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Abstract: The spread of ideas is a fundamental concern of today’s news ecology. Understanding the 1

dynamics of the spread of information and its co-option by interested parties is of critical importance. 2

Research on this topic has shown that individuals tend to cluster in echo-chambers and are driven 3

by confirmation bias. In this paper, we leverage the active inference framework to provide an in 4

silico model of confirmation bias and its effect on echo-chamber formation. We build a model based 5

on active inference, where agents tend to sample information in order to justify their own view of 6

reality, which eventually leads to them to have a high degree of certainty about their own beliefs. 7

We show that, once agents have reached a certain level of certainty about their beliefs, it becomes 8

very difficult to get them to change their views. This system of self-confirming beliefs is upheld 9

and reinforced by the evolving relationship between agent’s beliefs and its observations, which over 10

time will continue to provide evidence for their ingrained ideas about the world. The epistemic 11

communities that are consolidated by these shared beliefs, in turn, tend to produce perceptions of 12

reality that reinforce those shared beliefs. We provide an active inference account of this community 13

formation mechanism. We postulate that agents are driven by the epistemic value that they obtain 14

from sampling or observing the behaviors of other agents. Inspired by digital social networks like 15

Twitter, we build a generative model in which agents generate observable social claims or posts (e.g. 16

‘tweets’) while reading the socially-observable claims of other agents, that lend support towards one 17

of two mutually-exclusive abstract topics. Agents can choose which other agent they pay attention 18

to at each timestep, and crucially who they attend to and what they choose to read influences their 19

beliefs about the world. Agents also assess their local network’s perspective, influencing which kinds 20

of posts they expect to see other agents making. The model was built and simulated simulated using 21

the freely-available Python package pymdp. The proposed active inference model can reproduce the 22

formation of echo-chambers over social networks, and gives us insight into the cognitive processes 23

that lead to this phenomenon. 24

Keywords: epistemic community, social media, active inference, opinion dynamics 25

1. Introduction 26

1.1. Confirmation bias and conformity 27

The practice of exchanging ideas, sharing concepts and values between different minds, 28

is a fundamental process that allows humans and other living agents to coordinate and 29

operate socially. By sharing of ideas, individuals and communities can better pursue their 30

pragmatic goals and improve their understanding of the world and each other. Humans 31

are compulsory cooperators [1] : human survival itself is predicated on the ability to access 32

and leverage bodies of accumulated cultural knowledge. Over the course of evolutionary 33

history, humans have developed an exquisitely sensitive capacity to discriminate reliable 34

sources of information from unreliable ones, and to learn from other relevant human agents 35

to improve their understanding or model of their world [2,3]. 36

This epistemic process is not, however, without its flaws. There is evidence that 37

humans process information by reasoning heuristically, which is hypothesized to limit 38
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the consumption of energy and facilitate rapid decision-making [4–6]. One such heuristic 39

is confirmation bias, which implies that, all other things being equal, individuals prefer 40

sticking to their own beliefs over changing their minds [7]. There is an extensive literature 41

documenting the phenomenon of confirmation bias and its relation to cognitive dissonance. 42

Individuals faced with information that conflicts with their core beliefs may be prone to 43

cognitive dissonance, which is experienced as undesirable [8–10]. Tolerance for cognitive 44

dissonance varies across individuals, but in general, the phenomenon significantly influ- 45

ences decision-making [9,11]. To avoid such dissonance, individuals tend to selectively 46

seek information from ‘others like me’, others whom they expect will share similar ideas, 47

concepts, and values [9]. Confirmation bias has a social influence; in particular, individ- 48

uals prefer sampling data from their in-group, and will seek to confirm their own ideas 49

by foraging for confirmatory information from their in-group [12,13]. To make sure that 50

they have access to other like-minded allies, agents are more likely to choose to belong 51

to communities where their deeply held beliefs are promoted and shared, which limits 52

the cognitive effort that is already expanded in the foraging of information [11]. In-group 53

delivery of information influences how strongly this information is integrated, especially 54

if group membership is important for the individual [14]. This sampling extends beyond 55

other agents, to choice of media and environment. For instance, individuals generally 56

choose news sources that fit their expectations [9]. 57

This phenomenon of confirmation bias is echoed in another heuristic: conformity, 58

the need to cohere with the beliefs of one’s in-group [15,16]. It is adaptive for agents to 59

conform to the behaviours of others in their niche, in part for the very reasons highlighted 60

above [17]. Conformity limits how much information any one agent has to gather to act 61

appropriately, and the sources sampled from their ingroup are generally trusted [18]. This 62

is partly due to the fact that members of an in-group can be most precisely predicted: their 63

behaviours are normed, and expected by the members of the group, in ways that generally 64

benefit its members [19,20]. But conformity has other benefits as well. Being able to sample 65

from the group entails a continued relationship to other members. This will also enable 66

members to acquire pragmatic resources beyond information (e.g., food and shelter), as the 67

group generally provides for its members [21,22]. Being cut off from the group can lead to 68

existential difficulties [23,24]. Group members can be sanctioned if they fail to conform to 69

the norms, including epistemic norms [25,26]. 70

1.2. The spread of ideas 71

These two heuristics, confirmation bias and conformity, mutually reinforce each other. 72

Specifically, to save energy, confirmation bias leads to agents’ being drawn to groups that 73

validate their opinion, and thus increases the probability of behavioural and epistemic 74

conformity [27]. Importantly, these two heuristics form the basis for information spread. 75

Agents spread information through media and through connections to one another, given a 76

network structure [28]. The spread of ideas and behaviors from one agent to another serves 77

both local and larger-scale coordination [28,29]. 78

The spread of ideas more straightforward when agents are already attuned to them. 79

Individuals are more likely to adopt ideas that they believe will have a positive effect on 80

them, especially if the outcome of sharing that information will be positive [30]. According 81

to Falk and Scholz, this entails that sharing among group members of news that dovetails 82

with group norms is likely to lead to the adoption of these ideas among the other group 83

members, following the conformity heuristic mentioned earlier. One way to predict whether 84

information will be coherent with the group norms is to assess it with one’s respect to own 85

value system. Naturally, similar individuals within a given group, who share values, will 86

be more likely to spread ideas [31,32]. 87

This notion of attunement or synchronisation is fundamental. Synchronisation across 88

network nodes lowers the cost of information flow [33], and increases the certainty of the 89

message being spread, as well as the quality of its reception, even if the message itself 90

may be prone to errors [34,35]. Specifically, a message will be more intelligible to group 91

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 January 2022                   doi:10.20944/preprints202201.0124.v1

https://doi.org/10.20944/preprints202201.0124.v1


3 of 49

members who share a common set of codes, and agents are more likely to integrate new 92

information if it fits with their understanding of the world [36–38]. 93

Hashtags have been shown to be heavy carriers of information in echo-chambers. They 94

tend to be used in partisan ways, to reach people of similar mindsets, as well as to signal 95

one’s own partisanship affiliation [39]. The spread of information is optimised through 96

hashtags as pseudo-meta-linguistic categorisation makers [40]. 97

1.3. Communities forming around ideas 98

Thus, the beliefs and epistemic communities of agents develop together, synchronously. 99

We label communities formed in this process of belief sharing as ‘epistemic communities’. 100

Such communities share and spread a worldview, or a paradigm, and normalize sampling 101

behaviors (i.e., manners of observing and engaging with the shared social world) that 102

reinforce this view of the world [41]. Individuals in the community are tied together by 103

these epistemic practices, further reinforcing the social signals which act as evidence for 104

the shared model of the world [20]. 105

One such example of these communities is the echo-chamber, a phenomenon that 106

has been studied significantly in social media [39,42–48]. Echo-chambers are an extreme 107

example of epistemic communities, and they have components that enforce their formation 108

and maintenance [49–51]. Echo-chambers tie people with similar views together, and tend 109

to actively work against the engagement with, and assessment and evaluation of, external 110

sources (e.g., information provided by members of the outgroup) [43,49]. Echo-chambers 111

can become epistemically vulnerable when members can no longer assess whether an 112

information is true or not [49,52]. Similarly, only having access to a few sources limits how 113

much information can be gathered, and relevant sources of evidence may fall through the 114

gaps [50,53]. According to [53], error will be propagated, and it will be difficult to check 115

errors against anything, as most minds in the echo-chamber are synchronized, and poised 116

to make the same mistakes. 117

1.4. Volatility and habit formation 118

Studies on the perception of environmental volatility range from economics to psycho- 119

education for the autism spectrum [54–56]. Optimal inference in a changing world requires 120

integrating incoming sensory data with beliefs about the intrinsic volatility of the environ- 121

ment. Intuitively, environments with higher volatility change more quickly and thus have a 122

shorter intrinsic timescale—and conversely for environments with lower volatility. For ex- 123

ample, autistic individuals tend to pay more attention to small changes in the environment, 124

giving them a better ability to track potentially important fluctuations in information [54]. 125

On the other hand, this increased attention to environmental fluctuations may also lead 126

to increased sensitivity to random, non-informative changes in the environment, a phe- 127

nomenon that might be called (from a signal-detection perspective) a higher ‘false-positive’ 128

rate [54]. 129

When this type of precision dynamics [57] is applied to the social field at large, emer- 130

gent epistemic phenomena can be explained. For instance, during the COVID-19 pandemic, 131

the certainty around knowledge was very low, as information about the pandemic and the 132

biology of the virus was limited [58,59]. In addition, alternative sources of information (e.g., 133

anti-vaccine conspiracies) had become more prevalent and more influential in some social 134

networks [60]. The gravity of the affliction, and the strength of the governmental response, 135

also made any information on the topic vitally important, and worth one’s attention [61]. 136

This prompted an intensive use of information technology in order for individuals to 137

find answers ("doing one’s own research"). This excessive use points to the awareness by 138

laypeople of the high volatility of the topic. [62] measured emotional volatility on social 139

media in China during the pandemic, and explored the social dynamics underlying the 140

emotional volatility. 141

Individuals can deal with volatility by using various coping mechanisms. One such 142

mechanism is to constrain the uncertainty related to their own behaviors via habit formation 143
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[63–72]. In this paper, we model habit formation as a form of behavioral reinforcement, 144

where behaviors become more probable as a function of how often they are engaged [73,74]. 145

If behavior is initially goal- or information-driven, habit-learning can then ‘zero-in’ and 146

isolate the invariant features of such (initially) goal-directed behavior [75], mirroring the 147

so-called transition from ‘model-based‘ to ‘model-free‘ decision-making in reinforcement 148

learning [76,77]. After an agent has engaged in a given behavior enough, even if that be- 149

havior is initially pursued in a goal-driven manner, a habit can then be formed and become 150

hard to ‘unlearn’ [78]. This view also supports the idea that, initially, habit-formation can 151

be goal-driven. In the model we introduce here, behavior is driven by information-seeking 152

drives that, due to confirmation bias, leads agents to preferentially sample information 153

from other agents with beliefs that (they believe) are similar to their own. In this sense, 154

confirmation bias serves as the original ‘motivation’ that later underwrites preferential 155

sampling behavior. In combination with habit learning, this peer-specific sampling can 156

then become impossible to stop enacting, even in the face of changing information. 157

1.5. An active inference model of epistemic communities 158

This paper introduces a computational model of epistemic communities, wherein 159

individual agents share information with one another and come to form beliefs not only 160

about their local environment, but also about the beliefs of other agents in their community. 161

To understand this phenomenon, we leverage the active inference framework, a first 162

principles theory of cognition, which explains the manner in which agents select actions 163

based on their causal model or understanding of the world. Active inference says that 164

organisms act to minimize a quantity called variational free energy, which quantifies the 165

divergence between expected and sensed data. From this point of view, to select an action 166

is to infer ’what I must be doing, given what I believe and what I sense’. Extensive work 167

has been done in the field of active inference to study social systems and the way in which 168

the minimisation of free energy could give rise to (eventually large-scale) behavioural 169

coordination [3,16,79–84]. However, much of this work is still theoretical. 170

At first glance, it might appear difficult to model a phenomenon like confirmation bias 171

using an active inference formulation, because action selection in active inference is guided 172

by the principle of maximizing Bayesian surprise or salience, which requires constantly 173

seeking out information that is expected to ‘challenge’ one’s world model [85–87]. 174

However, the key notion that allows ‘confirmation bias’ to nonetheless emerge under 175

active inference, is ultimately the subjective nature of information gain, also known as 176

‘epistemic value’. Crucially, this Bayesian surprise or information gain term is always 177

an expected surprise—that is, what counts as an ‘information-maximizing’ observation is 178

always defined in relation to agent’s set of beliefs or generative model. Due to this inherent 179

subjectivity, the true informativeness or epistemic value of an action can be arbitrarily far 180

from the agent’s expectation thereof. Taking advantage of this, in the model presented here, 181

we endow agents with what we refer to as epistemic confirmation bias. This is implemented 182

by building a prior belief into the generative model, namely that agents are more likely to 183

sample informative observations from agents with whom they agree a priori. Therefore, 184

agents will sample agents with whom they agree under the (not necessarily true) beliefs 185

that such agents are more likely to provide higher quality information. 186

We can make two important distinctions between the kind of polarisation that we 187

observe in traditional opinion dynamics and the kind achieved through multi-agent active 188

inference modelling. First, in traditional approaches, the implementation of bounded 189

confidence to motivate polarisation is essentially a hard-coded restriction on the agents’ 190

ability to perceive and therefore update their beliefs [88–91]. In contrast, in the active 191

inference approach, polarisation is instead motivated by the positive effect of confirmation 192

bias, which is integrated directly in the agents’ (likelihood) model of the world, which 193

allows agents to get more evidence about their environment if the information comes from 194

another agent that shares the same worldview. This means that agents are motivated 195

implicitly in their generative models to gain more evidence about the world if this evidence 196
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confirms their preexisting beliefs. Second, in the traditional approaches, agents can directly 197

perceive the ‘belief state’ of other agents, and are thus the opinion of one agent directly 198

influences that of another [88,90]. This is an unrealistic assumption, since human agents 199

have to infer the belief states of others by interpreting their behaviour. This aspect of belief 200

inference is a cornerstone of the active inference approach: the belief of another agent is 201

modelled as a hidden state of the world — thus agents do not have direct access to each 202

others’ belief states. Instead, through inference, they come to hold beliefs about each others’ 203

beliefs, in addition to a belief about some agent-independent ‘world states’ [20,92]. 204

