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Abstract: Urban flood risk mapping is an important tool for the mitigation of flooding in view of 

human activities and climate change. Many developing countries, however, lack sufficiently de-

tailed data to produce reliable risk maps with existing methods. Thus, improved methods are 

needed that can improve urban flood risk management in regions with scarce hydrological data. 

Given this, we estimated the flood risk map for Rasht City (Iran), applying a composition of deci-

sion-making and machine learning methods. Flood hazard maps were produced applying six state-

of-the-art machine learning methods such as classification and regression trees (CART), random 

forest (RF), boosted regression trees (BRT), multivariate adaptive regression splines (MARS), mul-

tivariate discriminant analysis (MDA), and support vector machine (SVM). Flood conditioning pa-

rameters applied in modeling were elevation, slope angle, aspect, rainfall, distance to river (DTR), 

distance to streets (DTS), soil hydrological group (SHG), curve number (CN), distance to urban 

drainage (DTUD), urban drainage density (UDD), and land use. In total, 93 flood location points 

were collected from the regional water company of Gilan province combined with field surveys. We 

used the Analytic Hierarchy Process (AHP) decision-making tool for creating an urban flood vul-

nerability map, which is according to population density (PD), dwelling quality (DQ), household 

income (HI), distance to cultural heritage (DTCH), distance to medical centers and hospitals 

(DTMCH), and land use. Then, the urban flood risk map was derived according to flood vulnera-

bility and flood hazard maps. Evaluation of models was performed using receiver-operator charac-

teristic curve (ROC), accuracy, probability of detection (POD), false alarm ratio (FAR), and precision. 

The findings showed that the CART method is most accurate method (AUC = 0.947, accuracy = 

0.892, POD = 0.867, FAR = 0.071, and precision = 0.929). The results also demonstrated that DTR, 

UDD, and DTUD played important roles in flood hazard modeling; whereas, the population density 

was the most significant parameter in vulnerability mapping. These findings indicated that machine 

learning methods can improve urban flood risk management significantly in regions with limited 

hydrological data. 
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1. Introduction 

Between natural disasters, flooding is one of the most destructive hazards causing 

severe economic damage. Climate change is expected to increase the severity of flooding 

in many parts of the world [1, 2]. Population growth, industrial expansion, lack of space 

for construction, especially in metropolitan areas, have caused drastic changes in the mor-

phology of urban watersheds. This has increased the flooding in urban areas and risks for 

losses of human lives and property. From 1998 to 2017, more than 2 billion people were 

affected by flooding throughout the world [3]. Also, Iran has been severely affected by 
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flooding during recent years [4]. For instance, in March 2019, at least 28 out of 31 provinces 

of Iran were affected by three major floods for two weeks causing infrastructure destruc-

tion of more than $ 3.5 billion [5, 6]. Due to the high destructive impacts of floods, there is 

a great need for improved flood risk mapping. However, the scarcity of available hydro-

logical and land use data causes difficulties in managing the flooding [7, 8]. 

Common practices to evaluate urban flood risk involve hydrological and hydraulic 

parameterization methods to approximate flow and water levels at observation stations 

[9, 10, 11, 12]. Lacking rainfall and runoff data increases uncertainties and errors of these 

estimates [9]. Also, recent studies have shown that the flood risk assessment requires more 

than an assessment of hydrological processes. A reason for this is that urban areas are not 

homogeneous in terms of socioeconomic conditions [13, 9, 12]. Thus, the adverse effects 

of floods likely affect the socially vulnerable part of the urban population more severely 

[14]. An indirect method is to employ multi-criteria decision-making methods (MCDM) 

for addressing this [15, 16]. Analytic Hierarchy Process (AHP) is an MCDM method that 

has recently been employed in flood studies [17, 18]. The MCDM methods include both 

subjective and objective assessments into an integrated structure according to scales with 

uniform comparisons that help to organize the necessary aspects of a problem into a 

framework. The advantages of this approach involve measuring the consistency of deci-

sion makers' judgments, generating pairwise comparisons for choosing a solution, and the 

ability to consider criteria and sub-criteria to evaluate options [15, 17]. 

