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Simple Summary 

Ovarian cancer is the most lethal gynaecological malignancy, and serous carcinoma is the most common 

subtype. The lack of symptoms and sensitive diagnostic tests in the early stage of development may explain 

why the diagnosis often occurs late when the neoplasm has already spread outside the pelvis. Currently, the 

standard treatment of ovarian carcinomas requires cytoreductive surgery followed by platinum-based 

systematic chemotherapy, which does not reduce recurrences or mortality. Despite intense efforts to develop 

novel therapies that involve the use of new chemotherapeutic agents, such as anti-angiogenesis agents and 

poly (ADP-ribose) polymerase inhibitors that improve patient outcomes, the five-year survival for this 

malignancy still remains low. Therefore, it is important to identify new targetable molecules for early 

diagnosis, disease monitoring, and treatment or early diagnosis, disease monitoring, and treatment of this 

malignancy. 

The aim of this review is to discuss the role of mesothelin in serous ovarian carcinomas, focusing on 

its diagnostic, prognostic, and therapeutic perspectives. 

 

Abstract 
 

Mesothelin is a protein that is expressed in the mesothelial cell lining in the pleura, peritoneum, and 

pericardium. The gene of mesothelin encodes a precursor protein that is processed to yield mesothelin, which 

is attached to the cell membrane by a glycophosphatidylinositol linkage and a shred fragment named the 
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megakaryocytic-potentiating factor. The biological functions of this substance in normal cells are still 

unknown. Experimental studies on knockout mice suggest that this substance does not play an important role 

in development and reproduction.  

In contrast, it has been observed that mesothelin is produced in abnormal amounts in several 

malignant neoplasms, such as mesotheliomas and pancreatic adenocarcinomas. 

Given that mesothelin is overexpressed in many solid tumours and has antigenic properties, this 

molecule could be considered a tumour marker or an antigenic target for many malignancies. Many 

molecular studies also have demonstrated that mesothelin is overexpressed in serous ovarian carcinomas and 

may bind to ovarian cancer antigen Ca-125, favouring the spread of the tumour in the abdominal cavity. 

 

Here, we discuss the current knowledge of mesothelin and focus on its role in clinical and 

pathological diagnoses as well as its impact on the prognosis in serous ovarian carcinomas.  

We also briefly discuss the latest progress of mesothelin-targeting therapies for this aggressive and 

lethal neoplasm. 
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Introduction 

Mesothelin (MSLN) is a glycoprotein that is located on the mesothelial lining of the body cavities and in 

many neoplasms [1]. It is anchored at the cell membrane by a glycosylphosphatidylinositol linkage. The 

mesothelin gene was first cloned by Chang and Pastan [1], and it encodes a precursor protein that is 

processed to yield a 40 kDa mesothelin protein and a 31 kDa soluble fragment. The soluble human fragment, 

named the megakaryocyte-potentiating factor (MPF), was reported to have a megakaryocyte-potentiating 

activity in mouse bone marrow [2]. 

In normal tissue, the physiological/biological function of MSLN is still uncertain. Studies in 

molecular biology have demonstrated that a lack of MSLN in an MSLN knockout mouse model did not 

affect development, growth, or reproduction [3].  

Conversely, MSLN is considered to be involved in several mechanisms of cancer pathogenesis. In 
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ovarian carcinomas, it was demonstrated that binding with the partner MUC16 (CA125) could play a role in 

cell adhesion, facilitating intraperitoneal ovarian cancer metastasis [4-6]. 

There is evidence that mesothelin can be used as a new cancer biomarker [7] and as a target molecule 

for gene therapy [8]. 

Here, we discuss the current knowledge of MSLN, focusing on its role in clinical and pathological 

diagnoses as well as its impact on the prognosis in serous ovarian carcinomas. We also briefly discuss the 

latest progress of mesothelin-targeting therapies for this aggressive and lethal neoplasm.
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Materials and Methods  

Search strategy 

We conducted a review of the current literature in accordance with the Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses Statement PRISMA [9] to report the current knowledge of MSLN in 

normal tissue and in serous ovarian carcinomas, focusing on its role in diagnosis, prognosis, and therapy. The 

aim of this review was to report on the latest progress of mesothelin-targeting therapies in this neoplasm. 