More recently, researchers have begun to build Bayesian models of opinion dynam- 205

ics, motivated by the Bayesian brain hypothesis and the notion that decision-making is 206

inherently probabilistic [93–97]. Generally, the active inference approach falls within the 207

theoretical umbrella of Bayesian agent-based modelling, because there is a deep assump- 208

tion that environmental states are inherently hidden (in our case, the belief states of other 209

agents) and need to be inferred on the basis of prior beliefs and sensory observations (i.e., 210

observing the behaviour of other agents). However, as sketched above, a crucial point that 211

distinguishes approaches like active inference and planning as inference from the general 212

Bayesian approach is the notion that actions themselves are inferred [98,99]. While there have 213

been models that use Bayesian inference for inference of opinions (i.e., Bayesian belief 214

states about some particular idea), the process of action selection within these works is still 215

often added on after the fact using an arbitrary decision rule (e.g., a softmax function of 216

an arbitrary value vector). Action selection is often cast as a noisy signal of the true belief 217

state, such as in [97], which is then used to update neighbouring agents’ beliefs through 218

Bayesian inference. Crucially, in active inference, behavior itself is cast as the result of 219

inference, specifically by sampling actions from a posterior distribution over actions. The 220

posterior over actions is obtained by minimizing the expected free energy of future beliefs, 221

conditioned on actions. In other words, actions are selected in order to achieve goals and 222

minimize future uncertainty, i.e., to maximize a lower bound on Bayesian model evidence. 223

Importantly for our purposes, one can supplement this goal-directed aspect of policy 224

inference, driven by the expected free energy, with an inflexible ‘prior preferences over 225

actions’, i.e., habits. If this prior preference over actions is learned over time, then in the 226

context of the opinion dynamics model presented here, this can lead to a propensity to 227

continue sampling agents that have been sampled previously. The idea of choosing actions 228

through inference in accordance with the minimisation of uncertainty is powerful as a 229

modelling technique, because through the choice of policy preferences, one can encode 230

various social behaviors, such as conformity, habit formation, hostility, or indifference. 231

While in this report, only habit formation, conformity, and polarisation are explored, we 232

emphasize the potential of augmenting the current model to capture a wider range of 233

features observed in human social behaviour. 234

1.6. Hypotheses 235

In this paper, we present a multi-agent model of opinion dynamics based on the active 236

inference formulation. Our simulated agents are situated in a social network where they 237

observe the behavior of other agents and update their beliefs about a pair of abstract, 238

mutually-exclusive “Ideas” (e.g., the truth values of two competing claims), as well as 239

the beliefs of their neighbours in the social network. Agents themselves have a prior 240

preference to announce their beliefs via an action that is observable by other agents (e.g., 241

posting/tweeting a “hashtag”). We show that the proposed active inference model can 242

replicate confirmation bias, exposure effects, the formation of echo-chambers, and exacerba- 243

tion of these phenomena via habit-learning. These effects can be modelled by changing the 244

parameters of individual generative models, i.e., the cognitive features of the individuals 245

comprising the group. We also uncover interesting interactions between individual-level 246

cognitive features and the network architecture that constrains their social interactions. 247

The large-scale behaviour of the model can be used to test three hypotheses, which are 248

motivated by the existing literature. We formulate and test three hypotheses as follows: 249
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Hypothesis 1: We cast confirmation bias in active inference as a form of ‘biased 250

curiosity,’ in which agents selectively gather information from other agents with whom 251

(they believe) they agree, under the assumption that like-minded agents provide higher- 252

quality, more reliable information. We hypothesize that this ‘epistemic confirmation bias’ 253

can mediate the formation of echo-chambers and polarisation in social networks of active 254

inference agents. However, we further hypothesize that epistemic confirmation bias and 255

network connectivity will bidirectionally modulate the formation of polarised epistemic 256

communities, tuning the collective tradeoff between deadlock (polarisation) and agreement 257

(consensus). 258

Hypothesis 2: We also consider the effect of agents’ beliefs about the volatility of 259

their social environments. In particular, we examine how beliefs about social volatility 260

impact exploratory sampling of other agents’ perspectives, which itself may interact with 261

epistemic confirmation bias to determine the formation of echo-chambers. In particular, we 262

hypothesize that beliefs about less-quickly-changing social environment (a belief in lower 263

social volatility) will increase the likelihood of polarisation, as opposed to consensus. 264

Hypothesis 3: Finally, we also hypothesize that we can model selective exposure 265

effects and conformity through habit formation, which naturally emerges through Bayes- 266

optimal learning of a prior distribution over policies. To do so, we show that agents 267

will begin to sample only those who belong to a particular epistemic community. We 268

hypothesize that a greater learning rate for habit formation will lead to clusters within the 269

network, thus amplifying and quickening the formation of echo-chambers. 270

Using the multi-agent active inference model of opinion dynamics, we achieve sim- 271

ulation outcomes that replicate common phenomena observed in the opinion dynamics 272

literature, such as polarisation and consensus. In the sections to follow, we first describe the 273

generative model that each agent uses to engage in active inference, and then discuss how 274

we couple the agents together in an opinion dynamics network. We conclude by presenting 275

numerical results that investigate each of the three hypotheses laid out above. 276

2. An active inference model of opinion dynamics 277

2.1. Overview 278

We present an multi-agent active inference model of opinion dynamics on an idealized 279

social network. In the model, a group of agents simultaneously updates their beliefs 280

about an abstract, binary hidden state (that represents two conflicting “Ideas”) and the 281

opinion states about these ideas, held by a limited set of neighbouring agents. Each agent 282

also generates an action that is observable to other agents. In the context of digital social 283

networks like Twitter, these observable actions could be analogized to ‘posts’, ‘tweets’ or 284

‘hashtags’, i.e. some abstract expression carrying information about the belief state of the 285

agent generating that expression. Hereafter we refer to these actions as ‘tweeting a Hashtag’ 286

and describe agents‘ behaviour as the decision to ‘tweet Hashtag 1 vs. Hashtag 2’, etc. 287

Over time, each agent updates a posterior distribution (or belief) about which of the two 288

Ideas is true, as well as a belief about what a connected set of other agents in the network 289

believe (namely, those agents who they ‘follow‘ or are ‘followed by’ in the social network). 290

Both of these inferences are achieved by observing the behaviour of other agents, where 291

crucially, this behaviour depends on each agent’s beliefs (notably about other agents). In 292

our formulation, agents can only observe the behaviour of other agents to which they are 293

specifically connected. 294

It is worth emphasizing that in this formulation, there is no true hidden state that 295

corresponds to the competing truth status of the two “Ideas.” Rather, this abstract binary 296

hidden state is only contained in the generative model or internal representation of each 297

agent. The only ‘real’ states of the system are the social agents who comprise the network 298

and their observable behaviour. 299

In the sections to follow, we will first briefly summarize the previous literature on 300

computational approaches to the study of opinion dynamics. We then review the formalism 301

of active inference, from the specification of the generative models that will each agent 302
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will use to represent their external world, to the update equations for state estimation and 303

decision-making. Finally, we describe the simulations of multi-agent dynamics by linking 304

an ensemble of such active inference agents into a network. 305

2.2. Opinion dynamics models 306

In previous models of opinion dynamics, individual agents are often characterized 307

by one or a few variables that encode the current belief or opinion held by that agent [100– 308

102]. Collections of agents then update their respective opinion variables by ‘observing’ 309

other variables that (either deterministically or stochastically) depend on the opinions 310

of other agents in the ensemble. The nature of the inter-agent interactions varies across 311

different models, ranging from homogeneous, ‘mean-field’-like global potentials [103,104] 312

to structured, heterogeneous networks with fixed or dynamic weights between agents 313

[105,106]. The opinion variables can take scalar or vector-values [107,108], and have either 314

discrete or continuous support [109–112]. 315

Bayesian variants of opinion dynamics models explicitly take into account the uncer- 316

tainty associated with the observations and decisions of agents, where now, the updates 317

to opinion variables become (exact or approximate) Bayesian updates [96,97,113,114]. The 318

active inference model we present here is an example of such a Bayesian approach, with 319

a few crucial distinctions, such as the approximate (as opposed to exact) nature of the 320

Bayesian belief updating, and the fact that actions, in addition to opinions, are the result of 321

inference. We will detail these distinctions further in the sections below on active inference. 322

2.3. Active inference 323

Active inference is a biologically motivated framework that rests on first principles of 324

self-organization in complex, adaptive systems [87,98,115]. Particularly, it is premised on 325

the notion that the internal states of any biological system are statistically insulated from 326

the environment that generates sensory observations, and thus must engage in inference 327

(about the causes of its sensory states) to behave optimally [116]. Active inference finesses 328

this fundamental uncertainty by adding a Bayesian twist, proposing that biological systems 329

entertain or entail a generative model of the latent environmental causes of their sensory 330

inputs. Therefore, unlike classic reinforcement learning or reflexive behavioral algorithms 331

(e.g., state-action policy mapping [73,117]), actions taken under active inference are guided 332

by internal beliefs, which themselves are optimized with respect to an internal ‘world 333

model,’ or representation of the world’s causal and data-generating structure. 334

Crucially, active inference agents represent their own actions (and their typical sensory 335

consequences) in their generative model. By performing inference with respect to both 336

hidden environment states of the world and the consequences of their own actions, active 337

inference agents can evince behavior that both 1) achieves their goals or fulfills preferences 338

and 2) actively reduces uncertainty in the agent’s world-model [87,98,116]. An active 339

inference agent’s only imperative is to increase model evidence, or equivalently, to reduce 340

surprise. Processes like learning, perception, planning, and goal-directed behavior emerge 341

from this single drive to increase evidence for the agent’s generative model of the world. 342

In active inference, the agents never act directly on sensory data, but rather, change 343

their beliefs about what causes that data. Thus, the core step in active inference consists in 344

optimizing these beliefs using a generative model. This process is also known as Bayesian 345

inference or Bayesian model inversion. Inference answers the question: “what is my best 346

guess about the state of the world, given my sensory data and prior beliefs”? This can be 347

formalized using Bayes’ rule: 348

P(ϑ|y) = P(y|ϑ)P(ϑ)
∑ϑ P(y|ϑ)P(ϑ)

(1)

where the optimal belief about ’hidden’ or latent variables ϑ, given some sensory 349

data y, is called the posterior distribution P(ϑ|y). Bayes’ rule yields an analytic relationship 350
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between the generative model P(y, ϑ) and the posterior. Bayesian inference consists in 351

calculating (either analytically or approximately) P(ϑ|y). Active inference is no different: 352

perception (the generation of a best guess about the current hidden states of the world) 353

is formalized as the computation of a posterior distribution over hidden states s, and 354

action (the active part of active inference) is formalized as the computation of a posterior 355

distribution over policies π. In active inference, however, this problem is turned into one of 356

approximate Bayesian inference, where instead of finding the optimal posterior P(s|o), active 357

inference agents instead approximate this optimal posterior with a variational posterior 358

Q(s; ϕ), i.e., a belief over hidden states that is parameterised by variational parameters 359

ϕ. The reason for this is that the exact inference is often computationally intractable. The 360

marginalization problem involved in exact Bayesian inference (expressed in Equation (1)) 361

is often intractable for many realistic generative models. Variational inference turns this 362

intractable calculation of the marginal into an optimization problem, where a variational 363

upper bound on surprise known as variational free energy (aka negative model evidence in 364

statistics) is minimized: 365

Q∗(s; ϕ) = argmin
ϕ

DKL(Q(s; ϕ) ∥ P(o, s))︸ ︷︷ ︸
surprise bound

DKL(Q(s; ϕ) ∥ P(o, s)) = DKL(Q(s; ϕ) ∥ P(s|o))− log P(o)︸ ︷︷ ︸
surprise

(2)

where DKL(q ∥ p) is the Kullback-Leibler divergence, a non-negative measure of dif- 366

ference between probability distributions, where DKL(q ∥ p) = 0 when q = p. Variational 367

inference thus consists in optimizing the variational parameters ϕ in order to minimize the 368

free energy, which itself renders the variational posterior a better approximation to the true 369

posterior. When variational inference is exact, the bound becomes exact and the free energy 370

reduces to the surprise or negative log evidence. The remaining (negative) surprise can be 371

itself used as a score for model averaging and model selection [118,119]. 372

Active inference agents achieve perception and action by minimizing the surprise 373

bound in Equation (2) with respect to variational beliefs about particular variables of their 374

generative model. Optimizing beliefs about variables that represent latent environmental 375

states (often denoted s) is proposed as a formal model of perception, while optimizing 376

beliefs about variables that correspond to policies or control of the environment (often 377

denoted u or π) is the formal analogue of planning and action. Therefore, active inference 378

agents both infer the hidden states (perception) and policies (action) through a process of 379

variational inference. The update equations used for perception and planning under active 380

inference are detailed in sections State estimation, Policy inference and Action Selection. 381

