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Abstract  

Kynurenine or tryptophan catabolite (TRYCAT) pathway contributes to the 

pathophysiology of major depression disorder (MDD) and major depressive episodes 

(MDE) in bipolar disorder and suicidal behaviors. The consequences of the overactivation 

of this pathway large reduced tryptophan (TRP) levels in peripheral blood and the CNS 

and increased levels of neurotoxic TRYCATs including kynurenine (KYN), 3-hydroxy 

kynurenine (3HK), quinolinic acid (QA), xanthurenic acid (XA), and picolinic acid (PA). 

However, other TRYCATs are protective, such as kynurenic acid (KA) and anthranilic acid 

(AA). Inflammation and cell-mediated immune activation along with oxidative and 

nitrosative stress (O&NS) may stimulate the first and rate-limiting enzyme of this pathway, 

namely indoleamine-2,3-dioxygenase (IDO). Therefore, during depression, balancing 

neuroprotective versus neurotoxic TRYCATs and balancing activation of the immune 

response system (IRS) versus the compensatory immune response system is crucial for 

achieving better treatment outcomes. Furthermore, targeting the causes of TRYCAT 

pathway activation (immune activation and O&NS) is probably the most effective strategy 

to treat depression. In the present review, we aim to provide a comprehensive explanation 

of the impact of TRYCATs in terms of pathophysiology and treatment of MDD and MDE. 
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1. Introduction 

First, we would like to congratulate Messaoud et al. for their valuable article 

published in Current Topics in Medicinal Chemistry [1]. The results show that patients 

with MDD and suicidal behaviors had elevated levels of KYN, KYN/TRP ratio, and 

proinflammatory cytokines (PIC), namely interleukin-1 (IL)-1 and IL-12 as well as a 

diminished TRP levels when compared with non-suicidal MDD patients. Besides, there 

were no significant differences between non-suicidal and suicidal MDD patients in cortisol, 

IL-6, and IL-20. Hence, the authors concluded that the TRYCAT pathway is implicated in 

the pathophysiology of MDD and suicidal behaviors [2-4]. 

There is now evidence that both MDD and a MDE in bipolar disorder are 

characterized by a) activation of the immune-inflammatory response system (IRS) as 

indicated by increased macrophage M1 and T helper (Th)1 cytokines, such as IL-1β, IL-6, 

IL-8, interferon (IFN)-γ, tumor necrosis factor (TNF)-α, and chemokines b) activation of 

the compensatory immune-regulatory reflex system (CIRS) as shown by elevated Th2 and 

T regulatory (Treg) cytokines or their receptors, namely IL-4, IL-10, sIL-1RA, sIL-2R and 

TNF-α receptors along with other CIRS markers, including increased positive acute phase 

proteins (APPs), e.g. haptoglobin, hemopexin, α1-acid glycoprotein, α1-antitrypsin and 

ceruloplasmin [5].  There is also evidence that suicidal ideation and attempts are 

characterized by activated IRS pathways [6]. 

2. The impact of immune activation on Tryptophan. 

Already in the 1990s it was observed that immune biomarkers such as IL-6 and 

haptoglobin were inversely correlated with plasma levels of TRP and the TRP/ competing 
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amino acid (CCA) ratio, indicating that lowered TRP in mood disorders is an index of an 

ongoing IRS response [4]. The depletion of TRP was explained by increasing its catabolism 

due to stimulation of the first and rate-limiting enzyme, namely IDO, which is induced by 

cell-mediated immune pathways [4]. Furthermore, early research also showed increased 

serum and urinary concentrations of neopterin in patients with depression and a significant 

inverse association between plasma TRP and neopterin [7]. Neopterin is a sensitive marker 

of CMI and inflammation and elevated levels are observed in several autoimmune and 

inflammatory disorders, e.g. rheumatoid arthritis, and Crohn’s disease. IFN-γ not only 

stimulates IDO but also guanosine-5-cyclohydrolase I thereby degrading GTP and 

producing neopterin. Both IFN-γ-induced pathways may explain the inverse association 

between lowered TRP and increased neopterin in patients with mood disorders [7]. 