The medical subject heading terms used for the search in PubMed and Scopus were ‘mesothelin’ and 

‘ovarian carcinomas’, as well as ‘serous carcinoma’, ‘diagnosis’, and ‘therapy’. 

The systematic review process was performed independently by two authors (E.F. and A.T.) and 

checked by another (G.G.).  

Inclusion/exclusion criteria 

Articles considered were published from 1994 to 2021 (June).  

The duplicates, e.g., articles that were not written in the English language and those evidently not 

relevant to the topic based on the title and a revision of the abstract, were excluded from the review. All 

works describing the MSLN expression and therapies in non-ovarian carcinomas were also excluded from 

our analysis.  

Data extraction 

We selected studies that focused on the role of MSLN in clinical and pathological diagnoses as well 

as its impact on the prognosis in serous ovarian carcinomas and data for MSLN-targeting therapies in ovarian 

carcinomas, especially the serous subtype.  

Results 

The number of records identified through PubMed and Scopus was, respectively, 220 and 160. 

Records after duplicated papers were removed amounted to 90. 

Records screened based on title and Abstract were  220.  

We excluded 5 articles that were not written in English, 23 studies with a few cases (< 40) and 113 not 

relevant to the topic. Thus, we considered in the paper a total of 79 articles, and their full texts were read. 

We also searched for and considered 5 other useful articles present in the bibliography of those already 

evaluated.  
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 Analysis of these results has enabled us to report studies on mesothelin as a cancer biomarker for the 

diagnosis and prognosis of ovarian carcinomas in sera and in other fluids of patients suffering from this 

severe and lethal neoplasm.  

 We have also been able to report studies in which the value of MSLN is reported in other diagnostic 

methods, such as radioimmunoimaging, in immunohistochemical and PCR analysis. Moreover, we reported 

and discussed papers on mesothelin as a therapeutic target. 

Mesothelin as a New Cancer Biomarker for the Diagnosis and Prognosis of Ovarian Carcinomas  

Among gynaecological neoplasms, ovarian carcinomas have the highest mortality because the 

diagnosis of this malignancy is often late, when the neoplasm is already in an advanced stage of 

development.  

The early detection of this neoplasm is difficult due to the absence of physical symptoms and a lack 

of sensitive screening methods [10].  

Mesothelin as a Serological Biomarker 

Cancer antigen 125 (CA125) is currently the most common serological biomarker used for the 

diagnosis and management of patients with epithelial ovarian/fallopian tube or primary serous peritoneal 

cancers. Many studies suggest that CA125 can also be expressed at high levels in other types of cancers, 

such as breast cancer [11, 12], mesotheliomas [13, 14], non-Hodgkin’s lymphoma [15, 16], and leukaemia 

[17], as well as leiomyomas and leiomyosarcomas with a gastrointestinal origin [18]. CA125 was also found 

to be elevated in the sera of patients with benign conditions, such as cirrhosis, ovarian cysts, endometriosis, 

pregnancy, congestive heart failure, and musculoskeletal inflammatory disorders [19].  

Only half the patients with early stage ovarian carcinomas had elevated CA125 levels [20].  

Thus, the sensitivity and specificity of CA125 for the detection of early stage ovarian carcinomas are 

unfortunately low [21]. Therefore, it is extremely important to identify new molecules for the early diagnosis 

and disease monitoring of this lethal neoplasm. 

Concerning the use of MSLN as a biomarker for the diagnosis of ovarian carcinomas, a significant 

amount of data in the literature suggests that this substance is expressed in different subtypes of ovarian 

carcinomas, especially serous [22]. A splice variant of soluble mesothelin, named the soluble 

megakaryocyte-potentiating factor (SMRP), was found in the sera of patients with ovarian carcinomas [23].  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 February 2022                   doi:10.20944/preprints202201.0271.v2

https://doi.org/10.20944/preprints202201.0271.v2


 

 

6 

Studies have reported that SMRP serum was significantly higher in ovarian carcinomas than in 

benign ovarian lesions and healthy subjects. It was also observed that serum SMRP levels were related to 

FIGO pathological staging (International Federation of Gynecology and Obstetrics system) and grading of 

the neoplasms, demonstrating that high serum levels of mesothelin may be indicative of tumour progression 

and poor survival [24-26].  

