9 13.9-36.2 10.9-28.6 

E2 

JUN 2-100 14-17 35.9-92.6 7.0-15.1 

JUL 2-100 15-18 20.6-48.2 6.6-14.3 

AUG 2-100 13-15 33.2-83.6 7.6-17.1 

SEP 2-100 19-22 15.2-38.0 5.2-11.7 

Flood control analysis 

The experimental peak reduction rate was the peak difference between the LID and 

no-LID cases divided by the peak of the no-LID case; the volume reduction rate was the 

total volume difference between the LID and no-LID case divided by the total volume of 

the no-LID case. For E1, the peak and volume reduction rates exhibited decreasing trends 

in all months as the return period increased. Thus, under the rain pattern of monthly ex-

treme rainfall, the LID facilities became saturated within the 2-year return period. As rain-

fall increased, the LID facilities could not manage the excess. Importantly, September ex-

hibits a long rainfall duration but a low flood rain intensity; accordingly, the peak reduc-

tion rate in September increased slowly during the 2–20-year return period and decreased 

sharply thereafter, indicating that the LID facilities were saturated during only the 20–50-

year return period under September rain pattern conditions. Because the average Septem-

ber rain intensity is also low, the decreasing trend of the volume reduction rate is also 

smaller than the decreasing trends in other months. 

For E2, as the return period increased, the peak and volume reduction rates tended 

to first increase and then decrease in each month; these findings indicated that, under the 

chi-squared rain pattern, the return periods at which the LID facilities became saturated 
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varied according to the month. The critical point peak reduction rates of June, July, Au-

gust, and September were 10-20 years, 50-100 years, 10-20 years, and 50-100 years, respec-

tively. June and August are similar; the flood peaks and average rainfall intensities are 

much higher in these months than in other months. July and September are similar; the 

flood peaks and average rainfall intensities are much lower in these months than in other 

months. Thus, regardless of similar total rainfall, greater peak and average rainfall inten-

sities are associated with an earlier return period at which the LID facilities become satu-

rated. 

The peak E1 reduction rate is 13.8-31.3% and the volume reduction rate is 22.6-30.7%; 

the peak E2 reduction rate is 25.6-30.9% and the volume reduction rate is 28.7-31.2%. The 

E1 figures are smaller than the E2 figures, indicating that urban runoff accumulation 

caused by natural extreme rainfall is greater under average rainfall conditions, while the 

response of LID facilities is weaker (Figure 9). 

 

Figure 9. Extreme and average flood control analysis. 

3.2.2 Different peak timing 

Rainfall patterns analysis 

E3-E6 are all single-peak rainfall types with equal total rainfall from June to Septem-

ber of the 2–100-year return periods; the only differences are in peak timing (peak coeffi-

cients of 0.2, 0.4, 0.6, and 0.8, respectively). Thus, the intensity of the Chicago rainfall pat-

tern is lower than the intensity of the natural extreme rainfall pattern. Compared to E1, 

the PEAK BIAS values of E3-E6 were minus 56-62%, minus 60-65%, minus 52-60%, and 

plus 30-50% in June-to-September, respectively; the average BIAS values were minus 50-

59%, 28-53%, minus 38-47%, and minus 53-59% (Figure 10, Tables 7 and 8). 

 

Figure 10. Different peak timing rainfall patterns analysis. 

Table 7. PEAK BIAS and Average BIAS for E1, E3, E4, E5, and E6 
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Months JUN JUL AUG SEP 

PEAK-BIAS (%) [-62, -56] [-65, -60] [-52, -60] [30, 50] 

Average-BIAS (%) [-59, -50] [28, 53] [-47, -38] [-59, -53] 

Table 8. Different peak timing rainfall patterns analysis 

Experiments Month 
Return period 

(y) 
Duration (h) 

Peak Intensity 

(mm/h) 

Average Intensity 

(mm/h) 

E3-E6 

JUN 2-100 14-17 22.4-56.7 7.0-15.1 

JUL 2-100 15-18 20.7-55.1 6.6-14.3 

AUG 2-100 13-15 24.8-54.2 7.6-17.1 

SEP 2-100 19-22 19.2-49.8 5.2-11.7 

Flood control analysis 

Considering the lags in flood time, the peak and volume reduction rates of E3-E6 all 

exhibit decreasing trends for return periods greater than 10 years. Thus, at the longer 

times, the LIDs are saturated at a peak coefficient of 0.2; with increasing lag in flood time, 

the ability of LID facilities to cope becomes increasingly weaker. The peak reduction rates 

of E3-E6 are 24.4-30.7% and the volume reduction rates are 28.0-31.3%. As the return pe-

riod increases, the reduction rate of E1 becomes smaller than the reduction rate of E3-E6. 

Thus, a larger return period (relative to the Chicago rainfall type conditions) is associated 

with a larger difference between urban runoff accumulation caused by natural extreme 

rainfall and accumulation caused by the Chicago rainfall type, as well as a weaker re-

sponse of the LID facilities (Figure 11). 

 

Figure 11. Different peak timing flood control analysis. 