Lowered TRP levels in association with immune-inflammatory biomarkers were 

also established in the prepartum period and the early puerperium [8]. Plasma TRP and the 

TRP/CAA ratio were significantly and inversely associated with IRS activation, as 

assessed with increased serum levels of IL-6 and IL-1 receptors antagonist (IL-1RA), 

suggesting that elevated PIC levels lead to TRP catabolism due to IDO enzyme activation. 

Nonetheless, no significant correlation between low TRP and TRP/CAA and post-natal 

depressive and anxiety symptoms was detected, although the latter were associated with 

IRS activation [8]. 

3. The role of cytokines in triggering TRYCAT pathway and hence depressive 

symptoms  

The first mechanistic paper showing that cytokines (IFN-α administration) may 

cause depressive symptoms by inducing the cytokine network in association with depletion 
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of plasma TRP and increased production of KYN was reported by Maes’ laboratories [4, 

9-11]. Interestingly, the IFN-α induced increases in KYN were more significantly 

associated with the onset of depressive symptoms than the lowering of plasma TRP. 

Moreover, the onset of depressive symptoms following IFN-α administration was 

associated with an increase in the KYN/KA ratio, which reflects increased neurotoxicity 

(KYN) versus neuroprotection (KA) [4, 12]. Such findings lead these authors to formulate 

the new theory that increased neurotoxicity rather than changes in the serotonin system 

may explain the onset of inflammation-induced mood disorders [11]. 

Increased TRYCATs-induced neurotoxicity is the result of cytokine-induced IDO 

activity and the overproduction of neurotoxic TRYCATs, including KYN, 3HK ,  PA, XA 

and QA. Thus, following immune injuries two types of balance appear to be important: a) 

IRS versus CIRS cytokines/immune products and b) neurotoxic (KYN, 3HK, PA, XA, QA) 

versus neuroprotective KA and AA TRYCATs [3]. When these balances are disrupted, the 

IRS and neurotoxic branch of the TRYCAT pathway will be overactivated with a shift 

towards increased immune neurotoxicity leading to neurodegenerative processes in 

multiple brain circuits [11, 13]. 

Depression shows a strong comorbidity with somatization (multi-somatoform 

illness defined by medically unexplained symptoms and a two-year or longer history of 

somatization). Lowered TRP and KA levels but increased KYN/TRP (IDO proxy) and 

KYN/KA (neurotoxic/neuroprotective ratio) were observed in patients with comorbid 

somatization and depression when compared to healthy controls and patients with 

depression only [14]. Thus, activation of the TRYCAT pathway with lowered TRP 

availability to the brain (and thus probably lowered serotonin synthesis in the central 
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nervous system (CNS) and increased TRYCATs neurotoxicity may be implicated in the 

onset of somatization and depression comorbid with somatization. As such, somatization 

rather than depression per se may be associated with TRYCAT pathway activation. 

A significant number of patients with schizophrenia also suffer from affective 

symptoms and depression and anxiety due to schizophrenia are associated with increased 

IgA responses directed against TRYCATs, including 3HK, PA and XA relative to KA and 

AA. As such, affective symptoms due to schizophrenia are also accompanied by an 

increased neurotoxic ratio [15]. 

Nevertheless, induction of the TRYCAT pathway in depression is probably not 

only a consequence of IRS activation but also of increased oxidative stress and increased 

LPS levels following increased translocation of Gram-negative bacteria [16]. First, there is 

evidence of increased reactive oxygen (ROS) and nitrogen (RNS) species in depression 

and suicidal behaviors with increased superoxide, nitric oxide, peroxynitrite, and hydrogen 

peroxide production [17-19]. Such changes not only lead to decreased neurogenesis, 

neurodegenerative processes, and reduction in brain volume but also to increased staging 

characteristics as indicated by an increased reoccurrence of illness index (ROI) and suicidal 

behaviors [19-21]. Second, increased gut permeability or leaky gut may cause increased 

bacterial translocation and thus increased LPS load in the peripheral blood of patients with 

depression [16]. This toxin is recognized by the Toll-Like Receptor (TLR)4 complex 

located on peripheral blood mononuclear cells (PBMCs), neurons, microglia, and 

astrocytes and triggers an immune and O&NS stress response through activation of nuclear 

factor B (NF-κB) and mitogen-activated protein kinases (MAPK). As such, IDO activation 
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in depression may be the consequence of intertwined associations among IRS and O&NS 

activation and increased bacterial translocation. 