Mesothelin as a Biomarker in Other Fluids 

Okla et al. observed that peritoneal fluid mesothelin levels did not differ significantly in patients with 

benign and malignant ovarian epithelial neoplasms. They also did not observe any differences in peritoneal 

fluid MSLN levels in different FIGO stages and histological types of neoplasms.  

Thus, in contrast to the serum levels of MSLN, low levels of MSLN in the peritoneal fluid were not 

associated with a better prognosis [25].  

Studies in the literature have reported that MSLN can also be detected in the urine samples of 

patients affected by ovarian carcinomas [27-30].  

In particular, Badgwell et al. observed, for the first time, that the urinary levels of MSLN could be 

considered to have a greater sensitivity than the serum levels in the early stages of ovarian carcinomas [27].  

Similarly, Hellstrom et al. demonstrated that, in women with a pelvic mass, assaying urine for human 

epididymis protein 4 (HE4) or mesothelin may detect early ovarian carcinomas more often than assaying the 

serum [28]. 

In their study, Hollevoet K et al. demonstrated that mesothelin levels in the urine depended on an 

impaired glomerular and tubular function, which could influence the interpretation of the mesothelin 

measurements and cause false-positive results [30]. Wu et al. considered SMRP serum to be a promising 

marker for the diagnosis and monitoring of ovarian carcinomas, especially in combination with CA125, 

showing a sensitivity of 98.4% and specificity of 88.4% [24]. 

Mesothelin as a Biomarker in Radioimmunoimaging 

As mesothelin is a membrane antigen overexpressed in a variety of solid neoplasms, including ovarian 

carcinomas, there are many studies in the literature that prove that analyses of radioimmunoimaging can be 

used for the non-invasive detection of mesothelin-overexpressing tumours [31-36].  
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 Radioimmunoimaging is a type of molecular nuclear medicine imaging that applies specific 

antibodies of tumour-specific antigens labelled with radionuclides for imaging [37]. Thus, this molecular 

imaging allows the assessment of the tumour uptake and distribution in the primary and secondary tumour 

sites as well as the response to therapy. Different anti-mesothelin antibodies have been used in animal 

models.  

 In several studies, anti-mesothelin antibodies were used, and these could be detected by fluorescence 

imaging or magnetic resonance [32,33]. For detection by positron emission tomography (PET), other authors 

have demonstrated in ovarian models that 89Zr-labelled antibodies could be used to target MSLN, an 

antibody–drug conjugate (ADC) that can provide information regarding both the organ distribution and drug 

dosing [33-36].  

Mesothelin Detection in Neoplastic Tissue 

 In diagnostic pathology, the immunohistochemical expression of MSLN, in several instances, is a 

useful marker to distinguish between primary and metastatic ovarian carcinomas. In their paper, Kanner et al. 

demonstrated that MSLN expression could assist in differentiating Müllerian serous carcinomas from 

metastatic breast carcinomas (particularly those with a papillary morphology) and documented that none of 

the breast carcinomas was stained for mesothelin [38]. 

 Ordóñez demonstrated that the carcinomas that most frequently exhibited a strong MSLN reactivity 

were non-mucinous carcinomas of the ovary; however, they observed that this marker was also expressed in 

other non-mucinous carcinomas, such as clear-cell carcinomas of the ovary, endodermal sinus tumours, or 

renal cell carcinomas, as well as clear-cell type and transitional-cell carcinomas of the ovary [22]. 

Weidemann et al., to identify tumours that might benefit from targeted cancer therapies, observed that the 

highest prevalence of MSLN positivity was present in ovarian carcinomas (serous 97%) by the analysis of 

tissue microarrays for the MSLN expression of 122 different tumour types. Conversely, MSLN was rare in 

the cancers of the breast, kidney, thyroid gland, soft tissues, and prostate [39].  

 The immunohistochemical expression of MSLN in the neoplastic section of serous ovarian 

carcinomas was also investigated to establish its impact on the prognosis.  