Specifying a generative model P(o, s) is critical to determining the behavior of active 382

inference agents. In the following sections we introduce the discrete state space model, a 383

partially observed Markov Decision Process or POMDP, with which we equip agents in the 384

multi-agent opinion dynamics setting. 385

2.4. Generative model 386

Formally, the generative model is a joint probability distribution P(o, φ) over obser- 387

vations o and latent variables φ. Intuitively, one can think of the generative model as the 388

agent’s ‘representation’ of its environment, and specifically how that environment elicits 389

observations [120]. In the discrete generative model described below, this generative model 390

comprises assumptions about how hidden states s and actions u are probabilistically related 391

to one another and to observations o. 392

In the current study, agents entertain partially-observed Markov Decision Process gen- 393

erative models, or POMDPs [121,122]. POMDPs are a class of decision-making models 394

commonly used to simulate planning and decision-making in environments where agents 395

must at each timestep select one of a discrete set of mutually-exclusive options. This is 396
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Figure 1. Bayesian network representation of the POMDP generative model. Squares represent priors,
likelihoods, or ‘factors’ that relate random variables to one another, and circles represent random
variables (stochastic nodes). Different hidden state factors are represented as state variables and the
different modality-specific A(m) arrays of the observation model shown are side by side, since they
lead independently to the observations generated in that modality, but dependent conjunctively on
hidden state factors. Note that the B array can be similarly decomposed into different sub-arrays, one
per hidden state factor, but is shown as a single square here for simplicity. The prior over policies
is parameterised by E , which has separate prior over control states (EWho and ET) for each control
state factor. The box at the top right contains mathematical descriptions of each component in the
generative mode. Note that while included in the graphical model, we leave out the C vector since it
is not relevant for the current model.
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Variable Name Notation Meaning
The focal agent’s tweets oST ∈ Z1×H

Observations o = {o(1), ..., o(M)} Neighbour k’s tweets oNTk ∈ Z1×(H+1)

The sampled agent oWho ∈ Z1×K

The focal agent’s beliefs sIdea ∈ Z1×2

Hidden States s = {s(1), ..., s(F)} Neighbour k’s beliefs sMBk ∈ Z1×2

The Hashtag tweeted by focal agent
sT ∈ Z1×H

The neighbour sampled focal agent
sWho ∈ Z1×n

Actions u = {u(1), ..., u(F)} The Hashtag control state uT ∈ Z1×H

The neighbour attendance control state
uWho ∈ Z1×n

Self tweet likelihood AST ∈
(R>0)

2×2×2K×H×K

Observation
model

P(o(m)
t = i|s(1)t = j, s(2)t = k, ...) =

[A(m)]ijk...

neighbour tweet likelihood ANTk ∈
(R>0)

2×2×2K×H×K

Neighbour Attend Likelihood AWho ∈
(R>0)

K×2×2K×H×K

Environmental dynamics and volatility
BIdea ∈ R2×2

>0

Transition model P(s( f )
t+1 = i|s( f )

t = j, u( f )
t = k) =

[B( f )]ijk

Meta-belief dynamics and volatility
BMBk ∈ (R>0)

2×2

Tweet control BT ∈ (R>0)
H×H×H

Neighbour attendance control BWho ∈
(R>0)

K×K×K

Initial State p(s( f )
0 = i) = [D( f )]i Initial state distribution D ∈

(R>0)
2×2K×H×K

Control State Prior P(uT
0 | sidea) = ET Empirical prior over Hashtag control

state ET ∈ (R>0)
H×2

P(uWho
0 | EWho) = E[Dir(ε)] Dirichlet hyperparameters over neigh-

bour attendance control state ε ∈
(R>0)

1×K

Table 1. Variables of the POMDP generative model of single agent opinion formation. The abstract name of each variable
is written in the left column, its mathematical notation is in the middle column, and the right column shows how these
variables correspond to different components of the opinion formation generative model. M is the total number of
observation modalities and F is the number of hidden state / control factors. The observation model is a categorical
likelihood distribution encoded by A, which comprises a collection of modality-specific A(m) arrays. The transition
model is also a likelihood, mapping each state to its successor in time, encoded by the B( f ) arrays. The initial distribution
over hidden states is encoded by the D vector, and the prior distribution over control factors is encoded by the E and ε

distributions.

often represented using several random variables: a discrete set of actions u (also known as 397

control states); hidden states s, which evolve according to (action-dependent) Markovian 398

dynamics; and observations o, which probabilistically depend upon current hidden states. 399

In most active inference models using POMDP generative models, hidden states, observa- 400

tions, and actions are discrete random variables—namely, they can take one of a finite set 401

of values at a given time. 402

We include an additional latent variable, policies π, in the generative model. Policies 403

are simply sequences of control states u. Using the terminology above, our generative 404

model can be written down as P(õ, φ̃) where φ̃ = {s̃, ũ, π}. The tilde notation x̃ denotes a 405

sequence of random variables over time, e.g. s̃ = s1,...,T . 406

We can now write down the Markovian generative model as follows: 407

P(õ, s̃, ũ, π) = P(s1)P(π)
T

∏
τ=2

P(sτ | sτ−1, uτ)P(uτ | π)
T

∏
τ=1

P(oτ | sτ) (3)

The observation likelihood P(oτ |sτ) represents the agent’s probabilistic understanding 408

of the relationship between hidden states sτ and concurrent observations oτ . Because both 409
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observations õ and states s̃ are discrete, this likelihood distribution will be represented as a 410

multidimensional array, which we hereafter denote A. Similarly, the transition distributions 411

P(sτ |sτ−1, uτ), which are denoted B, encode the agent’s beliefs about how hidden states 412

and control states determine subsequent hidden states. It is by changing actions uτ that the 413

agent can exert control on its environment, since the evolution of hidden states depends 414

both on the past state sτ−1 as well as the concurrent action uτ . Finally, the distribution 415

P(uτ |πτ) represents the mapping between policies and actions. 416

In many POMDP models, we segregate observations õ and hidden states (and controls) 417

s̃ (resp. ũ) into distinct modalities (for observations) and factors (for hidden states / control 418

states): 419

õ =
{

õ(1), õ(2), ..., õ(M)
}

s̃ =
{

s̃(1), s̃(2), ..., s̃(F)
}

ũ =
{

ũ(1), ũ(2), ..., ũ(F)
}

(4)

where the superscripts refer to the index of the modality or factor index, respectively. 420

Observation modalities can be thought of as sensory ‘channels’ that provide distinct 421

sorts of information. For example, in the context of human cognition, observation modalities 422

might correspond to the information originating in different sense organs, e.g., the ears, 423

eyes, skin. 424

Hidden state factors may be thought of as the generative model’s latent representation 425

of different features of the external world. Each of these factors has its own dynamics and 426

can be thought of as statistically independent from other factors. For instance, an object 427

might be described by both its spatial location and its color—‘location’ and ‘color’ would 428

thus be candidates for distinct hidden state factors in a generative model of an object. This 429

factorization is motivated by our intuition that something like an object’s color and location 430

are independent. An additional, minor note is that control states (the agent’s representation 431

of its own actions or ability to intervene on hidden states) are also divided into a set of 432

control factors, with one control factor for every hidden state factor. 433

Given this factorization, at any given time a single observation will thus comprise a 434

set of modality-specific observations, one from each sensory channel, and a hidden state 435

will comprise of a set of hidden states, one from each distinct hidden state factor. 436

Now that we’ve introduced the class of discrete generative models with which our 437

active inference agents will be endowed, we are now in a position to articulate the particular 438

structure of the generative model for a single agent. From here, using active inference 439

to perform inference and action with respect to each single agent’s generative model, we 440

can then ‘link together’ ensembles of these agents to form a complete opinion dynamics 441

simulation. 442

2.5. An individual model of opinion formation 443

We describe a generative model of opinion formation for a single agent. Note that each 444

active inference agent in the multi-agent simulations described below will be equipped 445

with this same basic generative model. A single agent (hereafter: the ‘focal agent’) observes 446

the actions of other agents, forms beliefs about an abstract binary environmental state, and 447

chooses actions, which themselves are observable to other agents. The focal agent’s action 448

consists of two simultaneous choices: an ‘expression’ action (choosing which observable 449

expression to make) and an ‘observation’ action (choosing which other agent to attend 450

to). As mentioned above, we analogize the ‘expression’ actions to posts made by users on 451

online social networks (e.g. ‘tweets’, ‘re-tweets’, ’shares’, ’likes’), and the contents of these 452

actions we refer to as ‘Hashtags.’ Crucially, an agent can only observe one neighbouring 453

agent at a time. Therefore, at each timestep, a focal agent both tweets its own Hashtag, and 454

also chooses to read the Hashtag tweeted by another single agent. See Figure 1 and Table 1 455

for a summary of the distributions and random variables that comprise a single agent’s 456

generative model of opinion formation. 457
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Hidden states 458

Each agent’s generative model comprises hidden states that fall into four categories—however,459

the actual number of hidden state factors per agent depends on their local network connec- 460

tivity, so a particular agent will usually have more than four hidden state factors, but we 461

nevertheless classify each hidden state factor into one of these four categories: 462

1. sIdea: A binary random variable that encodes the agent’s beliefs about an abstract 463

environmental state that represents the truth value of two mutually-exclusive Ideas 464

or claims. This binary variable can thus take a value of either 0 or 1, which we assign 465

arbitrary labels of Idea 1 and Idea 2. If Idea 1 is true, then necessarily Idea 2 is false, 466

and vice-versa. 467

2. sMetaBelief (shortened to: sMB): a set of binary random variables, each of which 468

corresponds to a particular neighbour’s belief about which of the two Ideas is true. As a 469

representation of another agent’s belief, we hereafter refer to this class of hidden state 470

factor (and corresponding posteriors) as ‘meta-beliefs’. The values of this variable we 471

label Believe Idea 1 and Believe Idea 2. Each agent will have one hidden state factor 472

belonging to this category for each of its K neighbours, e.g. sMB1, sMB2, ..., sMBK. 473

3. sSelfTweet (shortened to: sT): A binary random variable corresponding to what the 474

focal agent is currently doing. In analogy to Twitter and other digital social media 475

platforms, we refer to this action as ‘tweeting‘ or ‘posting’, and the variable can take a 476

value of either 0 or 1, representing one of two possible contents (’Hashtags’). These 477

two actions are thus labeled Tweet Hashtag 1 (sSelfTweet = 0) and Tweet Hashtag 2 478

(sSelfTweet = 1). 479

4. sWhoAttend (shortened to: sWho): A multinomial random variable with as many discrete 480

levels as the focal agent has neighbours, representing which of their neighbours’ 481

actions the focal agent is currently attending to. For example, for an agent with three 482

neighbours, this variable could take three values: [0, 1, 2] which we label Attend 483

Neighbour 1, Attend Neighbour 2, Attend Neighbour 3. 484

For a single agent’s generative model, the precise number of ‘meta-belief’ hidden state 485

factors (those belonging to the sMB class of factors) depends on how many neighbours 486

the focal agent has. For instance, if a given agent i has three neighbours, then that agent’s 487

generative model will have three meta-belief hidden state factors: sMB1, sMB2, sMB3, each 488

representing the belief state of one of agent i’s three neighbours. Each agent has only 489

one hidden state factor belonging to the other categories: sIdea, sT, sWho. However, the 490

cardinality (i.e. number of levels) for the sWho hidden state factor will be equal to the focal 491

agent’s number of neighbours. So in the case of our agent i with 3 neighbours, then the 492

possible values of sWho will be [0, 1, 2], corresponding to the action of attending to one of 493

the three neighbours. 494

Control states 495

Each agent is also equipped with two control state factors. These state factors are the 496

agent’s representation of its own actions in the environment. Control factors interact with 497

hidden state factors to determine the next hidden state—thus, certain hidden state factors 498

are deemed ‘controllable’ if they are paired with a control factor. In the current model, these 499

two control state factors are paired with hidden state factors in Categories 3 and 4 above: 500

1. uT: A binary random variable corresponding to which ‘tweet action’ to take, i.e., 501

Tweet Hashtag 1 vs. Tweet Hashtag 2. This control factor interacts with the sT hidden 502

state factor. 503

2. uWho: A multinomial random variable corresponding to which neighbour to attend to, 504

e.g., Attend Neighbour 1, Attend Neighbour 2, Attend Neighbour 3,... This control 505

factor interacts with the sWho hidden state factor. 506
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Observation modalities 507

Just as we did for the hidden states, now we describe three categories of observation 508

modalities for a single agent’s generative model: 509

1. oSelfTweet or oST: A binary random variable representing the focal agent’s observation 510

of its own tweet actions—these ‘self-observations’ take the values of Hashtag 1 and 511

Hashtag 2. 512

2. oNeighbourTweet or oNT: A ternary random variable representing the observation of 513

a neighbour agent’s actions — these take the values of Null, Hashtag 1, Hashtag 514

2. Each agent has one ‘tweet observation’ modality for each of its K neighbours: 515

oNT1, oNT2, oNT3, ..., oNTK, in the same way that the number of sMB factors depends on 516

the number of neighbours. The purpose of the Null observation level will be clarified 517

later on. 518

3. oWhoAttend or oWho: A multinomial random variable representing the observation of 519

which neighbour the focal agent is attending to. This random variable has as many 520

discrete levels as the focal agent has neighbours. For example, for an agent with 521

three neighbours, this variable could take three values: [0, 1, 2] which we label Attend 522

Neighbour 1, Attend Neighbour 2, Attend Neighbour 3. 523

A focal agent receives a full multi-modality observation per timestep, i.e. 524

ot = {oST
t , oNT1

t , oNT2
t , ..., oNTK

t , oWho
t } (5)

Each single observation is thus a collection of observations, one from each modality. 525

Because one observation is collected from each modality at every timestep, the cardinality 526

of some modalities is increased by 1, creating an additional observation level which we can 527

call the "Null" observation level. The Null observation is included to effectively ‘block’ the 528

focal agent from seeing the Hashtags of neighbours they are not actively attending to. This 529

observation level is designed to have maximal ambiguity with respect to hidden states—in 530

other words, seeing a Null observation affords no information about hidden states and 531

thus has no effect on inference. This will become more clear when the observation and 532

transition likelihoods of the generative model are described. 533

Likelihoods 534

Having specified the random variables that form the support of a single agent’s 535

POMDP generative model, we can now move onto describing the likelihoods that determine 536

how hidden states relate to observations, and how hidden states relate to each other over 537

time. The construction of these likelihoods is indispensable for understanding both the 538

belief updating and choice behavior of active inference agents. 539

We begin with the observation likelihood model P(ot|st). This is also known as the 540