4. Functions of TRYCATs 

Activation of IDO enzyme with lowered TRP levels and increased levels of 

TRYCATs is part of an adaptive immune response because a) reduced TRP has 

antimicrobial properties and anti-inflammatory properties through TRP starvation; and b) 

some TRYCATs (KYN, KA, XA, QA) have anti-inflammatory properties by reducing the 

IFN-γ/IL-10 production ratio [22]. Moreover, KYN induces Treg development and 

TRYCATs such as 3HA have strong anti-inflammatory effects. Some TRYCATs have also 

antioxidant effects, for example 3HK and 3HA are more potent than α- tocopherol as 

radical scavengers [3]. Also, XA has similar antioxidant activity as compared with 

butylated hydroxytoluene (BHT), while KA has less antioxidant activity than BHT [23]. 

Moreover, XA may display neuroprotective properties by attenuating vesicular glutamate 

transport (VGLUT), synaptic transmission via the NMDAR receptor, and excitatory 

postsynaptic potentials (review: Kanchanatawan, et al. [24]) It should be added that KA 

has neuroprotective effects by inhibiting NMDA, α-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid (AMPA), kainate glutamate ionotropic receptors and attenuating 

glutamate release resulting from inhibition of alpha 7 nicotinic acetylcholine receptor 

(α7nAChr) [25]. Also, AA has neuroprotective effects by inhibiting the production of 

neurotoxic TRYCATs, such as PA and QA from 3HA [26]. All in all, the activation of the 

TRYCAT pathway has intrinsic protective effects by ROS scavenging and negative 

immune-regulatory and neuroprotective effects [22]. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 January 2022                   doi:10.20944/preprints202201.0134.v1

https://doi.org/10.20944/preprints202201.0134.v1


Nevertheless, some TRYCATs when overproduced have also neurotoxic effects. 

First, most TRYCATs have beside antioxidant also pro-oxidant effects, including increased 

oxidative stress due to 3HA [27, 28], increased ROS produced by 3HK [29], increased 

hydrogen peroxide and superoxide production by both 3HK and 3HA [30], and ROS 

generated by QA [31]. In addition, free radicals formed by 3HK and 3HA may cause 

oxidative damage to the cells [32,33] and ROS generated by QA may cause lipid 

peroxidation and consequent neurotoxicity [31]. Second, QA may cause apoptosis and 

hippocampal atrophy by overactivation of hippocampal N-methyl-D-aspartate (NMDA) 

receptors [22]. XA has also neurotoxic effects by inducing apoptosis, mitochondrial 

dysfunctions, and intracellular hypercalcemia due to overstimulation of cationic channels 

resulting in excited neural networks [24]. This explains that increased XA levels may lead 

to significant neuronal injury, impaired transmission of glutamate, and may impede 

presynaptic transmission triggered by stimulating NMDArs [24]. PA may enhance 

immune-inflammatory responses and by reducing KA and AA attenuate neuroprotection 

(review: Kanchanatawan et al [24]). Third, some TRYCATs, particularly KYN, are 

depressogenic and anxiogenic [3], although KA may have antidepressant effects [34]. 

Therefore, TRYCATs have different functions, including immunoregulatory versus 

proinflammatory, anti- versus pro-oxidant, and neuroprotective versus neurotoxic effects. 

As a result, TRYCAT pathway activation in depression has intrinsic antioxidant and 

negative immune-regulatory effects and depending on the production rates of QA, KYN, 

3HK, PA, and XA may have detrimental effects. The latter effects may then aggravate the 

immune and oxidative neurotoxicity as a consequence of M1 and Th1 cytokines, lipid 

peroxidation, protein oxidation, hypernitrosylation, and autoimmune responses [6, 35]. 
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5. Neurotoxic indices  

Apart from data on the KA/KYN ratio (which reflect one aspect of neuroprotection 

versus neurotoxicity), there is no clear information about other neurotoxicity indices, 

including composite scores of the most important neurotoxic TRYCATs (KYN + 3HK + 

XA + PA + QA) and the ratio of generally more neurotoxic / neuroprotective TRYCATs 

(KYN + 3HK+ XA + PA + QA / AA+KA). Likewise, apart from some data on the 

KYN/TRP which is a proxy for IDO activity, other ratios (computed as composite scores) 

such as KA/KYN, and KA/(KYN+TRP) (both assessing KAT activity) and 3HK/KYN or 

3HK/KYN+TRP (both assessing KMO activity) are missing [36]. 