 The literature suggests limited and conflicting immunohistochemical data regarding MSLN 

expression and the prognostic impact on ovarian cancers. 

 According to the study of Chang et al., the immunohistochemical MSLN expression was related to 
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the survival outcomes in patients with ovarian carcinomas. They observed that the neoplasms with a high 

expression of mesothelin showed a statistically worse prognosis than those with a low immunoreactivity 

[40].  

 Similarly, Yildiz et al. observed that a high expression of MSLN in advanced serous ovarian cancers 

was associated with a poor prognosis and with worse platinum sensitivity in the advanced stage [41]. Cheng 

et al. observed that a high MSLN expression, investigated by a molecular study using real-time quantitative 

reverse transcription-polymerase chain reaction (PCR), was associated with chemoresistance and poor 

survival in ovarian carcinomas [42].  

 In contrast, Yen et al., separating neoplasms with diffuse immunoreactivity from neoplasms with 

focal positivity, observed that a diffused MSLN expression correlated with prolonged patient survival in 

serous ovarian carcinomas [43]. According to these authors, this finding could indicate that immune response 

to mesothelin-expressing ovarian carcinoma cells may result in a reduction of tumour load and contribute to 

a patient's prolonged overall survival. Conversely, neoplasms with focal MSLN expression can progress, as 

neoplastic cells cannot be detected by the immune system and continue to progress.  

 To validate immunohistochemical results, in eight frozen representative cases, Yen et al., using 

reverse transcriptase-PCR, observed that the PCR product of mesothelin was strongly representative in 

tumours with diffuse mesothelin immunoreactivity (4+ and 3+ positivity) (FIGS 1a and b), but it was 

scarcely detectable in negative tumours (score: 0).   

 The results of Yen et al. were not in accordance with those of other studies, in which a high 

expression of MSLN was associated with poor survival in other malignant epithelial neoplasms, such as lung 

adenocarcinomas and pancreatic ductal adenocarcinomas [44, 45]. 

 The conflicting data on MSLN expression and its prognostic impact on patients with ovarian 

carcinomas may be due to many factors, such as the different antibodies, protocols, and criteria used to 

evaluate the immunoreactivity. Magalhaes et al., by immunohistochemical analysis, demonstrated that 

MSLN expression in patients with high-grade serous carcinomas did not predict the clinical outcome 

but correlated with the CD11c+ positive-immune infiltrate in neoplasms. The MSLN expression also 

significantly correlated with CD11c+ in the metastatic sites and in the perivascular areas of the 

primary neoplasm. Thus, they concluded that these data could also have an important impact on the 

outcome of immune-related therapies [46]. 
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Mesothelin as a therapeutic target 

 Currently, ovarian cancer treatment consists of surgical tumour debulking complemented by taxane-

and platinum-based chemotherapy [47], occasionally associated with Avastin (bevacizumab, an anti-vascular 

endothelial growth factor therapy) [48]. In advanced or recurrent diseases, in patients with a BRCA mutation, 

maintenance therapy with a poly adenosine diphosphate (ADP-ribose) polymerase (PARP) inhibitor 

treatment represented an effective treatment option [49].  

 However, radical treatment regimens and multiple chemotherapeutic treatments do not reduce the 

recurrences of the disease or the death of the patients.  

 Given that MSLN is over-expressed in many solid tumours and has antigenic properties, this 

molecule could be considered to be the antigenic target for immunotherapeutic strategies in ovarian 

carcinomas. The main immunotherapeutic strategies using different therapeutic agents include anti-

mesothelin immunotoxin SS1P, MORAb-009 (chimeric anti-mesothelin mAb) and anti-mesothelin 

antibody–drug conjugate (BAY-94 9343). Chimeric antigen receptor T cell (CAR T) therapy and 

vaccines were also evaluated. 

In Figure 2, the main immunotherapeutic strategies for ovarian cancer are summarized (FIG. 2). 