‘sensory likelihood’ or observation model, and is parameterised by a series of categorical dis- 541

tributions whose parameters we collectively encode as the columns of a multidimensional 542

array called A. In other words: 543

P(ot|st) = Cat(A)

The entire A array is actually a set of tensors, with one sub-tensor per observation 544

modality: 545

A = {AST, ANT1, ANT2, ..., ANTK, AWho}

Each modality-specific likelihood tensor Am is a potentially multidimensional array, 546

that encodes the conditional dependencies between each combination of hidden states 547
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st = {s1
t , s2

t , ..., sF
t } and observations om

t for that modality. For example, in a likelihood 548

array with two hidden state factors, entry [Am]ijk encodes the conditional probability 549

P(om
t = i|s1

t = j, s2
t = k), i.e., the probability of observing outcome i within observation 550

modality m, under hidden state factor 1 being level j and hidden state factor 2 being level 551

k. In the case of the generative model for opinion formation, these likelihood arrays will 552

be much higher dimensional than 3-D tensors, so we will generally refer to the elements 553

of a modality-specific Am array with the notation [Am]ijk... where the ellipses refer to an 554

indefinite number of index-able lagging dimensions. 555

Each agent in the opinion dynamic model will have one Am array per observation 556

modality. We will now step through them to describe their role in the generative model. 557

Self Tweet Likelihood 558

The array AST represents the agent’s beliefs about how hidden states relate to oST
559

(which content the agent is tweeting, either Hashtag 1 or Hashtag 2). By construction, AST
560

encodes an assumption that oST only depends on sT, the controllable hidden state factor 561

corresponding to the tweet action. This is an unambiguous or isomorphic mapping, which 562

we can express as follows: 563

AST = P(oST
t | sT

t ) = I2 =

[
1 0
0 1

]
(6)

In other words, the agent believes that the sT factor unambiguously signals its true 564

value via the oST observation modality. Each column of the matrix in Equation (6) represents 565

a (conditioning) value of sT, and each row represents a (conditioned) value of oST. The 566

value of oST does not depend on any of the other hidden state factors, which means that 567

this identity matrix is uniformly ‘tiled’ across the other dimensions of the AST array that 568

represent the mapping between the remaining hidden state factors {s(1), s(2), ...} /∈ sT and 569

oST. 570

Neighbour Tweet Likelihood 571

The array ANTk represents the focal agent’s beliefs about how hidden states relate 572

to oNTk, the focal agent’s observation of neighbour k’s tweet content. ANTk encodes an 573

assumption that oNTk probabilistically depends neighbour k’s belief about the two Ideas, 574

i.e., that oNTk depends on sMBk. This can be expressed as: 575

ANTk = P(oNTk
t | sMBk

t , sWho
t = k) =

[
0
h

]
(7)

where 0 represents a 1 × 2 vector of 0s, and h is a 2 × 2 matrix that represents the 576

‘Hashtag semantics,’ i.e. the assumed relationship between neighbour k’s beliefs and what 577

Hashtag they are expected to tweet. Importantly, the first row of the likelihood matrix 578

in Equation (7) represents the probability of encountering the Null observation, for the 579

various settings of hidden states. This observation always has probability 0 when the focal 580

agent is sampling neighbour k, as represented by the condition sWho
t = k. Otherwise, when 581

sWho
t ̸= k, the Null value will be expected with certainty. This can be expressed as: 582

ANTk = P(oNTk
t | sMBk

t , sWho
t ̸= k) =

1 1
0 0
0 0

 (8)

This inclusion of the Null is necessary to ensure that a focal agent only expects to 583

read one of Neighbour k’s tweet, if they are actively attending to Neighbour k—otherwise, 584

they receive a ‘blank’ observation that affords no information about hidden states (as 585
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represented by a maximally ambiguous likelihood over hidden states, i.e. a row of 1’s). 586

The lower two rows of the likelihood matrix in Equation (7) are occupied by the Hashtag 587

semantics h, which we stipulatively define with a ‘Hashtag reliability’ parameter ph: 588

h =

[
ph 1 − ph

1 − ph ph

]
(9)

Here, ph parameterizes two Bernoulli distributions, that respectively map between 589

the two levels of sIdea and the two levels of oNTk. In the limiting case of ph = 1, this means 590

that the focal agent believes that neighbour i’s tweet content is unambiguous evidence for 591

what Idea Neighbour k believes in. On the other hand, as ph → 0, h comes to resemble a 592

maximum entropy distribution — in this case, according to the focal agent’s generative 593

model, Neighbour k’s tweet activity provides no information about its beliefs. 594

This basic conditional relationship outlined in Equations (7) - (9) enables agents to 595

update their beliefs about the beliefs of their neighbours sMB according what they observe 596

their neighbours tweeting. Intuitively, this mapping captures the focal agent’s beliefs 597

that what their neighbours tweet is representative of what they believe. The accuracy 598

of this mapping (the value of ph) determines how strongly Hashtags reflect opinions or 599

the strength of beliefs. However, in order to allow agents to update their beliefs about 600

the truth-values of the Ideas per se (i.e., update a posterior distribution over sIdea), we 601

also construct ANTk such that agents believe that the validity or truth-values of the Ideas 602

themselves sIdea probabilistically relates to oNTk. Importantly, we make this conditional 603

relationship ‘biased’ in the sense that, according to ANTk, tweet observations are more 604

precisely related to a particular setting of the sMBk factor, if any only if sIdea is aligned with 605

that belief, i.e. when sMBk = sIdea. This can be formalized as an increased precision γ for 606

subsets of those conditional distributions encoded by P(oNTk
t | sMBk

t , sIdea), importantly 607

those subsets when sMBk
t = sIdea. As we will describe later, in the context of action, this 608

leads to an ‘epistemic’ drive for the focal agent to attend to neighbours who (are believed to) 609

share their opinions, leading to a confirmation bias effect. We therefore refer to this ‘biased 610

precision’ γ as the epistemic confirmation bias (ECB). 611

P(oNTk
t = i | sMBk

t = j, sIdea = j, sWho
t = k, γ) =

eγhij

∑l eγhl j
(10)

Note that this additional precision term γ exponentiates the Hashtag semantics matrix 612

h, which is already parameterised by the ‘Hashtag reliability’ parameter ph. In the con- 613

text of inference, an increasing value of γ means that the focal agent believes that tweet 614

observations oNTk
t will provide more information about hidden states, only in the case that 615

the neighbour k generating that tweet has ‘correct’ beliefs, i.e., their beliefs are aligned 616

with the true Idea. In the context of decision-making, this means that agents believe that 617

most informative observations come from those neighbours that have the ‘correct’ beliefs. 618

Under active inference, actions that evince informative observations (i.e., observations that 619

resolve the most uncertainty) are preferred. This drive is known as the ‘epistemic value’ or 620

‘salience’ [87]. Therefore, higher levels of γ will lead to increased epistemic value associated 621

with sampling only those neighbours that the focal agent believes have veridical beliefs, 622

according to its own beliefs about sIdea. 623

Neighbour Attend Likelihood 624

The array AWho represents the agent’s beliefs about hidden states relate to oWho. This 625

observation model is constructed such that oWho only depends on sWho, and specifically 626

that agents can always unambiguously infer who they are currently attending to, based on 627

oWho. This can be expressed succinctly as a K-dimensional identity matrix: 628
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AWho = P(oWho
t | sWho

t ) = IK (11)

where K is the number of the focal agent’s neighbours. Since the value of oWho does 629

not depend on any hidden state factors besides sWho, IK is ‘tiled’ across the remaining 630

dimensions of the AWho array. 631

Transition Model 632

Now we move onto the transition likelihood model P(st|st−1, ut−1). This is also known 633

as the ‘dynamical likelihood’ and is parameterized by a series of categorical distributions 634

whose parameters stored in a tensor B: 635

P(st|st−1) = Cat(B)

As there are multiple hidden state factors in our generative model, the full B array is 636

actually split into a collection of sub-arrays, one for each hidden state factor: 637

B = {BIdea, BMB1, BMB2, ..., BMBK, BT, BWho}

Each sub-array B f contains the categorical parameters of the factor-specific transition 638

likelihood P(s f
t |s

f
t−1|u

f
t−1). Note that this construction means that hidden state factors 639

are assumed to be independent by the generative model. In the context of the opinion 640

dynamics model, this mean that a single agent assumes that the hidden state sIdea both 641

does not affect, and is not affected by, the belief states of neighbouring agents sMBk, and 642

furthermore that the belief states of neighbours do not affect one another. In the following 643

sections, we summarize the transition models for each hidden state factor. 644

Environmental dynamics and volatility 645

The dynamics of sIdea according a focal agent’s generative model, are described by 646

BIdea. Since this is an uncontrollable hidden state factor, this can be expressed as a simple 647

2× 2 matrix, which expresses the focal agent’s beliefs about the probability that sIdea (which 648

Idea is “true”) switches over time. We parameterise this matrix with a precision parameter 649

that we call ‘inverse environmental volatility’ ωIdea: 650

BIdea = P(sIdea
t = i | sIdea

t−1 = j, ωIdea) =
eωIdea Iij

∑l eωIdea Il j
(12)

where I is the 2 × 2 identity matrix. The higher the value of ωIdea, the more the focal 651

agent believes that the same Idea remains valid over time (e.g. Idea 1 is likely to remain the 652

‘valid’ idea from one timestep to the next). Consequently, a lower value of ωIdea (and thus 653

a higher value of ‘environmental volatility’) means that the focal agent believes that the 654

truth value of the two Ideas changes less predictably over time (the hidden state is likely to 655

oscillate between Idea 1 and Idea 2). 656

Meta-belief dynamics and volatility 657

The dynamics of sMBk, or the meta-belief associated with neighbour k according to a 658

focal agent’s generative model, is described by BMBk. Like sIdea, sMBk is an an uncontrollable 659

hidden state factor, so the BMBk array can be expressed as a 2 × 2 matrix. Like BIdea, we 660

parameterize BMBk with a precision parameter that we term ‘inverse social volatility’ ωSoc: 661
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BMBk = P(sMBk
t = i | sMBk

t−1 = j, ωSoc) =
eωSoc Iij

∑l eωSoc Il j
(13)

The interpretation of ωSoc is similar to that of ωIdea: a higher value of ωSoc implies 662

that the focal agent assumes the its neighbours have ‘stubborn’ opinions and aren’t likely 663

to change over time. A lower value means that the focal agent assumes its neighbours‘ 664

opinions can easily change over time, or that its neighbours are ‘fickle’. 665

Tweet control 666

Now we discuss the controllable dynamics of the hidden state factor corresponding to 667

the Hashtag that the focal agent is tweeting: sSelfTweet or sT. Under the focal agent’s gener- 668

ative model, this factor only depends on the control state factor uT, and the corresponding 669

BT array can thus be expressed as an identity matrix that maps from the action (Tweet 670

Hashtag 1 vs. Tweet Hashtag 1) at timestep t − 1 to the next tweet value at timestep t: 671

BT = P(sT
t | uT

t−1) = I2 =

[
1 0
0 1

]
(14)

This means that the agent can unambiguously determine what it tweets next (the 672

value of sT
t+1) by means of actions uT

t . 673

Neighbour Attendance control 674

Similarly for the dynamics of sWho, under the focal agent’s generative model, this 675

factor only depends on the control state factor uWho, and the corresponding BWho array 676

can thus be expressed as an identity matrix that maps from the action of which of K 677

neighbours to attend to at timestep t − 1, to the next value of sWho at timestep t, namely 678

which neighbour is being attended to: 679

BWho = P(sWho
t | uWho

t−1 ) = IK (15)

Just like the dynamics of sT, sWho is thus fully controllable by the agent, i.e. determined 680

by the value of uWho. 681

Priors 682

The next component of the generative model are the priors over both observations P(o), 683

hidden states P(s0), and actions P(u). In discrete active inference models, we represent 684

these as vectors C, D, and E, respectively. 685

Observation prior C 686

In active inference, goal-directed action is often motivated by appealing to a baseline 687

prior over observations P(o | C) that specifies the agent’s preferences to encounter particu- 688

lar outcomes over others. This caches out value in terms of log probabilities or information, 689

rather than classical constructs like ‘reward.’ Interestingly, this prior over observations does 690

not come into play when performing inference about hidden states (i.e., it is not part of 691

the generative model in Equation (3)), but only during decision-making and action. Under 692

active inference, actions are selected to minimize a quantity called the expected free energy, a 693

quasi-value function that scores policies by their ability to bring expected observations in 694

alignment with preferred observations, while also maximizing information gain (see the 695

section on Policy inference for more details). In the current model, we do not rely on this C 696

vector to encode goals, but rather motivate action through a conditional action prior (see 697
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the section on the E vector below). For this reason, in our model the C is a flat distribution 698

over observations and doesn’t contribute to decision-making in this context. 699

State prior D 700

The prior over hidden states at the initial timestep is encoded by the so-called D vector, 701

P(s0 | D). The D vector encodes the agent’s beliefs about the initial state of the world, 702

prior to having made any observations. In the context of the opinion formation generative 703

model, it encodes baseline beliefs about which Idea is true, the metab-beliefs of the focal 704

agent’s neighbours, as well as the initial tweet that the focal agent is making and the initial 705

neighbour to which the focal agent is attending. 706

Empirical prior over Hashtag control state: ET
707

We furnish the generative model with a special conditional prior over Hashtag control 708

states P(uT
0 | sIdea), parameterised by a mapping denoted by ET. This quasi-likelihood or 709

link function renders the prior over Hashtag control states uT
0 an empirical prior, because 710

of an explicit dependence on sIdea
t . Under active inference, the final posterior over control 711

states Q(ut) becomes a Bayesian average of the ‘value’ of each control state, as determined 712

by the (negative) expected free energy (see the corresponding section on Policy inference 713

below), as well as the prior probability of each control state as encoded by P(u0). In the 714

current model, we make the prior over control states an empirical prior parameterised by 715

a ‘link function’ denoted ET vector. This makes the prior over the Hashtag control state 716

uT
0 conditionally dependent on the sIdea hidden state factor of the generative model. In 717

practice, this implies that the prior over those control states corresponding to tweet actions 718