Moreover, the MCDM methods, machine learning (ML) can be used to assess risks 

that are not exclusively caused by hydraulic factors [19, 20]. Accordingly, recent studies 

have been used machine learning approaches to estimate flood hazards such as classifica-

tion and regression trees (CART) [21], random forest (RF) [22], boosted regression trees 

(BRT) [23], multivariate adaptive regression splines (MARS) [24, 25], multivariate discri-

minant analysis (MDA) [26], and also support vector machine (SVM) [27, 28, 22]. Due to 

the complexity of flood risk assessment, some advantages of the ML models have been 

reported in this regard. For example, the CART model has been shown to perform well 

for significant internal heterogeneity and nonlinear structures and this method can easily 

handle outliers [29, 30]. The RF method determines the outcome according to predictions 

of the decision trees by taking the mean or average of the output from various trees [31, 

32, 33]. The BRT method can apply various variables and handle different predictor vari-

ables [34, 35]. The MARS method is more flexible than linear regression models, and it is 

simple to understand and interpret [24]. The MDA derives a linear combination of several 

variables that are best at differentiating between pre-determined independent categories 

[26]. The advantages of SVM are (i) effective in cases where the number of dimensions is 

greater than the number of samples, (ii) effective in high dimensional spaces, and (iii) 

memory-efficient because it uses a subset of training points in the decision function 

(named support vectors) [36]. 

The objective of this study was not only to assess flooding due to hydrology and 

hydraulic factors but also to identify the most vulnerable areas to flood. Since risk is a 

function of hazard and vulnerability [37], integration of success methods (such as decision 

making and machine learning) for assessing both of them has not been well-documented 

yet; thus, this is the main objective of the research. Therefore, the specific objectives were 

to (i) compare machine learningmodels of CART, RF, BRT, MDA, MARS, and SVM to 

create urban flood hazard maps and recognize hazardous regions, (ii) recognize the most 

significant flood conditioning indicators, (iii) creation of urban flood vulnerability with a 

decision-making method, and (iv) combine decision-making with machine learning meth-

ods for creating urban flood risk maps.  
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2. Materials and Methods 

2.1. Study area  

Rasht is one of the largest cities in Gilan Province in northern Iran. It has an area of 

about 95 km2 and is located between longitudes of 49°27′42″ and 49°55′18″ east and lati-

tudes of 37°00′30″ and 37°27′20″ north (Figure 1). The elevation varies between 14 m to 

255 m above average sea level. Rasht is the largest city on the southern Iranian coast of the 

Caspian Sea, with a population of about 631,951 [38]. The region has a Mediterranean cli-

mate, and the average annual precipitation and temperature are about 1337 mm and 10°C, 

respectively, from 2000 to 2019. The Gohar and Zarjoub Rivers pass through the south of 

Rasht and then discharge into the Anzali Lagoon [39]. Due to the climatic conditions with 

heavy and sudden rainfall, passing two rivers from the area, the city is exposed to frequent 

and severe flash floods because of lack of proper drainage system, lack of flood warning 

system, and deforestation [40]. For instance, the destructive floods that occurred in 

2019/03/25 and 2019/04/02 (with peak flows of 132 m3/s and 169.4 m3/s, respectively), 

caused widespread damage to infrastructure, bridges, roads, and temporary homeless-

ness [6]; (Figure 2). 

 

 

 
Figure 1. Location of Rasht City in Iran. 
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Figure 2. Examples of inundation problems during the flood occurred in 2019 in Rasht City. The 

photographs were taken by Fereshteh Taromideh in 2019.2.2. Urban flood inventory map 

In total, 93 flood location points, recognized between the years 2009 to 2020, were 

collected from the regional water company of Gilan Province and field surveys. In 

addition, the equal number of flooded locations (i.e., 93 points) was randomly considered 

as non-flooded points (by using the random tool in ArcGIS 10.7; Figure 1). The location of 

flooded sites indicates that the important areas of the city such as residential regions, 

natural ecosystems, transportation systems, etc, have been exposed to floods.  

 

2.3. Urban flood vulnerability evaluation 

Vulnerability shows the degree of a system is incapable to handle or susceptible to 

the destructive influence of high flows or water levels. Consequently, vulnerability shows 

the society's sensitivity to flooding phenomena with environmental, social, and economic 

sustainability components [41]. We used the population density (PD), dwelling quality 

(DQ), household income (HI), distance to cultural heritage (DTCH), distance to medical 

centers and hospitals (DTMCH), and land use for vulnerability assessment of urban flood 

(Table 1 and Figure 3a to 3f). A questionnaire based on the analytical hierarchy process 

(AHP) method was prepared to evaluate the urban flood vulnerability based on expert 

knowledge . The AHP method applies a hierarchical structure to indicate a problem 

together with a user judgment to develop priorities for alternatives [42]. This method is 

conducted in five steps [43](Yalcin, 2008): (i) division of the problem into component 

parameters, (ii) development of the hierarchy, (iii) development of a paired comparison 

matrix according to the subjective judgment as described by Bidwai et al. [44], (IV) 

estimating the relative weights of factors, and (V) assess inconsistency of subjective 

judgment. For more details on AHP, see Bidwai et al. [44] and Danumah et al. [18]. All 
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allocated scores by expert society according to Saaty scale [42] were checked using 

inconsistency ratios. If the inconsistency ratio was less than 0.1, we used subjective 

judgment with SuperDecision and AHP method [44, 18]. 