Anti-Mesothelin Immunotoxin SS1P 

SS1P is an anti-MSLN immunotoxin, which was obtained from immunized mice fused to a 

truncated form of pseudomonas exotoxin A (PE38) (FIG 2A). SS1P binding to MSLN formed a complex 

that was internalized by endocytosis and PE, translocated in cytosol and killed cells catalyzing protein 

synthesis, thus initiating programmed cell death [50]. Studies in vitro have demonstrated the cytotoxic 

effect of SS1P on the neoplastic cells of patients affected by ovarian carcinomas [51]. In a phase I 

clinical trial (ClinicalTrials.gov Indentifier: NCT00066651), patients with ovarian carcinomas 

presented with stable disease. The side effects of treatment are dose-related and include capillary leak 

syndrome and pleuritis due to SS1P binding to normal mesothelial cells and inflammation. The association 

with prednisone reduces the risk of toxicity, allowing increased dosage [52]. Moreover, in line with cases of 

mesothelioma, SS1P could be used in combination with chemotherapy to obtain a major response [53]. 

However, as observed in treatments for mesotheliomas, it must be kept in mind that the efficacy of SS1P is 

limited by anti-drug antibody formation.  
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Thus, SS1P is being administrated in association with pentostatin and cyclophosphamide, which are 

lymphocyte-depleting drugs that allow patients to receive multiple cycles of treatments [54]. 

 

MORAb-009 (Chimeric Anti-Mesothelin mAb) 

 MORAb-009 (chimeric anti-mesothelin mAb), also named amatuximab, represents the heavy 

and light chain variable regions of a mouse anti-mesothelin single-chain Fv grafted onto a human IgG1 

and k constant region (FIG 2B). MORAb-009 has a high affinity with mesothelin, and, in a preclinical 

evaluation, it was demonstrated that it could inhibit the adhesion between the cell lines expressing 

mesothelin and MUC 16 (Ca 125), as well as cause cell-mediated cytotoxicity on mesothelin-bearing 

tumour cells [55]. 

 In clinical trials, it has been observed that patients treated with MORAb-009 showed a marked 

increase in CA125 serum, suggesting that it could block the binding between mesothelin and Ca-125. It 

was demonstrated that MORAb-009 could inhibit cellular adhesion during metastasis in cases of both 

ovarian carcinomas and mesotheliomas [56, 57]. Studies in vivo on animal models demonstrated that 

these effects were markedly increased in combination with chemotherapy agents such as gemcitabine 

and Taxol [57] or, in a phase II clinical trial, with other chemotherapeutic substances for cases of 

mesotheliomas (ClinicalTrials.gov Identifier: NCT00738582) [58]. The reduction in the MPF level in 

serum, after treatment, demonstrated a correlation with a good prognosis [58]. However, the 

combination with chemotherapy agents caused adverse events, such as hypersensitivity reactions, 

neutropenia, and atrial fibrillation [58].  

Although most studies (ClinicalTrials.gov Identifiers: NCT01521325, NCT01413451) on 

ovarian carcinomas focused on the efficacy of monotherapy with MORAb-009, these data suggest that a 

combination with different chemotherapeutic agents could provide satisfactory results, with 

prolongated overall survival. 

Anti-Mesothelin Antibody Drug Conjugate (BAY-94 9343) 

 Anti-mesothelin antibody–drug conjugate (BAY-94 9343), known as anetumab ravtansine, is an 
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antibody–drug conjugate (ADC) that is a complex consisting of a fully human immunoglobulin G1 anti-

mesothelin monoclonal antibody conjugated to the maytansine derivative tubulin inhibitor DM4 through a 

reducible disulphide linker (FIG 2C) [59]. BAY-94 9343 has an anti-proliferative activity because, after 

binding to mesothelin on tumour cells, it is internalized, and the disulphide linker is cleaved, releasing DM4. 

Subsequently, DM4 binding to tubulin disrupts the microtubule polymerization, causing cell cycle arrest and 

apoptosis and consequently killing the dividing cells [60, 61]. 

 Preclinical studies have shown that anetumab ravtansine was highly cytotoxic in MSLN-

expressing mesotheliomas as well as pancreatic, non-small-cell lung and ovarian cancer cell lines [58]. 

 In vivo, anetumab ravtansine had antitumor activity in mesotheliomas as well as pancreatic and 

ovarian xenograft models [59]. 