3.3 Effect of multi peak 

Rainfall patterns analysis 

E7, E8, and E9 are 2–100-year return period June-to-September multi-peak rainfall 

patterns with equal total rainfall. The rainfall frequency and average rain intensity are 

similar for each month; E7-E9 differ in peak numbers and flood rain intensities. E8 is the 

uniform double-peaked rainfall of the Chicago rain pattern, while E9 is the uniform multi-

peaked rainfall of the Chicago rain pattern. The peak intensity is E7 > E8 > E9. In addition, 

the PEAK BIAS values of E8 over E7 were minus 45%, minus 51%, minus 47%, and minus 

7% in June to September, respectively; the PEAK BIAS values of E9 over E7 were minus 

57%, minus 58%, minus 43%, and minus 27% in those months (Figure 12, Tables 9 and 10). 
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Figure 12. Multi peak rainfall patterns analysis 

Table 9. PEAK BIAS for E7, E8, and E9 

PEAK-BIAS JUN JUL AUG SEP 

E7 & E8 -45 -51 -47 -7 

E7 & E9 -57 -58 -43 -27 

Table 10. Multi peak rainfall patterns analysis 

Experiments Month 
Return period 

(y) 
Duration (h) 

Peak Intensity 

(mm/h) 

Average Intensity 

(mm/h) 

E7 

JUN 2-100 19 27.0-70.4 5.2-13.5 

JUL 2-100 21 29.0-75.7 4.7-12.2 

AUG 2-100 16 23.7-62.0 6.2-16.1 

SEP 2-100 23 14.6-38.1 4.3-11.2 

E8 

JUN 2-100 19 15.0-39.1 5.2-13.5 

JUL 2-100 21 14.1-36.9 4.7-12.2 

AUG 2-100 16 12.6-33.0 6.2-16.1 

SEP 2-100 23 13.6-35.5 4.3-11.2 

E9 

JUN 2-100 19 11.7-30.5 5.2-13.5 

JUL 2-100 21 12.1-31.5 4.7-12.2 

AUG 2-100 16 13.6-35.6 6.2-16.1 

SEP 2-100 23 10.7-28.0 4.3-11.2 

Flood control analysis 

For E7, the peak reduction rate increases with increasing return periods in June and 

August; thus, when peaks are more than 10 h apart, they exhibit minimal interaction and 

the LID facilities are not saturated. In July, the peak reduction rate begins to decrease at 

return periods of 5-10 years because the July flood peaks are only 1 h apart and the peak 

rain intensity is highest in that month. In September, the peak reduction rate also begins 

to decrease after return periods of 5-10 years; this reduction is less than in July because 

there are more continuous flood peaks in September. For E8, the peak reduction and vol-

ume reduction rates first increase, and then decrease; the LID saturation thresholds in 

June and September both occur at return periods of 10-20 years. The volume reduction 

rates differ slightly; the July threshold has a return period of 10-20 years, while the other 

months have return periods of 5-10 years. For E9, the saturation thresholds for the LID 

facilities at the reduced peak rates all occurred in the 50–100-year return periods, while 

the saturation thresholds for LID facilities of reduced capacity occurred at the 5–10-year 

return periods. 

The peak E7 reduction rate is 14.5-30.4% and the volume reduction rate is 26.1-30.9%; 

the peak E8 reduction rate is 21.6-31.0% and the volume reduction rate is 27.0-31.0%; the 

peak E9 reduction rate is 19.9-29.8% and the volume reduction rate is 24.9-30.9%. A com-

parison of E8 and E9 revealed that a higher number of wave peaks was associated with 

lower flood rainfall intensity, as well as smaller peak and volume reduction rates. The 
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difference in urban runoff caused by natural extreme rainfall and Chicago rain type uni-

form multi-peak rainfall under multi-peak conditions is not substantial, except under par-

ticularly extreme conditions, such as when flood peaks are very close in July and the flood 

rain intensity is maximal, with a return period of 100 years (Figure 13). 

 

Figure 13. Effect of multi peak flood control analysis 

4. Conclusion 

We studied the Mianyang Sponge City of Sichuan Province. We used different return 

periods and rain types (historical, chi-squared, and Chicago rain types) to evaluate the 

effects of LID measures on peak reduction from both single- and multi-peak perspectives; 

we validated our model using water balance and remote sensing techniques. Our princi-

pal conclusions were: 

(1) The model underestimates hourly runoff over large areas by approximately 13%, 

as verified by water balancing and remote sensing. The simulated runoff trend was 

strongly correlated with the satellite observations. 

(2) The flood peak and mean rainfall intensities were generally larger for single-peak 

historical rainfalls than for the chi-squared rain pattern; the difference in bias was sub-

stantial, except for the peak bias in September (long continuous rainfall). The peak and 

average rainfall intensities were also generally lower for the single-peak Chicago rainfall 

type than for the single-peak historical rainfall; the peak and average biases were equally 

large. The multi-peak historical rainfall pattern was identical to the multi-peak Chicago 

pattern, but the flood rainfall intensity was generally larger in the multi-peak historical 

pattern than in the multi-peak Chicago rainfall pattern. 

(3) Simulation revealed that the ability of LID facilities to control flood peaks and 

volumes was weaker under the single-peak chi-squared rainfall pattern than under the 

historical rainfall pattern. Control became weaker as the flood peaks became closer. For 

multi-peak rainfall, the difference in urban runoff caused by natural extreme rainfall and 

the uniform multi-peak rainfall of the Chicago rain type was not substantial; the ability of 

LID facilities to control flood peaks and volumes became progressively weaker as the av-

erage wave peak increased. 

In contrast to the natural extreme rainfall rain patterns, artificial rain patterns over-

estimate the ability of LID facilities to control flood peaks and flood volumes. During 

sponge city design, LID facilities should be optimally placed with reference to local to-

pography and both spatial and temporal rainfall characteristics to ensure effective flood 

control.  
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