After computing the weights of layers using the AHP model, the pixel values of every 

layer were normalized according to the membership functions (MF). Then the flood 

vulnerability map (FV) was produced using the raster calculator tools in the ArcGIS 10.7as 

follows: 

�� =
∑ ��×��

���
���

∑ ��
���
���

, (1)

where FV is flood vulnerability, �� is the weight of variable i calculated by the AHP 

model, �� is the normalized layer of variable i, and n is the number of variables.  

The data for vulnerability factors were taken from the National Statistics Center of 

Iran, Gilan Road, and Urban Development Office, Management and Planning 

Organization of Gilan, and Rasht City Authority for 2016.  

Population density (PD) indicates the number of people who are living in each urban 

area. Vulnerability is higher in high PD regions (Figure 3a). The data for the population 

density factor was taken from Rasht City Authority for 2016, with a pixel size of 12×12 m. 

The PD was placed into five groups: very high, high, moderate, low, and very low 

densities, which the very high category shows the range of 200-250 people in hectare. The 

classification of all six factors was carried out by Rash City Authority. Dwelling quality 

(DQ) shows building conditions that as well were divided into five groups: very high, 

high, moderate, low, and very low qualities. The data for the DQ factor was taken from 

Gilan Road and Urban Development Office for 2019. When flooding occurs, higher-

quality buildings are more resistant to damage. Household income (HI) is defined as the 

financial status of people, which is the combined income of all members of a household 

above a specific age  (older than 18). Floods tend to influence all income classes in a region, 

but it is supposed that households with more finance need a shorter recovery time after 

the disaster. Generally, areas with a higher level of income are less exposed to damage by 

floods than areas with a poorer level of income [45, 46]. HI, as well, was divided into five 

groups (very good, good, moderate, poor, and very poor) based on information from 

Ministry of Cooperatives, Labour and Social Welfare in 2019. Distance to cultural heritage 

(DTCH) was determined according to Figure 3d where most of the cultural heritage is 

located in the center of the city. When DTCH decreases, vulnerability increases. Distance 

to medical centers and hospitals (DTMCH) is another factor. An increase in DTMCH has 

a direct relationship with vulnerability. Euclidean distance tool in ArcGIS 10.7 was 

applied for preparing maps of DTCH and DTHMC. Both DTCH and DTHMC were taken 

from Rasht City Authority. Land use is another important indicator for flood vulnerability 

evaluation. Each land use has different reaction to flooding. Because of different landuses, 

runoff extremely varies, and runoff condition affect the vulnerability considerably [17, 6]. 

The land use map was obtained from Rasht City Authority in 2019. The land use map of 

the study area was divided into seventeen categories (road and street, agriculture, office, 

educational, religious, commercial-service, urban facilities and equipment, sports venues, 

barren land, waterbody, tourist places, medical services, green space, cultural heritage, 
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animal husbandry, industrial areas, and residential area). The residential and agricultural 

areas are about 34 % and 25 % of the area respectively, and other land uses include about 

41 % of the area.  

Table 1. Vulnerability factors. 

Factor Type Relationship with vulnerability 

Population density (PD) Social Higher number of people, higher vulnerability  

Land use Physical Based on expert knowledge 

Dwelling quality (DQ) Economic Higher dwelling quality, lower vulnerability 

Household income (HI) Economic Higher income, lower vulnerability 

Distance to cultural heritage (DTCH) Social Higher DTCH, lower vulnerability 

Distance to medical centers and hospitals (DTMCH) Social Higher DTMCH, higher vulnerability 

 

 
 

 
  

¯
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Figure 3. Vulnerability factors: a) population density (PD), b) dwelling quality (DQ), c) household income (HI), d) distance to cultural 

heritage (DTCH), e) distance to medical centers, and hospitals (DTMCH), and f) land use. 

2.4. Flood hazard evaluation 

In total, eleven flood conditioning parameters were used namely, elevation, slope 

angle, aspect, rainfall, distance to rivers (DTR), distance to streets (DTS), soil hydrology 

group (SHG), curve number (CN), distance to urban drainage (DTUD), urban drainage 

density (UDD), land use (Figure 4a to 4k). For producing the urban flood hazard map, 

each flooded and non-flooded point was assigned a value of 1 and 0, respectively. The 

datasets were randomly chosen for training the machine learning models (70% of the 

dataset) and validation (30% of the dataset) by using the random tool in ArcGIS 10.7. The 

same training and validation dataset was used for all machine learning models. 