 The study of Quanz et al. demonstrated that in ovarian cancer cell lines and patient-derived 

xenografts, the combination of anetumab ravtansine with pegylated liposomal doxorubicin (PLD) or with 

carboplatin, copanlisib, or bevacizumab showed an additive anti-proliferative activity both in vitro and in 

vivo compared with either agent used as a monotherapy [62]. 

Chimeric Antigen Receptor T cell (CAR T) Therapy 

 MSLN has also been regarded as an attractive target for chimeric antigen receptor T cell (CAR T) 

therapy because of its abundant expression in tumour cells and a limited expression in normal cells.  

 CAR T therapy is a type of treatment in which the T cells of a patient, obtained by apheresis, are 

changed in the laboratory by inserting a gene for a special receptor called a chimeric antigen receptor (CAR) 

into them. CAR T cells can target cell surface antigens without MHC (Major histocompatibility complex) 

restriction. Thus, CAR T cells can use for broad HLA-diverse allogenic recipients. 

The CAR usually is complex with an extra-cellular antigen recognition domain, which corresponds 

to a single chain variable fragment (scFv) of a specific antibody, a transmembrane domain, anchored at the 

cell membrane of T cell and an intra-cellular domain that transmits to T cell activation signals. To amplify 

the activation signals in Cars, MSLN can be used in two costimulators domains which allow obtaining major 

activation in terms of proliferation, cytotoxicity, and, consequently, major anti-tumour efficacy. The major 

effectiveness of this subtype of CAR, known as 'third-generation MSLN', was proven in many neoplasms 

and in ovarian carcinoma [63]. 

 In the laboratory, CAR-T cells can be produced using a lentivirus vector, which is integrated into the 
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genome of the host T cell. This method is widely used in phase I studies in advanced solid cancer with 

MSLN expression [64]. 

 The CAR T cells are grown in the laboratory and then given to the patient by infusion. The CAR T 

cells are able to bind to the antigens on the cancer cells and kill them. Once attached to the antigens present 

on the neoplastic cells, the CAR T cells become activated and stimulate the host immunosystem, which in  

12 

turn attacks the MSLN-expressing cells [65]. The effectiveness of CAR T therapy has been observed in 

mouse models of different solid neoplasms, including ovarian carcinomas and mesotheliomas, in which the 

chimeric receptors recognize human MSLN, and the inflammatory cytokines secreted by the T cells 

(including IL-2, IL-6, tumour necrosis factor alpha, and Interferon-y) that produce cytotoxic effects for the 

cancer cells (FIG 2 D) [66, 67]. 

 For high-grade serous ovarian cancer (HGSC), investigating the co-expression of CA125, MSLN 

and folate receptor alpha (FOLRA) on individual tumour cells and their relationship with tumour-infiltrating 

T cells (TIL), Banville et al. provided insights into the design of logic-gated CAR T cell strategies with a 

greater number of antigens. They demonstrated that the most promising pairwise combination was CA125 

and/or MSLN. Thus, a CAR T cell strategy against CA125 and MSLN would target most tumour cells in 

most cases. The antigen expression and T cell infiltration demonstrated that this strategy was effective both 

in primary and recurrent diseases [68]. 

However, as observed in treatments for other neoplasms, it must be kept in mind that the 

immunosuppressive tumour microenvironment of neoplasms plays an important role in response to CAR T 

therapy in vivo. Many authors have demonstrated that a transmembrane protein named programmed death-

ligand 1 (PD-L1) has an important role in regulating T cell response. The binding of this substance to an 

inhibitor programmed cell death protein 1 (PD-1) or the binding of PD-1 to the immune co-inhibitory 

receptors lymphocyte activation gene-3 (LAG3) transmit an inhibitory signal, causing a reduction in the 

proliferation of antigen-specific T-cells, and, consequently, reduction in the infiltration of T cells into the 

tumour lesion [69].  

For ovarian carcinoma, recent preclinical studies in vivo showed that it is possible to restore the functions of 

tumour-specific checkpoint blockade in MSLN-directed CAR T cells using different substances [70-72]. 
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 The side effects of treatment observed during CAR T therapy are related to excessive immune 

activation, which causes cytokine release syndrome (CRS) and neurotoxicity. These adverse effects are 

probably due to non-specific T cell activation. 