P(uT
0 ) depends on the posterior over sIdea

t , the hidden state corresponding to which Idea is 719

true. This can be expressed as follows: 720

P(uT
0 | sIdea

t ) = Cat(ET)

where the mapping encoded by the entries of Cat(ET) is an identity matrix, that maps 721

each value of sIdea to a single Hashtag control state (value of uT
0 ). At each timestep we 722

approximate the prior at timestep t over sIdea with the agent’s current posterior belief 723

Q(sIdea
t ). See the following sections on belief updating explain how one optimizes the 724

variational posterior over hidden states Q(st) using observations. Once approximated this 725

way, we can re-express the empirical prior over Hashtag control states P(uT
0 ) as: 726

P(uT
0 ) = EQ(st)[P(u

T
0 | sIdea

t )]

Agents are therefore more likely to take the action uT = Tweet Hashtag 1 if they 727

believe more in Idea 1 than Idea 2 (as reflected in the value of Q(sIdea
t )), and likewise 728

more likely to take the action uT = Tweet Hashtag 2 if they believe more in Idea 1 than 729

Idea 2. This empirical prior formulation thus renders the probability of taking a particular 730

Tweet Hashtag action directly proportional to the agent’s belief in one of the two Ideas, as 731

encoded in the variational posterior Q(sIdea
t ). 732

Prior over Neighbour Attendance control state: EWho
733

In addition to the prior over Hashtag control states P(uT
0 ), the generative model also 734

contains a prior over the Neighbour Attendance control state uWho
0 . We parameterize this 735

prior over control states using a categorical distribution EWho, whose probability itself is 736

given by a Dirichlet distribution with parameters ε: 737

P(uWho
0 | EWho) = E[Dir(ε)]
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The Dirichlet parameters ε, unlike the parameters of categorical distributions, are 738

positive but not constrained to integrate to 1.0. As hyperparameters of a conjugate prior 739

distribution, they are often analogized to ‘pseudo-counts’ that score the prior number 740

of times a given action has been taken (in this case, sampling a particular neighbour via 741

the control state uWho
0 ). For instance, if the ε vector for an agent with three neighbours is 742

initialized to have the values [5, 2, 1], this means that the focal agent has a built-in propen- 743

sity to take the action Attend Neighbour 1 rather than the actions Attend Neighbour 2 744

or Attend Neighbour 3. And in turn, taking the action Attend Neighbour 2 is twice as 745

probable as taking the action Attend Neighbour 3. As we will see in the following sections, 746

this ‘habit vector’ ε can be learned over time by optimizing a variational beliefs over EWho, 747

which involves incrementing a Dirichlet ε vector that parameterises the posterior Q(EWho). 748

Summary 749

This concludes the specification of a single agent’s generative model for opinion 750

formation. Now that we have specified this generative model, we move on to define the 751

family of the approximate posteriors (the agent’s beliefs) over hidden states and policies 752

Q(s, π; ϕ) as well as the variational free energy. In conjunction with the generative model, 753

these can be used to derive the update equations used to perform active inference. 754

2.6. Approximate posteriors and free energy 755

Under active inference, both perception and decision-making are cast as approximate 756

inference problems, wherein the variational free energy (or bound on surprise) is minimized 757

in order to optimize beliefs about hidden states (perception) and beliefs about policies 758

(decision-making/action). In order to derive the equations that perform this optimization, 759

we therefore have to define the variational free energy. This free energy, equivalent to the 760

bound defined in Equation (2), requires both an approximate posterior and a generative 761

model. We defined a POMDP generative model for our active inference agents in the 762

previous section; the remaining step before writing out the free energy is then to define 763

an approximate posterior distribution. For compatibility with the categorical prior and 764

likelihood distributions of the generative model defined in Equation (3), we will also define 765

the approximate posterior as categorical distributions. Additionally, we will invoke a par- 766

ticular factorization of the approximate posterior, also known as a mean-field approximation, 767

that allows us to factorize the approximate posterior over hidden states across timesteps. 768

We define the approximate posterior over hidden states and policies as follows: 769

Q(sτ |π) = Cat(sπτ)

Q(π) = Cat(π)

Q(s1:T , π) = Q(π)
T

∏
τ=1

Q(sτ |π) (16)

where the notation P(x) = Cat(ϕ) denotes a categorical distribution over some 770

random variable x with parameters ϕ. While this simplification assumes that posterior 771

beliefs at subsequent timesteps are statistically independent, as we will see below, the 772

Markovian temporal structure of the generative model means that, in practice, beliefs about 773

hidden states at one timestep are contextualized by empirical priors from past timesteps 774

(posterior beliefs from earlier timesteps). 775

The full free energy for the POMDP generative model and the approximate posterior 776

specified in (16) can be written as follows: 777

F1:T = EQ(s1:T ,π)[ln Q(s1:T , π)− ln P(o1:T , s1:T , π)]
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Equipped with the free energy, we can now derive update equations for hidden state 778

estimation and policy inference that involve minimizing F1:T . 779

2.7. State estimation 780

Under active inference, hidden state estimation is analogized to perception — this is 781

achieved by optimizing the variational posterior Q(s1:T |π) over hidden states, given poli- 782

cies. Because our approximate posterior and generative model are defined using categorical 783

distributions, the problem of state estimation becomes minimizing free energy gradients 784

of the form ∂F
∂s , where s are the parameters of the approximate posterior distribution over 785

hidden states, Q(s) = Cat(s). 786

At each timestep, the agent can take advantage of the mean-field factorization of the 787

posterior and the Markovian structure of the generative model to update only its beliefs 788

about the current state of the world: Q(st). The optimal posterior at timestep t is then 789

found by finding the solution to Q(st) that minimizes the timestep-specific free energy Ft: 790

Ft = EQ(st)Q(π)[ln Q(st)− ln P(ot, st|st−1, π)]

=⇒ ∂Ft

∂Q(st)
= 0 ⇐⇒ Q∗(st) = σ(ln P(ot|st) + ln(P(st|st−1, ut−1)P(st−1))) (17)

This furnishes a simple belief update scheme for perception, where the optimal 791

posterior Q∗(st) is a Bayesian integration of a likelihood term P(ot|st) and a prior term 792

P(st|st−1, ut−1)P(st−1). 793

Further details on the form of the approximate posterior and the derivation of the 794

time-dependent free energy can be found in Appendix A. 795

2.8. Policy inference 796

Under active inference, policies π are also a latent variable of the generative model 797

and thus must be inferred. Accordingly, planning and action also emerge as results of 798

(approximate) Bayesian inference, where now the inference is achieved by optimizing a 799

variational posterior over policies Q(π). 800

The optimal posterior that minimizes the full variational free energy F1:T is found by 801

taking the derivative of F1:T with respect to Q(π) and setting this gradient to 0, yielding 802

the following free-energy-minimizing solution for Q(π): 803

Q∗(π) = argmin
Q(π)

F = σ(ln P(π)− F(π)) (18)

Therefore in the same way that state estimation or optimization of Q(s) in Equation 804

(17) resembles a Bayesian average of a likelihood and a prior term, policy inference also 805

becomes an average of the policy prior P(π) and the ‘evidence’ afforded to each policy, 806

scored by F(π). See Appendix A for a more detailed derivation of the optimal policy 807

posterior Q∗(π). 808

The crucial component in understanding the behavior of active inference agents lies in 809

the specification of the policy prior, P(π). Under the standard construct of active inference, 810

1 the probability of a policy is defined a priori to be proportional to the negative expected free 811

energy of that policy: 812

P(π) = σ(−G(π)) (19)

1 But see alternative derivations as in [123] and [124]
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The expected free energy or EFE is denoted G(π), and measures the free energy 813

expected under pursuit of a policy. This expected or predictive nature of the EFE is the 814

crucial: although the standard free energy is typically a direct function of observations 815

(and functional of beliefs), when evaluating the consequences of a policy in the future, 816

observations are not known—therefore, the expected free energy must deal with predicted 817

observations or predictive densities over observations. As we will see below, this counter- 818

factual nature of the expected free energy is what endows action selection with inherently 819

both goal-directed and information-seeking components. 820

The expected free energy is defined mathematically as:

G(π) = DKL[Q(s1:T , π)||P̃(o1:T , s1:T , π)] (20)

where P̃ represents a generative model ‘biased’ towards the preferences of the agent. We
can write this biased generative model at a single timestep as P̃(oτ , sτ , π) = P(sτ |oτ)P̃(oτ),
where P̃(oτ) represents a ‘biased prior’ over observations. Given the factorization of the
approximate posterior Q(s, π) over time as defined in (16), the EFE for a single timestep
can also be defined as follows:

G(π)τ = DKL[Q(sτ |π) ∥ P̃(oτ , sτ)]

≈ −EQ(oτ |π)[DKL[Q(sτ |oτ , π) ∥ Q(sτ |π)]]︸ ︷︷ ︸
Epistemic Value

−EQ(oτ |π)[ln P̃(oτ)]︸ ︷︷ ︸
Utility

(21)

where the first term, the epistemic value, scores policies according to how much information 821

observations oτ expected under that policy provide about hidden states. This term is 822

expressed here as the divergence between the states predicted under a policy, with and 823

without conditioning on observations. The second term represents the degree to which 824

expected outcomes under a policy will align with the biased prior over observations in 825

the generative model. Since the prior over policies minimize expected free energy, policies 826

with thus favor states that resolve uncertainty (maximize epistemic value) and satisfy prior 827

preferences (maximize utility). 828

Having specified the prior over policies in terms of the (negative) expected free energy, 829

we can now rewrite Equation (18) by expanding the prior in terms of G(π): 830

Q∗(π) = σ(−G(π)− F(π)) (22)

Additionally, in extensions introduced in [73], one has the option of augmenting the 831

prior over policies with a ‘baseline policy’ or ‘habit vector’ P(π0), also referred to as the 832

E distribution. This means the full expression for the optimal posterior can be written as 833

(expanding ln P(π) as ln P(π0)− G): 834

Q∗(π) = σ(−G(π) + ln P(π0)− F(π)) (23)

We introduce this ‘habit vector’ P(π0) explicitly here, because it will be one of the 835

parameters we explore in the multi-agent model. Note that in the sections on Habit 836

Learning below, we reformulate the prior over policies in terms of two separate priors over 837

control states, to disentangle the prior over policies that include particular Hashtag control 838

states uT from the prior over policies that are specific to neighbour-attendance control states 839

uWho. 840

2.9. Action Selection 841

Action selection results from sampling from the marginal posterior over actions, or 842

‘control states’. The marginal posterior over actions can be computed by marginalizing out 843

the posterior probability of policies using the policy-to-control mapping P(ut|π): 844
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Q(ut) = ∑
π

P(ut|π)Q(π) (24)

This marginalization is necessary because the mapping between policies and actions is 845

not necessarily one-to-one: in the case of multi-timestep policies or multi-factor generative 846

models, a particular control state ut might be entailed by more than one policy. Therefore, 847

this marginalization effectively computes the value of each action by summing together 848

the posterior probabilities of all policies that include it. This entailment relation is encoded 849

in the likelihood P(ut|π). 850

Once the posterior over control states Q(ut) has been computed, an action a is simply 851

sampled from this posterior marginal—this is then the action that the agent takes at timestep 852

t: 853

at ∼ Q(ut) (25)

2.10. Habit Learning 854

Under active inference, learning also emerges as a form of variational inference. How- 855

ever, this inference is not over hidden states, but rather over model parameters [73]. Such 856

parameter inference is referred to as ‘learning’ because it is often assumed to occur on 857

a fundamentally slower timescale than hidden state and policy inference. However, the 858

update equations for model parameters follow the exact same principles as hidden state 859

inference—namely, we optimize a variational posterior over model parameters Q(ϕ) by 860

minimizing the variational free energy F . 861

In the current model, we use ‘habit learning’ as originally described in [73] to model the 862

development of so-called ‘epistemic habits,’ or the tendency for an originally epistemically- 863

motivated behavior to become habitually driven, mimicking the transfer from model-based 864

to model-free learning in the context of behavioral conditioning [76,77]. Technically, habit- 865

learning reduces to updating a variational posterior over the categorical vector EWho, which 866

parameterises the prior over the neighbour-attendance control state uWho. 867

Recall from the final section on that EWho is vector of categorical parameters whose 868

prior probability is given as a Dirichlet distribution: 869

P(uWho
0 | EWho) = E[Dir(ε)] (26)

The Dirichlet distribution is a conjugate prior for categorical distributions, meaning 870

that the resulting posterior will also be Dirichlet distributed. Motivated by this conjugacy, 871

we can define a variational posterior over the ‘habits’ Q(EWho) parameterised by variational 872

Dirichlet parameters ε. One then simply augments the generative model from Equation (3) 873

with the prior over the categorical EWho parameters, which then allows one to define a new 874

variational free energy, supplemented with the approximate posterior over EWho. Solving 875

for the free-energy minimizing solution with respect to the variational Dirichlet parameters 876

ε leads to the following fixed-point solution for Q(EWho) [125]: 877

Q(EWho) = Dir(ε)

ε∗ = ε + η · Q(uWho
t ) (27)

where η is a so-called ‘learning rate’ and Q(uWho
t ) are current posterior beliefs about 878

uWho controls states. In other words, agents will update their posterior over actions or 879