 

Elevation 

We applied a Digital Elevation Model (DEM) with a pixel size of 12× 12 m for data 

that were obtained from the Rasht City Authority. Elevation had a range between 14 and 

255 m amsl (Figure 4a). Elevation influences the flood depth and generation of surface 

water flow. Regions at high elevations are less susceptible to flooding due to runoff flows 

at the base of the slope. 

 

Slope angle 

The slope angle map was created by using the Slope tool from the DEM layer in 

ArcGIS 10.7. The slope angle ranged from 0 to 8.4 degrees (Figure 4b). Increasing slope 

directly causes faster surface runoff and increases the discharge that influences flood 

hazard. 

Aspect 

In most flood studies, the slope aspect is introduced as the direction of the maximum 

slope of the area surface and this is one of the most important flood hazard indicators. It 

was created by using the Aspect tool from the DEM layer in ArcGIS 10.7. The aspect was 
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categorized into nine categories: flat, north, northeast, east, southeast, south, southwest, 

west, and northwest (Figure 4c). 

 

Rainfall  

For preparing the rainfall layer, 15 meteorological stations (2000-2019) were taken 

from the Iranian Meteorological Organization (IRIMO). Annual rainfall of the region was 

created from the Inverse Distance Weighting (IDW) tool using ArcGIS 10.7 software which 

varies between 1227 and 1263 mm (Figure 4d). 

 

Distance to rivers (DTR) 

The banks of the Gohar and Zarjoub rivers are susceptible to flooding [39], thus 

Distance to rivers (DTR) has a pivotal role in the urban flood map in Rasht City. DTR had 

a range between 0 and 5449 m that was derived from the Euclidean tool using ArcGIS 

software (Figure 4e). 

 

Distance to streets (DTS) 

Streets and roads are impermeable and quickly generate runoff or inundate during 

floods, therefore regions near them are susceptible to flooding (Figure 4f; [36, 47]). The 

DTS map was created with the Euclidean distance tool in ArcGIS 10.7. 

 

Soil hydrological group (SHG) 

Soil hydrological groups show soil quality based on the smallest amount of water 

infiltration rate. Natural Resource Conservation Service has classified soils based upon 

the runoff potential of the soil into four Hydrologic Soil Groups (A, B, C, and D; [48]). 

Group D has the greatest runoff potential and group A has the smallest [49, 50]. The SHG 

map was produced by the Water Company of Gilan Province. According to the SHG map, 

group D covers about 40% and group B 11 % of the study area (Figure 4g). 

 

Curve number (CN) 

Curve number (CN) is a dimensionless factor that is a function of hydrological 

conditions, land use, soil type, and previous soil moisture [51, 22]. CN was between 0 and 

100 with higher values showing higher runoff potential and lower showing lower runoff 

potential (Figure 4h; [52, 53]). A CN map was created based on the land use and 

hydrologic soil group (HSG) maps using the ArcCN-runoff tool in ArcGIS 10.7. 

 

Distance to urban drainage (DTUD) 

During severe rainstorms, close areas to urban drainage systems are more prone to 

inundation and flooding. The DTUD was also produced with the Euclidean Distance tool 

in ArcGIS 10.7 (Figure 4i). 

 

Urban drainage density (UDD) 

Drainage density influences peak flows during rainfall [54]. Areas with high UDD 

are less flood-prone than areas with low UDD, thus this factor has an essential effect on 
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flood hazards [55]. The UDD map was created using the line density tool in ArcGIS 10.7. 

(Figure 4j) 

 

Land use 

Land use has an essential role in infiltration, runoff rate, interception, and 

evaporation. Different land-use types directly affect runoff conditions [54, 56]. The land 

use map in the area has seventeen different classes (Figure 4k). Residential areas and 

streets are most susceptible to flood because in these regions soil infiltration capacity 

decreases, and runoff increases.  
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Figure 4. Flood hazard factors: a) 

elevation, b) slope angle, c) aspect, d) 

rainfall, e) distance to rivers, f) distance to 

streets, g) soil hydrological group, h) 

curve number, i) distance to urban 

drainages, j) urban drainage density, and 

k) land use. 
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2.5. Hazard modeling  

Classification and regression trees (CART), random forest (RF), boosted regression 

trees (BRT), multivariate adaptive regression splines (MARS), Multivariate discriminant 

analysis (MDA), and support vector machine (SVM) were applied to estimate the 

relationship among flooding and explanatory indicators and to create flood hazard maps. 