 The (CRS) is an acute systemic inflammatory disorder characterized by fever and, sometimes, fatal 

dysfunction of many organs [73, 74]. Patients with severe CRS symptoms can culminate in delirium, 

seizures, and encephalopathy caused by high levels of L-6, IFN gamma, and CAR T cells in the 

cerebrospinal fluid [75]. 

 Compartmental CRS (C-CRS) has been reported in a patient with advanced ovarian cancer treated 

with mesothelin-targeted CAR T cells characterized by the elevation of IL-6 and accumulation in the pleural 

fluid [74]. 

 The treatment used against this serious side effect sometimes involves using an anti-IL-6R antibody, 

tocilizumab [76]. In cases with involvement of the nervous system and unresponsive cases to tocilizumab, 

corticosteroids were often used [75, 77, 78], or suicide genes were     introduced within T cells to reduce their 

number and activity (ClinicalTrials.gov Identifiers: NTC0374965). 

Vaccine 

 The cancer vaccine is an immunotherapy that induces a tumour-specific immunoresponse in the host, 

which is capable of recognizing and eliminating neoplastic cells. The ability of T cells to recognize antigens 

present on neoplastic cells and to produce an immune response capable of destroying them has long been 

known. 

 In fact, as early as 1891, Dr William Coley observed the regression of a sarcoma by injecting 

inactivated Streptococcus pyogenes and Serratia marcescens into the neoplasm [79]. 

 Currently, Listeria monocytogenes, a Gram-positive bacterium, can be used as a vector for this type 

of immunotherapy for MSLN-positive cancers. In humans, this bacterium causes infections with 

gastroenteritis, meningitis, and encephalitis, but generally, the human immune system is capable of 

controlling the disease [80, 81]. 

 The CRS-207 vaccine uses attenuated Listeria monocytogenes (Lm) (Lm ΔactA/ΔinlB) that are 

engineered to express human MSLN and can be used to treat MSLN-positive neoplasms (FIG 2E) [82].  
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The methods used to attenuate the virulence of Lm are mostly based on the deletion of certain genes that 

allow for sufficient infectivity and antigen production but have the potential for severe infection. Therefore, 

this treatment should be used with caution for patients who have immunodeficiency [83]. 

 Treatment with CRS-207 with Listeria-expressing human MSLN allows for stimulating the immune 

system with a robust response against neoplastic cells by different mechanisms. After the fusion with a 

lysosome in the cytoplasm of an antigen-presenting cell, Lm can be killed; the secretions of its antigens into 

the cytosol as well as prior to the degradation in the phagosome can be loaded onto (Major  
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Histocompatibility Complex) MHC I and MCH II, causing the activation of potent CD 4 helper lymphocytes 

and CD8 cytotoxic lymphocytes.  

 In addition, during its entry in the antigen-presenting cell, Lm, by Toll-like receptors, can activate 

pro-inflammatory genes, which can amplify, by inflammatory cytokines, the response against neoplastic cells 

[84]. 

 After phase I testing, the safety of CRS-207 was demonstrated in patients with ovarian cancers as 

well as pancreatic, mesothelioma, and lung carcinoma (ClinicalTrials.gov identifier NCT00585845) and in 

platinum-resistant ovarian, fallopian or peritoneal serous carcinomas (ClinicalTrials.gov identifier 

NCT02575807). 

 
CONCLUSIONS 
 
 In conclusion, a typical expressing pattern of MSLN in normal and cancer tissues makes it a 

promising target for diagnosis and therapeutic applications. Although many clinical trials regarding MSLN-

targeting therapies in ovarian carcinomas are underway, further studies are necessary to establish the effects 

on the health of patients and behavioural outcomes. 
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Figure Legend 

FIG 1: Examples of high-grade serous carcinoma, with diffuse mesothelin immunoreactivity. (a: score 4+, 

x100; b: score 3+, x100). 

FIG 2: Schematic and simplified representation of the main therapeutic strategies, using mesothelin as a 

target.
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