‘habit vector’ according to how often they attend to a particular neighbour, as measured by 880

the probability of each uWho action. In the current work, we eschew the usual ‘separation 881
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of timescales’ assumption used in learning simulations (e.g. in [73,126]) and update the 882

posterior habit vector ε at every timestep, i.e. after every action. This means that agents in 883

this context simultaneously infer which neighbour to attend to, based on the prerogative 884

to minimize expected free energy, while also incorporating a continuously-learned ‘habit’ 885

based on the frequencies with which they attend to different neighbours. 886

2.11. Multi-agent simulations 887

Now that we’ve introduced the generative model used by single agents and the 888

ensuing inference, action, and learning rules that each agent will use to update its beliefs 889

over time, we proceed to describe the multi-agent simulation itself. 890

A single multi-agent opinion dynamics simulation consists of a group of N active 891

inference agents, where in the current work N ranged from 12 − 30 agents. Each agent 892

is equipped with the single generative model of opinion formation, as described in the 893

previous sections. 894

At each timestep, all agents simultaneously 1) update their beliefs as a function of 895

observations and then 2) take an action (i.e., selecting which Hashtag to tweet and which 896

neighbour to attend to). Crucially, each agent’s observations are a function of its own 897

actions at the previous timestep, as well as the actions of a select set of neighbours at 898

the previous timestep. Each agent has a fixed set of neighbours, where the particular 899

neighbours are determined by a randomly-chosen network topology. In the current study, 900

we set the neighbour-to-neighbour connectivity for all simulations using Erdős-Rényi (ER) 901

networks with some connection parameter p, meaning that agents are connected with fixed 902

probability p [127]. For the current purposes, we make these networks undirected or sym- 903

metric, so that any agents that share an edge can both observe each other’s tweet actions 904

and choose to read each other’s tweets. The components of each agent’s generative model 905

(i.e., the number of observation modalities, number of hidden state factors) is a function 906

of its local connectivity and the number of neighbours that it has. For example, a random 907

agent in the network that was initialized to have 3 other neighbours will have 3 hidden 908

state factors corresponding to the ‘meta-beliefs’ of these three neighbours: sMB1, sMB2, sMB3
909

as well as three observation modalities that it will use to read each of those neighbours’ 910

tweets: oNT1, oNT2, oNT3. Each of those neighbouring active inference agents’ actions (which 911

Hashtag they tweet) will thus feed into the focal agent’s various Neighbour Tweet modal- 912

ities at every timestep. Because edges are bidirection, each of the neighbouring agents 913

themselves will have a hidden state factor and observation modality in their respective 914

generative models, that represent the beliefs and Tweet Hashtag X actions of the focal 915

agent. 916

In the results section to follow, we investigate the opinion dynamics under active 917

inference by testing the hypotheses stated in the Hypotheses section. We do this by system- 918

atically varying both the network connectivity p as well as the parameters of individual 919

generative models, in an effort to investigate the extent to which ‘epistemic communities’ 920

depend on both network properties as well as the cognitive features of individuals. 921

3. Model parameterisation 922

3.1. Fixed parameters 923

It is worth mentioning the vast parameter space one encounters when simulating multi- 924

agent active inference models. In the current work, each active inference agent is equipped 925

with an entire POMDP generative model that contains hundreds of individual parameters 926

(consider, for example, all the categorical parameters that comprise the observation model 927

P(oτ |sτ)). Importantly, this parameter explosion is exacerbated in the multi-agent setting, 928

since not only does the number of total parameters scale simply in the size of the network 929

N, but connections between agents render this scaling supra-linear in N, since each agent 930

is equipped with Ki + 2 hidden state factors and observation modalities, where Ki is the 931

number of neighbours that agent i is connected to. 932
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This means that the possible parameter space that one must explore in order to under- 933

stand the behavior of the model is combinatorially explosive. To enable transparency and 934

efficient parameter exploration, we employ several simplifications and low-dimensional 935

parameterizations of every agent’s generative model, which render the resulting space 936

easier to explore. 937

First of all, we assume that every agent’s observation model relating the tweet content 938

of others to their beliefs has the same basic form. Recall from Equation (7) the ‘Hashtag 939

semantics’ matrix h that comprises observation model for the observation of neighbour k’s 940

tweet content: P(oNTk | s), parameterised with a ‘Hashtag reliability’ parameter ph. We fix 941

this matrix to have the same parameter ph = 0.73 for all agents: 942

h =

[
0.73 0.27
0.27 0.73

]
(28)

A focal agent believes that if it sees some neighbour k tweeting Hashtag 1, then the 943

likelihood that neighbour k believes in Idea 1 is 73%, and the likelihood that they believe 944

in Idea 2 is 27%. The relationship is inverted in case the focal agent sees neighbour k 945

tweeting Hashtag 2. In the current study we assume this basic Hashtag semantics matrix 946

in Equation (28) is common to all agents, and for all neighbours (relative to some focal 947

agent). This enables us to selectively explore the effect of epistemic confirmation bias, a 948

single (scalar) precision γ that can be used to up- or down-weight columns of the Hashtag 949

semantics matrix, according to whether a given neighbouring agent’s belief aligns with 950

(the focal agents belief about) the environmental hidden state factor sIdea (see the section 951

on Neighbour Tweet Likelihood for a more detailed explanation). 952

Another restriction is in space of network architectures we explore; for the present 953

study, we constrain the connectivity to be defined by random graphs (also known as Erdős- 954

Rényi or ER networks), that are characterized by two parameters: the network size N 955

and the connectivity p. We render the simulations computationally tractable by exploring 956

small networks (in the range of N = 12 − 30 agents) while systematically varying the 957

connection probability p. We also assume that all agents’ transition models (those for both 958

the environmental hidden state factor sIdea and meta-belief factors sMB) are a scaled version 959

of the 2 × 2 identity matrix I2. This further enables their systematic exploration in terms of 960

single scalar (the precision), rather than exploring all possible parameterizations of 2 × 2 961

transition matrices. In addition, while we systematically explore the inverse volatility 962

parameter ωSoc and epistemic confirmation bias precision γ, we fix the value of ωIdea to 963

be 9.0 for all simulations. We leave the full combinatorial exploration of all parameters, 964

including ωIdea, to future work. 965

Finally, while parametrically exploring the dependence of collective outcomes on indi- 966

vidual parameters, we usually restricted parameter sweeps to vary at most two parameters 967

at a time. We did this in order to simulate a sufficient number of trials for each condition 968

while also investigating each parameter with as fine a resolution as possible. Under both 969

these constraints, the computation time would explode when varying more than just 2 970

parameters simultaneously, so we fix the values of the non-varied parameters to limit 971

computational burden (e.g. fix ωSoc while varying γ and η). In practice, we clamped the 972

value of the fixed parameters to ‘insensitive’ regions of parameter space where we know 973

that the collective measure of interest (e.g. polarisation) didn’t depend on small changes in 974

that parameter. 975

3.2. Parameters of interest 976

In the following results section we describe four sets of parameters that we systemati- 977

cally varied to investigate their role in determining emergent phenomena in the multi-agent 978

simulations. Below we briefly step through each parameter and rehearse its interpretation, 979

and our motivation for investigating it. 980
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Epistemic Confirmation Bias 981

Recall from the section Neighbour Tweet Likelihood that epistemic confirmation bias 982

or ECB is a precision parameter γ that selectively scales the Hashtag semantics matrix of 983

the agent’s observation model, linking sIdea and sMBk to oNTk. The ECB precision γ scales 984

the Hashtag semantics matrix in such a way that some focal agent i receives evidence for 985

the sIdea hidden state factor’s value (Idea 1 vs. Idea 2) from the tweet output of some 986

neighbour k, in proportion to how much neighbour k agrees with agent i. 987

This means that a focal agent with a higher γ believes that tweets more reliable if
they come from neighbouring agents that are believed to share the opinion of the focal
agent. The consequence of this is an ironically-named ‘epistemic’ sort of confirmation bias,
where agents believe more reliable information about sIdea comes from neighbours who are
believed to be ‘like-minded’ to themselves. This can be revealed by recalling the expected
free energy, the key determinant in action selection under active inference. As decomposed
in Equation (21), this comprises an information gain term and a utility term. By means of
the ECB parameter, the epistemic value term is preferentially higher for those actions that
entail attending to a neighbour who the focal believes is like-minded. This can be analyzed
more quantitatively by inspecting the ‘negative ambiguity’ term of the epistemic value, H,
which we show to be directly proportional to epistemic confirmation bias:

H = EQ(sIdea,sMBk)

[
1
C
[pγ

h log pγ
h + (1 − ph)

γ log(1 − ph)
γ − 2 log C] + [ph log ph + (1 − ph) log(1 − ph)]

]

See Appendix B for a complete derivation of the relationship between γ and epistemic 988

value. 989

Given this relationship, we expect that higher epistemic confirmation bias will drive 990

agents to preferentially attend to the actions of agents that share their beliefs. On a collective 991

level, we hypothesize that ECB will increase the probability of both polarisation (two 992

clusters of oppositely-minded agents) and consensus (all agents have the same or similar 993

beliefs about the Idea). 994

Inverse Social Volatility 995

Recall the inverse temperature parameter introduced in Section (2.4), where we param- 996

eterise a focal agent’s beliefs about the stochasticity of the social dynamics using precision 997

parameters ωSoc (following the notation used in [85]). The inverse social volatility scales 998

the transition model that describes the dynamics of sMBk, such that a higher ωSoc induces 999

an assumption of less stochasticity in the belief evolution of neighbours’ ‘meta-beliefs.’ This 1000

relationship also implies that the inverse social volatility is related to the epistemic value of 1001

actions that involve attending to particular neighbours. In particular, higher volatility (i.e. 1002

more entropy in the columns of the BMBk matrices) leads to higher overall uncertainty in 1003

beliefs about hidden states. In other words, for lower values of ωSoc the uncertainty of the 1004

posterior marginal Q(sMBk) will accumulate faster, as long as the focal agent isn’t attending 1005

to neighbour k. Actions that entail attending to these unattended neighbours will therefore 1006

grow in epistemic value, the more time elapses that those neighbours remain unattended. 1007

Importantly, the growth in epistemic value will scale inversely with ωSoc (see Appendix B 1008

for details). This means that the particular value of ωSoc sets an effective ‘refresh rate’ for 1009

how often a neighbour should be re-attended to, in order to resolve uncertainty about their 1010

beliefs. 1011

Given this relationship, we hypothesize that high ‘meta-belief’ volatility (low ωSoc) 1012

will lead agents to re-read their neighbours’ tweet content with a higher rate - whether 1013

or not they (believe they) agree with them, in order to resolve uncertainty about their 1014

beliefs. We expect that this continuous, epistemically-driven ‘re-sampling’ will counteract 1015

the tendency of the group to polarise and thus favor collective agreement or consensus. 1016

An interesting question will be whether the inverse social volatility parameters directly 1017
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‘reverses’ the effect of γ, where the two jointly determine a collective trade-off between 1018

consensus and polarisation. 1019

Learning Rate 1020

The learning rate η associated with updating the habit vector over neighbour-attendance 1021

control states uWho represents the degree to which agents will preferentially sample those 1022

neighbours that they’ve attended in the past. In the presence of a higher learning rate, the 1023

Dirichlet hyperparameters over the habit vector EWho will be “bumped up" by a larger 1024

amount after choosing to attend to any particular agent, such that a focal agent will form 1025

preferences to attend to those agents whose Hashtags they habitually read. We expect there- 1026

fore that a higher value of η will lead to increasingly-preferential neighbour-attendance 1027

patterns among agents, and eventually to a change in the overall collective belief distribu- 1028

tion of the group. Specifically, we hypothesize that ‘echo-chamber’ like dynamics will be 1029

exacerbated by a higher value of η, such that it will be harder to ‘escape’ from polarised 1030

dynamics in the presence of a large habit-learning rate η. 1031

Network connectivity 1032

In addition to individual generative model parameters like γ, ωSoc and η, we also 1033

quantitatively investigate whether and how the topology of agent-to-agent communication 1034

determines emergent behaviour. To quantitatively investigate this using a simple, 1- 1035

dimensional parameterization, we initialized the agent-to-agent communication network 1036

(i.e. which agents can read which other agents’ Hashtags) using a fixed random graph 1037

with connection probability p. For random graphs, p encodes the probability that any 1038

two agents have an edge between them. In the current context, an edge between any two 1039

agents determines whether they can view eachother’s Hashtags, and thus form beliefs 1040

about one another’s beliefs). We hypothesize that denser communication topologies, 1041

represented by random graphs with increasing connection probability p, will obviate the 1042

risk of polarization and lead to consensus with higher probability. In investigate this 1043

network effect, we also hope to reveal interactions between γ (which we hypothesize will 1044

induce polarization) and connection probability p. 1045

In the following sections, we describe the results of numerical experiments wherein 1046

we systematically vary the parameters discussed above, and reveal how they modulate 1047

the collective formation of ‘epistemic communities’ (e.g. echo-chambers, polarization, 1048

consensus). 1049

4. Results 1050

In the following sections we summarize the results of numerical experiments that vali- 1051

date the basic dynamics of the opinion formation generative model and then systematically 1052

investigate each of our three hypotheses. The results sections are organized as follows: 1053