R software 4.0.4 and the SDM (Species Distribution Modeling) package [57] were used for 

performing the models. A summary description of every model is presented as follows:  

- CART: Classification and regression trees (CART) as Decision tree (DT) models can 

be utilized for regression predictive modeling or classification [58, 59]. None of the 

different types of DT models, such as CART, Chi-squared Automatic Interaction Detection 

(CHAID), and Quick, Unbiased and Efficient Statistic Tree (QUEST) have previously been 

used for flood hazard mapping of the Rasht City. Equation 2 shows that the CART model 

will search between all values of all parameters: 

 

��� ����� ���� − ��� (��) − ��� (��)� (2) 

 

 Where ��, �� and �� are parent, left and right nodes, ��  and ��  are probabilities 

of right and left nodes, and maximum homogeneity of child nodes is defined by impurity 

function i(t). More information about the CART model can be found in Breiman et al. [58] 

and Lawrence et al. [29]. 

- RF: Random decision forests or Random forests (RF) is an ensemble learning 

method for regression and classification. The ‘forest’ created by the random forest model 

is trained through bootstrap aggregating.      The building blocks of a random forest 

algorithm are decision trees and a decision support method. The decision tree has three 

components: decision nodes, leaf nodes, and root nodes. It divides a training dataset into 

branches that further segregate into other branches until a leaf node is attained. The leaf 

node cannot be segregated further. In the decision tree, the nodes show attributes that are 

applied to predict the outcome. A link to the leaves is provided with decision nodes [60, 

32]. 

- BRT: BRT) is a machine learning algorithm merged with a statistical technique [34, 

61]. BRT is frequently used with different decision trees for improving the performance of 

models [35]. More information about the BRT technique is described by Elith et al. [62] 

and Schapire [35]. 

- MARS: Multivariate adaptive regression spline (MARS) was introduced by 

Friedman [24]. This method is a non-parametric regression model that can be considered 

as an extension of linear models using automatic models interactions among nonlinear 

variables. 

- MDA: The multivariate discriminant analysis (MDA) derives a linear combination 

of several variables that are best at differentiating between pre-determined independent 

categories. The procedure is performed by increasing the variance ratio for different 

categories [26]. 
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- SVM: Support vector machine (SVM) is another machine learning model 

(supervised learning method) that is used for regression, classification, and outlier 

detection [36]. SVM draws a decision boundary which is a hyperplane between any two 

classes for classifying them or separating them into two categories (i.e., no flood or flood). 

The purpose is to specify an optimum dividing hyperplane to increase the margin among 

various categories of the training data and reduce the generalization error [63, 27]. 

 

2.6. Performance evaluation 

Evaluation of models was done using a contingency table for binary forecasting 

(yes/no). According to previous studies [64], several metrics including accuracy, 

probability of detection (POD), false alarm ratio (FAR), and precision were used to 

evaluate and validate the model performance (Equations 3-6). Accuracy is a ratio of the 

number of correct predictions to the total number of input samples (which ranges between 

0 to 1; [65]). The POD quantifies the probability to find a specific flaw, which is strongly 

connected to the subject of risk assessment and probabilistic analyses in the assessment of 

the integrity of components. POD is the proportion of the number of missing data to the 

total number of observed incidences and it ranges from 0 to 1 (perfect value of POD is 

equal to 1; [66]). The FAR is false alarms per total number of warnings or alarms in each 

study or situation (between 0 and 1, where 0 is the desired result; [67]). The Precision 

measures the number of hits to alarms per total number of warnings or alarms in each 

study. Precision is the closeness of measurements to each other, while accuracy is the 

closeness of measurements to a particular value. 

�������� =
(� � ��) 

(� � �� � � � ��)
, (3) 

��� =
�

(���)
, (4) 

��� =
��

(����)
, (5) 

��������� =
�

(����)
, (6) 

 

where H indicates the number of hits, FA shows the number of false alarms, M is the 

number of misses, and CN specifies the number of correct negatives in the confusion 

matrix [64]. In addition to the above statistics, the receiver-operator characteristic (ROC) 

and the area under the curve (AUC) were used to evaluate the performance of models [68, 

65, 27, 69]. The area under the curve (AUC-ROC) has been broadly applied for evaluating 

model accuracy and this method is the most popular assessment criterion . 