6. Important aspects in considering peripheral TRYCATs 

When interpreting peripheral TRYCATs data there are, however, several caveats. 

There is a substantial relationship between either free or total TRP in peripheral blood and 

TRP and, consequently, 5-HT synthesis in the CNS [37, 38]. Nevertheless, TRP reaches 

the brain via the large neutral amino acid transporter-1 (LAT-1) and other amino acids 

(CAAs) may compete for transport via the same transporter, the most important CAA being 

leucine, isoleucine, valine, tyrosine, and phenylalanine. Therefore, some authors propose 

to compute the TRP/CAA ratio in peripheral blood as an index of TRP availability to the 

brain [39]. Since peripheral blood levels of TRP are strongly bound to albumin any changes 

in the latter may be accompanied by changes in TRP availability to the brain. This is 

important because albumin is a negative APP which is downregulated during an immune-

inflammatory response including in depression [40]. Furthermore, to cross the BBB, TRP 

and KYN utilize the same transporter [41]. LAT-1 transports KYN and 3HK to the brain 

at a high rate, while AA is passively transported at a considerable rate, and 3HA, KA, and 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 January 2022                   doi:10.20944/preprints202201.0134.v1

https://doi.org/10.20944/preprints202201.0134.v1


QA have significantly lower rates of passive diffusion [42]. Kita et al. (2002) discovered 

that peripheral blood concentrations of KYN and QA partly determine the CNS 

concentrations of KYN and QA [41]. The TRYCAT concentrations in the peripheral 

circulation are responsible for around 60% of the KYN concentrations in the CNS [43]. As 

a consequence, increased TRYCAT production and TRP depletion due to peripheral 

immune-inflammatory processes influence CNS TRYCAT concentrations and production 

[41, 44]. 

Recently, we detected a significant dissociation between the relationships between 

schizophrenia and TRYCATs levels in the CNS, plasma and serum [36]. The results in the 

CNS indicate an increase in KYN and KA, and IDO and KAT activities, and a decrease in 

KMO activity in schizophrenia (as assessed with the composite ratios discussed above). In 

contrast, in plasma no such changes or even contradictory changes were established, while 

in serum, only a modest increase in IDO activity could be found [36]. Even more frustrating 

is the finding that the association between KYN and schizophrenia was significantly 

different between the CNS (significantly increased), serum (not significant), and plasma 

(significantly decreased). Further studies should examine these differences in affective 

disorders. 

7. Future treatments  

Some authors advocate that targeting IDO may be a new drug target to treat clinical 

depression by lowering the production of neurotoxic TRYCATs [45,46]. However, given 

that the major functions of this pathway comprise antioxidant and negative immune 

regulatory activities, inhibiting IDO activity is probably not a viable strategy [3]. First, it 

is more adequate to block the activated neuro-immune and O&NS pathways, and 
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hypernitrosylation and improve the depleted antioxidant defenses because these pathways 

are directly associated with staging and the phenome of affective disorders [5]. Second, 

another approach would be to increase KA activity by administration of specific diets [47], 

KA supplements and a ketogenic diet, which may increase KA levels [48], or KA analogs 

[49]. However, KA itself has limited ability to cross the BBB [42] and treatment with KA 

enhancing strategies is also not evident because KA may interact with several receptors in 

the CNS, and influence various neurotransmitter systems [50]. Hopefully, the new 

precision psychiatry approach will eventually reveal the best drug targets in the TRYCAT 

pathway to treat specific endophenotypes of depression. 

Conclusion  

The robust evidence concerning high levels of TRYCATs in patients with MDD, 

MDE besides suicidal behavior frankly confirm the implication of these TRYCATs in the 

pathophysiology of the mentioned conditions although TRYCATs have some protective 

functions.  Thus, they future treatment should target the normalization of the levels of the 

TRYCATs and prevent the causes beyond abnormal levels, instead of inhibition of the 

TRYCAT pathway.   
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