First, we demonstrate the basic dynamics of an active inference agent engaged in 1054

opinion formation. Over time, we show how a single focal agent updates its beliefs about 1055

the world in the face of conflicting Hashtag observations from two neighbours. In this 1056

process, the agent simultaneously forms beliefs about the abstract, environmental hidden 1057

state (Idea 1 vs. Idea 2) as well as beliefs about the meta-beliefs of two neighbouring 1058

agents, whose Hashtags it is exposed to. We examine the dependence of a single agent’s 1059

belief-updating dynamics depend on different settings of the epistemic confirmation bias γ 1060

and the inverse social volatility ωSoc, under a fixed value of ωIdea = 9.0. 1061

Next, we demonstrate the emergent formation of epistemic communities and the 1062

diverse dynamics that can observed under the current active inference model. These are 1063

meant as proof-of-principle validation of the opinion dynamics model and the rich sorts of 1064

collective behaviours it can give rise to. 1065

Finally, in order to test the three hypotheses that frame our study of epistemic com- 1066

munities under active inference, we systematic vary parameters like γ, ωSoc, η, and p to 1067

investigate how they determine collective dynamics. In these collective dynamics experi- 1068
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ments, we link groups of active inference agents together and simulate their multi-agent 1069

dynamics for up to T = 100 timesteps. We then study collective outcomes by averaging the 1070

results of hundreds of independent realizations. 1071

When systematically varying parameter configurations, we define a single condition 1072

as a combination of the parameters of interest. This includes the network connectivity p 1073

and a vector of generative model parameters, e.g. γ = 3.5, ωSoc = 0.5, η = 1.5. For each 1074

condition, we ran 100 independent multi-agent simulations with a network size N = 15 1075

agents. We chose relatively small networks in order to limit the computational burden of 1076

each simulation. 1077

4.1. Opinion formation in a single agent 1078

Figure 2 visualises opinion formation in a single active inference agent, and sheds on 1079

light the relationship between ωSoc and γ in determining the rate of belief updating and 1080

action selection. We investigate this using a simplified 3-agent set-up, where one focal agent 1081

is exposed to a sequence of conflicting information from two neighbours. At each timestep, 1082

the focal agent chooses to read a Hashtag from one of its two neighbours, and the two 1083

neighbours are not actually active inference agents, but are simply sources of a sequence of 1084

discrete Hashtag observations (Hashtag 1 issue from neighbour 1, Hashtag 2 issue from 1085

neighbour 2). We can see anecdotally how belief updating and sampling behaviour are 1086

bidirectionally modulated by different combinations of ωSoc and γ. In general, Figure 1087

2 shows that beliefs in more meta-belief volatility (lower ωSoc) lead to higher posterior 1088

uncertainty about the sIdea hidden state, as is shown by the red lines in subplots (a) and (c). 1089

Higher epistemic confirmation bias γ, on the other hand, induces a positive feedback effect, 1090

wherein the focal agent comes to agree with one of its two neighbours with high certainty, 1091

most likely whichever neighbour it happens to attend to at the first timestep. 1092

With high enough γ or high enough ωSoc, the focal agent’s beliefs, faced with these 1093

two conflicting sources of information, converge to one Idea. This choice is consistently 1094

reinforced by the focal agent continuing to sample the agent it agrees with (lower insets in 1095

each subplot of Figure 2). There is also an interesting interaction between γ and ωSoc, such 1096

that ωSoc drives down posterior uncertainty in the focal agent’s beliefs about its neighbour 1097

Q(sMBk). This in turn decreases the information gain term in the expected free energy, 1098

such that the agent has stronger prior beliefs about its neighbour’s beliefs and there is less 1099

information gain afforded to attending to that neighbour. On other hand, higher γ drives 1100

up epistemic value, even in the face of precise beliefs about the neighbour’s belief state, 1101

making the agent expect to artificially resolve more uncertainty from its observations. 1102

It is clear that for configurations with high inverse social volatility, as the focal agent’s 1103

beliefs converge toward the beliefs of neighbour 1, it also begins to attend to neighbour 1104

1 more often than neighbour 2 (subplot (d)). However, with low inverse social volatility, 1105

the focal agent is driven to periodically attend to both neighbours, due to the increasing 1106

epistemic value associated with un-attended neighbours. Interestingly, when ωSoc is 1107

low and γ is high (Figure 2(c)), the focal agent continues to periodically re-attend to the 1108

neighbour it disagrees with, due to increasing uncertainty about that neighbour’s belief, 1109

induced by high volatility associated to it. Note however that the total probability of 1110

attending to the like-minded neighbour is still higher due to the presence of high epistemic 1111

confirmation bias. In the presence of both low epistemic confirmation bias and low inverse 1112

social volatility, posterior uncertainty is high all-around and the focal agent is ‘ambivalent’ 1113

between both Idea 1 and Idea 2. Nonetheless, the focal agent succeeds in inferring the 1114

belief-states of its two neighbours as it repeatedly alternates between sampling them. 1115

4.2. Epistemic community dynamics 1116

Figure 3 shows examples of the collective opinion dynamics (i.e. ‘epistemic commu- 1117

nities’) that emerge when simulating networks of active inference. Unlike in Figure 2, in 1118

these simulations the observations for every agent are generated by the actions of other 1119

active inference agents, who are all collectively reading the Hashtag actions of other agents 1120
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Figure 2. Belief dynamics and actions of a single agent in response to a sequence of Hashtag
observations from two fictive neighbours. Shown are the history of Bernoulli parameters defining
three marginal posterior beliefs of the focal agent: the belief about the truth value of Idea 1 (Q(sIdea

t =

Idea 1), in red), and its beliefs about the beliefs of its two neighbours regarding Idea 1 (Q(sMB1
t =

Idea 1) and Q(sMB2
t = Idea 1), shown in two shades of blue). Through its generative model, the focal

agent believes its Hashtag observations are caused by two neighbour ‘meta-belief’ states. The focal
agent is exposed to a sequence of Hashtag observations for 100 timesteps, where in case of attending
to the first neighbour (uWho

t = 0), the agent receives observation oNT1
t = Hashtag 1, oNT2

t = Null,
and in case of sampling the other neighbour (uWho

t = 0), the agent receives observation oNT1
t = Null,

oNT2
t = Hashtag 2. Due to the ‘Hashtag semantics’ matrix in its generative model, these two Hashtags

respectively lend evidence for the two levels of sIdea. At each timestep the focal agent performs
inference with respect to hidden states Q(st) as well as policies (control states) Q(ut, and then samples
a Neighbour Attendance action from the posterior over control states Q(uWho = 0, uWho = 1). Below
each subplot is a heatmap showing the temporal evolution of the probability of sampling neighbour
1 vs neighbour 2 over time.

while and generating their own. We include this to showcase the rich phenomenology 1121

displayed by collectives of active inference agents, validating our model alongside known 1122

opinion dynamics models that can capture phenomena like consensus and polarisation. In 1123

the following sections we investigate the dependence of these dynamics on the parameters 1124

of generative models and network density quantitatively. 1125

4.3. The dependence of epistemic communities on γ and p 1126

We first investigated Hypothesis 1, or how epistemic confirmation bias γ and network 1127

connectivity p determine collective formation of epistemic communities. We systematically 1128

varied both epistemic confirmation bias (15 values of γ tiling the range [3, 9]) and network 1129

connectivity (15 values of p tiling the range [0.2, 0.8]) in networks of N = 15 agents, and 1130

simulated S = 100 independent realisations of each condition for T = 100 timesteps. Other 1131

parameters were fixed to constant values (ωSoc = 6.0, ωIdea = 9.0, η = 0.0). Note that here, 1132

habit-learning was intentionally disabled (η = 0.0) to selectively investigate the effect of 1133

γ while excluding the effect of habit learning on epistemic community formation. Within 1134
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each parameter configuration, every independent realisation and every agent had the same 1135

average value of epistemic confirmation bias γ, but for each agent, we sampled a vector of 1136

epistemic confirmation bias values from a normal distribution centered at the parameter 1137

setting with variance 1.0. Note that there are k different ECB parameters per agent because 1138

each agent has a collection of ANTk arrays, each corresponding to the observation model 1139

from a particular neighbour. Each of these k likelihood arrays is parameterised by a single 1140

γ. By sampling γ across ANTk arrays within each agent’s generative model, we implicitly 1141

gave each agents a particular bias to believe that certain neighbours were more ‘reliable’ 1142

than others — some neighbours contribute more or less to the focal agent’s confirmation 1143

bias tendency. 1144

The aim was to investigate how higher epistemic confirmation bias, particularly 1145

in a sparse network, might drive the emergence of epistemic communities through the 1146

formation of belief clusters that are both dense and far apart in ‘belief-space.’ In general, it is 1147

known in the literature that clusters are more easily formed in sparsely connected networks, 1148

but less so in densely connected networks where all agents communicate with each other 1149

[95]. Therefore, one interesting hypothesis for this experiment was that increasing the 1150

value of γ could achieve the opposite effect: namely, a high degree of polarisation or 1151

belief-clustering behaviour in a densely connected network. 1152

To assess the emergence of epistemic communities or clusters of like-minded individu- 1153

als, we defined the polarisation index ρ, which measures the degree of ‘epistemic spread’ 1154

in a system. It is defined as the difference between the highest and the lowest values of 1155

the Bernoulli parameter defining Q(sIdea = Idea 1) across all agents at the final timestep of 1156

the simulation (where the choice of one ‘side’ of the belief Q(sIdea = Idea 1) is arbitrary). 1157

This final difference is then averaged across S independent realizations or trials to give the 1158

average value ⟨ρ⟩ for a particular condition. This is directly proportional to the ratio of 1159

the number of trials in any configuration in which the simulation ends with two opposing 1160

clusters, as opposed to consensus, where consensus is defined at the final timestep when 1161

all agents’ posterior beliefs about sIdea are on the same side of 0.5. 1162

ρs = max
i

[Q(sIdea
i = Idea 1)− min

i
Q(sIdea

i = Idea 1)]|T=100 ∈ [0, 1]

⟨ρ⟩ = 1
S

S

∑
s=1

ρs (29)

where S indicates the number of total trials (here, S = 100). 1163

A high value of ρ (close to 1) indicates more spread out beliefs and implies clustering, 1164

i.e. echo-chamber formation, whereas a low ρ implies that the network of agents have 1165

similar beliefs about sIdea (i.e. consensus). 1166
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Figure 3. Collective belief dynamics of multi-agent active inference simulations under different
generative model parameterizations. Above each panel are listed the parameter values of γ, ωSoc,
and η used in the simulation. Other parameters were fixed with T = 50 timesteps, N = 30, network
connectivity p = 0.2, and inverse environmental volatility ωIdea = 9.0. At the beginning of each
simulation, every agent’s beliefs about Idea 1 were sampled from a uniform distribution over the
interval Q(sIdea = Idea 1) ∈ [0.4, 0.6]. Each panel displays the evolving beliefs of all agents about
Idea 1 (the Bernoulli parameter of each agent’s respective posterior over sIdea), with proximity
of the belief to 1.0 indicated by coloring along the green-to-blue spectrum (blue beliefs indicate
Q(sIdea = Idea 1) > 0.5). Panels A and D demonstrate polarisation, where two subsets of agents
end up believing in two different levels of the Idea hidden state with high certainty. Panels B and C
on the other hand show examples of consensus, where the whole network converges to the same
opinion by the end of the simulation.

Figure 4 shows the effects of varying γ and p on polarisation as measured by ⟨ρ⟩. 1167

It is clear from the first column of the heatmap that highly spread out beliefs can occur 1168

at all values of the epistemic confirmation bias in the presence of sparse connectivity. 1169

Denser networks in general reduce the risk of polarisation as seen by a drop-off in ⟨ρ⟩ as p 1170

increases. However, epistemic confirmation bias can ‘counteract’ this effect to some extent 1171

by marignally bumping up the risk of polarisation, even in the presence of denser networks 1172

(high γ and high p). The lower subplots of Figure 4 demonstrate this counteractive effect, 1173

where even at high connectivities (e.g. p = 0.8) the epistemic confirmation bias can lead to 1174

a fraction of trials where polarisation is more likely. 1175

Why, one might wonder, does polarisation still occur with some probability even 1176

when γ is small? When network connections are sparse, polarisation can still occur by 1177

virtue of the agents lacking access to a variety of neighbours — this forces them to attend 1178

to one of a limited set of neighbours that they start out connected to. Since all agents are 1179

initialised with flat prior beliefs about sIdea, this leads to the formation of two clusters, 1180

since there is nothing correlating the beliefs of agents who are disconnected. Because there 1181

are two beliefs (Idea 1 and Idea 2), this means that on average this fragmentation leads 1182

to distinct sub-clusters of connected agents that will believe in one of the two Ideas with 1183

approximately 50% probability. 1184

As γ increases, even in the presence of increasing connectivity, agents are driven by 1185

epistemic value to preferentially attend to the neighbours that (they believe) share their 1186
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Figure 4. The interaction between epistemic confirmation bias and network connectivity in determin-
ing collective outcomes. Top: a heatmap of the mean polarisation index across S = 100 independent
realisations of the multi-agent opinion dynamics simulations, for unique combinations of of network
connectivity p and epistemic confirmation bias precision γ. Bottom: Selected line plots show extreme
settings of p (bottom left, p = 0.2 and p = 0.8) and γ (γ = 3.5 and γ = 9.0). Shaded areas around
each line represent the standard deviation of the polarisation index across independent realisations.

beliefs. This accounts for the slower decrease in polarisation with increasing connectivity 1187

p at higher levels of γ shown in Figure 4. This can be compared to the faster decrease in 1188

polarization induced by p when γ is low (compare the first few rows of the heatmap in 1189

Figure 4 to the last few rows). 1190

However, network connectivity seems to be a stronger effect than γ on enforcing 1191

consensus or at least the lack of polarization. This is because the exploration entailed by γ 1192

encourages agents to attend to a larger group of neighbours, leading to a higher average 1193

spread of beliefs and the ability for agents to serendipitously encounter other agents they 1194

agree with. However, because of the density of the network, it is much more difficult for 1195

agents to become polarised as they will more frequently be exposed to new information, 1196

despite their propensity towards confirmation bias. 1197

4.4. Effect of inverse social volatility on neighbour attendance and polarisation 1198

Next, we explored Hypothesis 2, modelling behaviour under different values of 1199

inverse social volatility ωSoc to see how it would interact with γ. We swept over γ (15 1200

values tiling the range [3, 9]) and ωSoc (15 values tiling the range [0.0, 0.8]) in networks of 1201

N = 15 agents with p = 0.4 connection probability. As before, each agent was equipped 1202

with a vector of k distinct γ and ωSoc parameters, which were sampled from a normal 1203

distribution centered around the parameter value characterising the condition. In this case, 1204

each sampled value parameterised the different neighbour-specific observation (ANTk) and 1205

transition models (BMBk) for a particular focal agent. 1206
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To assess the extent to which social attendance changes as a function of γ and ωSoc, we 1207

defined the re-attendance rate r. It scores the maximum number of times an agent samples 1208

the same neighbour throughout a parameter configuration, averaged over trials. 1209

rs = max
i

∑
t

1i(uWho
t )