 

2.7. Urban flood risk assessment 

Risk is a function of hazard and vulnerability [37]. Vulnerability is linked to socio-

economic indicators, and hazard is to environmental indicators. Flood hazards may be 

low in an area, but socio-economic vulnerability may be high, or vice versa. Hence, 

vulnerability and hazard are jointly important for risk analysis.  
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A flood risk map was produced for Rasht city based on vulnerability and flood 

hazard maps [70, 71]: 

Risk = Hazard × Vulnerability (7) 

 

 

 

3. Results and discussion 

3.1. Modeling results 

Model calibration was repeated until a suitable AUC was obtained (> 80%) for which 

the flood hazard maps were produced. Accuracy, POD, FAR, and precision for the six 

models are shown in Tables 3 and 4 (for validation and training datasets). According to 

Table 3, AUC for CART, RF, BRT, MARS, MDA, and SVM models were respectively 0.947, 

0.941, 0.921, 0.916, 0.889, and 0.781. Consequently, the SVM model indicated poor 

performance (accuracy = 0.768, POD = 0.759, FAR = 0.214, and precision = 0.786) compared 

to other models, because the SVM model only have the ability for separating non linear 

data. The main reason for the poor performance of the SVM model is that data are not 

linearly separable [72]. For the MDA model, poor performance is related to its need for 

normal distribution of data. The model is, as well, less capable of handling non-linear 

relations between output and input factors [73]. According to Table 4, the CART model 

indicates the best performance (accuracy = 0.892, POD = 0.867, FAR = 0.071, and precision 

= 0.929). 

 

Table 3. Model performance using the training dataset. 

Criterion CART RF BRT MARS MDA SVM 

Accuracy 0.985 0.931 0.901 0.869 0.854 0.831 

POD 0.985 0.924 0.906 0.871 0.833 0.794 

FAR 0.015 0.061 0.077 0.108 0.108 0.169 

Precision 0.985 0.938 0.923 0.892 0.892 0.831 

 

Table 4. Model performance using the validation dataset. 

Criterion CART RF BRT MARS MDA SVM 

Accuracy 0.892 0.875 0.857 0.821 0.811 0.768 

POD 0.867 0.839 0.827 0.801 0.788 0.759 

FAR 0.071 0.071 0.111 0.133 0.143 0.214 

Precision 0.929 0.928 0.889 0.867 0.857 0.786 

AUC 0.947 0.941 0.921 0.916 0.889 0.781 
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3.2. Urban flood hazard map 

The flood hazard map was produced based on the result of the CART, RF, BRT, 

MARS, MDA, and SVM modeling (Figure 5). The equal interval classification method [74] 

was used to categorize the flood hazard map. This simplifies the model comparison. In 

other words, the interval classification method divides the categories equally with 

intervals of 0.2 (from 0 to 1). In each category, the number of records is different. When 

the distribution of data is rectangular, the equal interval classification method is sufficient 

[75]. Applying this approach, flood hazard maps were classified into five categories: very 

high, high, moderate, low, and very low (Figure 5). The findings of MDA and SVM 

algorithms were weak (Figure 5e-f; Table 5). CART, RF, BRT, and MARS algorithms had 

a similar distribution of flood hazard categories (Figure 5a-d; Table 5). Results indicated 

that mainly areas close to major rivers are most exposed to flooding and categorized as 

very high and high (about 38% of the area). Similar finding was found by Yang et al. [76]. 

In this study area, land use and PD maps (Figure 3a and Figure 3f) show that residential 

regions with high and very high population density are located in regions with very high 

flood hazards (Figure 5). Therefore, efforts are needed to minimize future flood damage 

in these areas [76]. The map created By the CART, RF, BRT, and MARS models shows that 

low and very low flood hazards are representing regions in the west, northeast, and south 

of the study area (Figure 5a to 6d). According to the CART model map, very high and 

high hazard classes cover the greatest area, 41.8%, and low and very low hazard classes 

cover only about 36% of the city. For the RF model map, very high and high hazard classes 

covered the smallest region, about 31%, and the low and very low classes covered the 

greatest region 38.6% (Table 5). 

 

Table 5. Areas for different flood hazard classes derived from the CART, RF, BRT, MARS, MDA, and SVM models 

Flood hazard 
CART RF BRT MARS MDA SVM 

(km2) (%) (km2) (%) (km2) (%) (km2) (%) (km2) (%) (km2) (%) 

Very high 20.6 21.7 14.1 14.8 21.7 22.8 24.9 26.3 32.2 33.9 1.6 1.7 

High 19.1 20.1 15.2 15.9 14.8 15.6 10.1 10.6 37.1 39.1 1.8 1.9 

Moderate 21.2 22.3 29.2 30.7 14.4 15.2 9.6 10.1 7.9 8.3 2.3 2.5 

Low 7.3 7.7 22.8 23.9 20.5 21.5 12.4 13.1 6.7 7.1 85.9 90.5 

Very low 26.8 28.2 13.7 14.7 23.6 24.9 37.9 39.9 11.1 11.6 3.2 3.4 

Total 95 100 95 100 95 100 95 100 95 100 95 100 
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Figure 5. Flood hazard maps based on the (a) CART, (b) RF, (c) BRT, (d) MARS, (e) MDA, and (f) SVM models. 
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3.3. Importance of the flood hazard factors 

Selecting suitable conditioning factors is important in flood hazard modeling [77]. In 

the present study, the sensitivity of the factors was investigated using a Jackknife test, 

which is a fast and powerful method using partial-derivative calculations. Further details 

about the Jackknife test are described by Skinner and Rao [78]. The relative importance of 

the used flood hazard factors is shown in Figure 6. Distance to river (DTR) is estimated as 

the most influential factor, followed by urban drainage density (UDD), and distance to 

urban drainage (DTUD). Areas near rivers are prone to inundation during floodings. 

These results are consistent with those received from studies by Pham et al. [79] and 

Darabi et al. [80]. Other important factors are UDD and DTUD (Figure 6). Most roads and 

streets in Rasht, particularly in the north, southeast, and southwest regions of the study 

area do not contain suitable drainage systems (Figure 4i and 4j), and have the highest 

flood hazard. The findings of this study are agreeing with the results of Falah et al. [81] 

and Ogden et al. [82]. Figureure 7 shows that the DTR had the highest importance across 

all models (38, 29.1, 33, 39, 35, and 33 for the CART, RF, BRT, MDA, MARS, and SVM 

model, respectively). The importance of UDD and DTUD in the CART method was about 

23 and 12, respectively, all other factors were less than 5 (Figure 6a). In the RF and BRT 

models, the importance of all conditioning factors (except DTR and UDD) was less than 5 

(Figure 6b and 7c). According to the MARS model, DTR, UDD, DTUD, and soil 

hydrological group (SHG) (with 35, 14, 9, and 6) were the most significant factors in the 

flood hazard map (Figure 6d). In the MDA model, the importance of the DTR, UDD, SHG, 

and rainfall was about 39, 14, 14, 11, and 7, respectively, all other factors were less than 5 

(Figure 6e). In the SVM model (Figure 6f), the most important factors were DTR and 

DTUD (values equal to 33, and 7, respectively). 

 

 

 

 

0 10 20 30 40

Aspect

Distance to streets

Land use

Slope

Curve number

Elevation

Rainfall

Soil hydrological group

Distance to urban drainages

Urban drainage density

Distance to rivers

Importance (%)

(a) CART

0 10 20 30 40

Aspect

Distance to streets

Land use

Slope

Curve number

Elevation

Rainfall

Soil hydrological group

Distance to urban drainages

Urban drainage density

Distance to rivers

Importance (%)

(b) RF

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 March 2022                   doi:10.20944/preprints202201.0133.v2

https://doi.org/10.20944/preprints202201.0133.v2


 

 

Figure 6. Importance of conditioning factors for urban flood hazard based on AUC. 

3.4. Importance of vulnerability indicators using the AHP method 

The AHP results indicated that among urban flood vulnerability parameters, 

population density (0.363), land use (0.279), and dwelling quality (0.158) were the most 

important, followed by household income (0.087), distance to cultural heritage (0.064), 

and distance to medical centers and hospitals (0.049). Table 6 shows the weights assigned 

to each parameter (based on the AHP method and expert knowledge). 

  

0 10 20 30 40

Aspect

Distance to streets

Land use

Slope

Curve number

Elevation

Rainfall

Soil hydrological group

Distance to urban drainages

Urban drainage density

Distance to rivers

Importance (%)

(c) BRT

0 10 20 30 40

Aspect

Distance to streets

Land use

Slope

Curve number

Elevation

Rainfall

Soil hydrological group

Distance to urban drainages

Urban drainage density

Distance to rivers

Importance (%)

(d) MARS

0 20 40

Aspect

Distance to streets

Land use

Slope

Curve number

Elevation

Rainfall

Soil hydrological group

Distance to urban drainages

Urban drainage density

Distance to rivers

Importance (%)

(e) MDA

0 10 20 30 40

Aspect

Distance to streets

Land use

Slope

Curve number

Elevation

Rainfall

Soil hydrological group

Distance to urban drainages

Urban drainage density

Distance to rivers

Importance (%)

(f) SVM

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 March 2022                   doi:10.20944/preprints202201.0133.v2

https://doi.org/10.20944/preprints202201.0133.v2


 

 

Table 6. Importance of the flood vulnerability indicators based on the AHP method. 

Indicators Weight 

Population density (PD) 0.363 

Land use 0.279 

Dwelling quality (DQ) 0.158 

Household income (HI) 0.087 

Distance to cultural heritage (DTCH) 0.064 

Distance to medical centers and hospitals (DTMCH) 0.049 

Total 1.000 

 

3.5. Urban flood vulnerability maps 

After computing the weights of layers based on the AHP approach, the pixel values 

of every layer were normalized using the proper membership functions (MF). Based on 

Samanlioglu et al. [83] and Azareh et al. [84], applying the continuous values according 

to the fuzzy method shows changes of factors in a more realistic way than other methods. 

As well, fuzzy methods can reduce uncertainty. Therefore, by analyzing the relationship 

between every layer and flood vulnerability, a suitable MF was used to standardize every 

layer between 0 and 1 using the fuzzy membership tool within ArcGIS 10.7 (Table 7). 

Flood vulnerability map was conducted by using the weights obtained from the AHP 

method and fuzzy layers (Equation 1) within ArcGIS 10.7. The urban flood vulnerability 

map of Rasht was obtained with a pixel size of 12 × 12 m (Figure 7). According to the Flood 

vulnerability map, the most vulnerable flooding areas were placed in the north and 

northeast of the city. Flood vulnerability map was classified into five classes for better 

visual interpretation (Figure 7): very low, low, moderate, high, and very high represent 

27.3 km2, 11.9 km2, 18.8 km2, 14.7 km2, and 22.3 km2 of the area, respectively (Table 8). 

 

Table 7. Fuzzy membership function for different indicators. 

Indicators Membership function 

Population density (PD) Linear increasing 

Dwelling quality (DQ) Linear decreasing 

Household income (HI) Linear decreasing 

Distance to cultural heritage 

(DTCH) 
Linear decreasing 

Distance to medical centers and 

hospitals (DTMCH) 
Linear increasing 

Land use 

User-defined (0 for barren land, 0.1 for green space and water 

body, 0.3 for sports venues, 0.6 for urban facilities and 

equipment, cultural heritage, and tourist places, 0.8 for office, 

Religious, Commercial-service and animal husbandry, 0.9 for 

agriculture, roads and streets, educational, medical services, 

and industrial area and 1 for residential area) 
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Table 8. Areas with different flood vulnerability categories. 

Flood vulnerability (km2) 

Very high 22.3 

High 14.7 

Moderate 18.8 

Low 11.9 

Very low 27.3 

Total 95 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Flood vulnerability map for the Rasht City. 

 

3.6. Urban flood risk map 

The flood risk map for Rasht City was produced using the hazard and vulnerability 

maps. We used the vulnerability map produced based on the AHP technique and the 

hazard map produced through the best model (CART model). The flood risk map was 

divided into five classes by the equal interval method: very low, low, moderate, high, and 

very high (Figure 8) that cover 44.4 km2, 22.7 km2, 14.8 km2, 8.8 km2, and 4.3 km2 of the 

city, respectively (Table 9). The north and southeast of the area are most exposed to flood 

risk and several parts in the west and central have a high flood risk (Figure 8). 
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Table 9. Areas with different flood risk categories. 

Risk class (km2) 

Very high 4.3 

High 8.8 

Moderate 14.8 

Low 22.7 

Very low 44.4 

Total 95 

 

Figure 8. Flood risk map for Rasht City based on the CART (best hazard model) and AHP method. 

4. Conclusions 

We applied six machine learning techniques (CART, RF, BRT, MARS, MDA, and SVM) to create flood hazard maps 

of Rasht city in Iran. The MDA and SVM models had poor performances. The CART yielded an accurate and best map 

according to the results (accuracy = 0.892, POD = 0.867, FAR = 0.071, and precision = 0.929). Urban flood risk map was 

created using vulnerability and hazard maps (CART model). Distance to river, urban drainage density, and distance to 

urban were the most significant parameters that influenced flood hazard. Unplanned development of residential areas 

along rivers and lack of suitable drainage systems are the most influential proofs for inundation and flooding in Rasht 

city. Findings showed that machine learning methods are efficient in urban flood zoning. For urban flood vulnerability, 

based on the AHP method and expert knowledge, the weight for each factor was (population density = 0.363, land use 

= 0.279, dwelling quality = 0.158, household income = 0.087, distance to cultural heritage = 0.064, and distance to medical 

centers and hospitals = 0.049), and  population density was the significant parameter in the urban flood vulnerability. 
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The integrated technique outlined in the present study shows credible results can be created without complicated 

modeling and costly field surveys. The method presented is especially helpful in areas with little data, to describe and 

exhibit flood hazards. Vulnerability and hazard mapping can also serve as a first stage in advancing flood risk 

mitigation approaches and in allocating warning and forecasting systems. Appropriate drainage systems and 

maintenance of them are necessary for urban management and making plans to distribute urban residents in all regions 

is significant in decreasing flood risks. Due to human activities and climate change, the risk map changes over time, 

future studies on the current topic are therefore recommended. 
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