⟨r⟩ = 1
S

S

∑
s=1

rs

where 1 is the indicator function. 1210

We measured the re-attendance rate and polarisation index for each configuration, 1211

averaged across trials. Figure 5 portrays a complex picture on the relationship between 1212

γ and ωSoc. In the case of high volatility over meta-beliefs (low inverse social volatility), 1213

agents are driven to periodically re-attend to neighbours in order to resolve growing 1214

uncertainty about their beliefs. This is indicated by a higher average re-attendance rate ⟨r⟩ 1215

(top right heatmap). Interestingly, there seems to be an interaction between re-attendance 1216

rate and epistemic confirmation bias, such that in the presence of both high volatility and 1217

low epistemic confirmation bias, the re-attendance rate is maximized. We speculate that the 1218

absence of ECB (γ = 0) makes the epistemic value of attending to every neighbour equally 1219

high, and driven purely by ωSoc. In this case, agents will continually revisit neighbours 1220

sequentially, with the attendance-preference for any given neighbour solely dependent 1221

on the time elapsed since the last reading their Hashtag observation. In the absence of 1222

confirmation bias (which normally accelerates the the focal agent’s beliefs not only about 1223

sIdea, but also about sMBk, c.f. Figure 2), this means that uncertainty about neighbours’ 1224

beliefs will on average be higher. This will lead to diverse social attendance patterns, such 1225

that agents will prefer to constantly sample new neighbours, with no particular neighbour 1226

left out of this uncertainty-driven re-sampling. 1227

In terms of polarisation, it is not clear from the results that more volatility creates less 1228

polarised networks. However, in the presence of high ECB, the heatmap shown in the top 1229

left of Figure 5 suggests that increased volatility (low ωSoc) may ‘protect’ the network from 1230

increased polarisation, which is maximised in the case of both high ECB and low volatility 1231

(high ωSoc). We originally hypothesised that if agents are uncertain about the beliefs of their 1232

neighbours (low ωSoc), it will become more difficult to induce polarisation and purposefully 1233

sample those who are thought to agree, due to the competing epistemic value induced by 1234

high volatility. So we seem to mildly observe this effect, but interestingly only in the case 1235

of high γ, i.e. low ωSoc induces a ‘protective’ effect in the case that polarisation is a likely 1236

outcome due to increased γ. A more robust effect is how social volatility induces the the 1237

tendency to re-attend neighbours (higher ⟨r⟩). 1238

4.5. Habit formation and network initialization 1239

For the final experiment, we explored Hypothesis 3, regarding the polarisation of 1240

networks via habit formation. We swept over γ (15 values tiling the range [3, 9]) and η (15 1241

values tiling the range [0.0, 0.9]) in networks of N = 15 agents with p = 0.4 connection 1242

probability, where ωSoc = 6.0 and as before ωIdea = 9.0. Here, γ was again normally 1243

distributed with a fixed mean (which varied by condition) and variance 1.0 across the k 1244

neighbours of each focal agent, but the learning rate η was fixed to the condition-dependent 1245

value across all trials and agents. 1246

The learning rate η incentivises agents to re-attend to the same neighbour by forming 1247

a habit, which competes with the epistemic value of attending a new neighbour with 1248

unknown beliefs. This experiment tested the hypothesis that a higher learning rate, i.e 1249

stronger habit-formation, will increase polarisation. 1250

Figure 6 demonstrates how learning rate η and epistemic confirmation bias γ interact 1251

to influence outcomes at the collective level. Indeed, a higher learning rate induces more 1252
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Figure 5. Above left: a heatmap of the polarisation index for all 225 combinations of inverse belief
volatility and epistemic confirmation bias precision. Above right: a heatmap of the re-attendance rate
for all 225 combinations of inverse belief volatility and epistemic confirmation bias precision. Below
left: a line plot of the most extreme rows of the polarisation heatmap. Below right: a line plot of the
most extreme columns of the re-attendance rate heatmap.

polarisation, implying the formation of more ‘stubborn’ epistemic communities in the 1253

network. This effect appears at both low and high levels of epistemic confirmation bias, 1254

with on average a higher ⟨ρ⟩ observed with increasing learning rate, even at low levels 1255

of γ. However, it seems the effect is most pronounced at the highest levels of γ and η. 1256

Examining the average re-attendance ⟨r⟩ (right column of Figure 6) reveals a clear effect of 1257

η on neighbour re-attendance, with the rate seemingly maximized when the learning rate 1258

surpasses a value of η ≈ 0.3. Interestingly, the effect of ECB on re-attendance is not very 1259

strong here, although it seems to have a mild negative effect. Namely, as ECB increases, 1260

the re-attendance rate tends to decrease. One counterintuitive explanation for this effect 1261

(which is similar to the effect observed in Figure 5) is the general increase in epistemic value 1262

of attending neighbours with unknown beliefs that is caused by increasing γ. Although 1263

by design γ is intended to ‘boost’ the epistemic value of only those actions that involve 1264

attending to neighbours that the focal agent believes it agrees with, there is still an overall 1265

‘exploration bonus’ that scales with γ, even for actions that entail attending to neighbours with 1266

whom the focal agent disagrees. This is because in addition to the ambiguity term of the 1267

epistemic value, which captures the ‘confirmation bias’ effect encoded by γ, there is also 1268

a maximum-entropy component H[Q(oτ |π)] (see Appendix B for details). This term is 1269

maximized when the posterior uncertainty over meta-beliefs Q(sMB) is high (maximal 1270

when (sMB) = [0.5, 0.5]). So although ECB ‘bends’ the epistemic value landscape towards 1271

sampling like-minded neighbours (see Figure A7 in Appendix B for a visualisation of this 1272

effect), when compared to neighbours with differing beliefs, the inherently uncertainty- 1273

resolving nature of the epistemic value as a whole means that higher γ still increases the 1274

value of actions that involve attending to any neighbours whose beliefs the focal agent 1275

is uncertain about. This may in fact may counteract the polarising effects we originally 1276

intended to capture by including the ECB parameter. This across-the-board ‘exploration 1277

bonus’ conferred by ECB may explain the mild effect we observe here, where increasing 1278

γ ends up decreasing average re-attendance ⟨r⟩. This may indeed explain the decrease 1279

observed in both in Figures 5 and 6. 1280
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Figure 6. Above left: a heatmap of the polarisation index for all 225 combinations of learning rate and
epistemic confirmation bias precision. Above right: a heatmap of the re-attendance rate for all 225
combinations of learning rate and epistemic confirmation bias precision. The parameters represent
the centres of the Normal distribution sampled from across trials for each configuration. Below left:
the most extreme row of the polarisation index heatmap. Below right: the most extreme column of
the re-attendance rate heatmap.

5. Discussion 1281

In this paper, we focused on the way communities form around shared beliefs about 1282

abstract entities or meanings, symbolized by an abstract discrete hidden state: an ‘Idea.’ 1283

Shared belief around a particular ‘Idea‘ emerges through coordination, which itself is 1284

individually driven by the desire to form accurate (Bayesian beliefs) about the world and 1285

the beliefs of one’s community. In particular, we modeled confirmation bias as a ‘epistemic‘ 1286

phenomenon, wherein agents have a biased belief that agents with whom they believe they 1287

agree are more likely to provide uncertainty-resolving (information-availing) data — hence 1288

the proposed terminology of epistemic confirmation bias. 1289

Twitter provides fertile ground for the academic study of the spread of ideas. The 1290

platform is extremely popular, easy to access, and has an API that enables researchers to 1291

collect and analyze data. It has also been one of the major vectors for misinformation, 1292

leading to large scale events, like the tensions around the 2016 elections results [128], or the 1293

vaccine for SARS-CoV-19 [129]. With its effective network structure in terms of follower-, 1294

like-, and retweet-networks, Twitter provides an ideal environment for the empirical study 1295

of the spread of ideas. 1296

The formation of echo-chambers has been well studied on Twitter and Facebook. 1297

Echo-chambers tend to reinforce like-mindedness in users, and tend as well to enable the 1298

crafting of a shared narrative [42]. [42] analysed the different ways in which different 1299

social media platforms’ algorithms influence the mechanisms of formation. They defined 1300

the echo-chambers based on the distributions of leanings towards polar attitudes. These 1301

attitude distributions were found to range from monomodal to bimodal or more complex. 1302

Regardless, polarisation is rarely neutral, and tends to favor opposition between extreme 1303

opinions. According to their results, Twitter and Facebook showed the most striking echo- 1304

chambers. Using virality models, they also measured information spread. In Twitter and 1305

Facebook, information was most likely to be spread to other users sharing similar leanings. 1306

Similar findings were shown by [130], by following the online debates surrounding vac- 1307
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cination hesitancy in Italy. Despite the formation of distinct echo-chambers, they found 1308

within echo-chamber community structure also differed between vaccine advocates and 1309

skeptics and influenced information flow. Findings like these and others on polarised 1310

social network dynamics inspired us to analogise the model explored in the current work 1311

to online digital social media like Twitter, as well as to study how network structures 1312

influence echo-chamber formation. Alongside this, we chose to embrace an underlying 1313

active inference model as a cognitively-inspired, Bayesian model for single agents’ belief 1314

formation. 1315

To formalize confirmation bias as a fundamentally Bayesian phenomenon, we con- 1316

structed our generative model to include a precision parameter that we named epistemic 1317

conformation bias or ECB. Specifically, ECB confers a higher weight to information that 1318

comes from peers that the reader (focal agent) believes are like-minded. This in turns leads 1319

an agent with higher ECB to selectively sample information that justifies what they already 1320

believe. We were able to replicate the formation of epistemic communities in silico, e.g. 1321

echo-chambers, on social networks such as Twitter. This unique formulation of confirma- 1322

tion bias as an epistemic phenomenon helps explain how individuals continuously forage 1323

their environment for information, but may become stuck in a so-called ‘bad bootstrap’ that 1324

simply reinforces existing beliefs about the world, which in the face of new information 1325

may lead to sub-optimal behaviour [131]. 1326

In agreement with previous work studying the relationship between synchronisation 1327

and network structure, we found that opinion dynamics depends heavily on network 1328

density. Our formalism allowed us to sytematically vary the parameters of individual 1329

agents (e.g. cognitive biases or beliefs) as well as collective properties like network structure. 1330

We found the density of inter-agent connections, parameterised by connection probability of 1331

random graphs, determined the transition between echo-chamber formation (polarisation) 1332

and consensus. However, we found that in the presence of high ECB, one could observe 1333

polarisation even in the presence of dense connectivity (c.f. Figure 4). This result seems 1334

counter-intuitive, as we might think that network clustering is a necessary condition for 1335

more polarisation. However, clearly defined clusters and group boundaries can sometimes 1336

act as buffers [132–136]. Sub-clusters exchanging information are likely to average towards 1337

their local center [137–139], which entails a form of opinion stability within the group. They 1338

are generally sheltered from other opinions since they cut ties to other agents which are 1339

not part of their group, and have been selected out [140]. However, in networks without 1340

clusters, opinions can have a high degree of volatility and reach very polar tendencies 1341

even without being entirely clustered. By means of epistemic confirmation bias, agents 1342

were likely to give more weight to information that was similar to their own, even in the 1343

presence of network neighbours with different opinions. 1344

The clustering phenomenon is exacerbated by adding the capacity to form habits. 1345

Specifically, we allowed agents to increase their likelihood of resampling the same agents 1346

based on how often they attended to them in the past. Since neighbour-attendance is driven 1347

by epistemic value (resolving uncertainty about the sIdea and sMB hidden state factors), this 1348

tendency to revisit previously-sampled neighbours is a form of ‘epistemic habit formation,’ 1349

where actions that are initially undertaken based on information gain become solidified 1350

over time due to a Pavlovian, model-free mechanism that simply reinforces past behaviour. 1351

We found that in addition to ECB, the presence of habit formation exacerbated polarisation, 1352

presumably due to the formation of echo-chambers or tight communities of agents that 1353

only read only the Hashtag content of their like-minded peers. On the other hand, we 1354

found that beliefs about social volatility (represented by our ωSoc parameter) pushed the 1355

agents to sample their social environments more frequently and diversely, counteracting 1356

the effect of confirmation bias and habit formation in driving polarisation. We speculate 1357

that increased social volatility increases each agent’s incentive to sample a diverse array of 1358

network neighbours, which in turns lessens their susceptibility to believing in one Idea 1359

with high certainty. In other words, increased social volatility (low ωSoc) makes agents 1360

more ‘curious’ about the beliefs of (potentially non-like-minded) neighbours, which in 1361
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turns increases their exposure to conflicting information and ‘protects’ them from falling 1362

into one or another echo-chamber. 1363

The contributing influence of beliefs about social volatility to exploratory social sam- 1364

pling leads us to consider the role of norms in social settings. If an agent is incentivised (via 1365

e.g. epistemic value or curiosity) to pay attention to neighbours whom they are uncertain 1366

about, their social group could be a source of constant surprise, as long as their beliefs 1367

about their neighbours are constantly fickle (“I’m not sure what members of my social 1368

group believe from one time to the next”). In other words, even in the presence of a group 1369

of like-minded peers, we would expect that increased beliefs about social volatility leads to 1370

repeated attendance of peers among one another, even if those peers all agree (and believe 1371

as much about eachother). 1372

6. Conclusion 1373

Our simulation showcased a novel opinion dynamics model based on multi-agent 1374

active inference, and highlights many interesting possibilities for future research. We intro- 1375

duced a new parameter, the epistemic confirmation bias, which can modulate the formation 1376

of epistemic communities by changing epistemic value in a biased way, namely towards 1377

attending preferentially to like-minded agents. In addition to the ECB, we also showed the 1378

importance of other features like network structure and habit formation in contributing 1379

to polarised dynamics. However, there are several limitations to this work which warrant 1380

further discussion. While we systematised our study design to explore several parameters 1381

simultaneously, this search was not exhaustive and vast regions of parameter space re- 1382

main unexplored. Particular parameters like size of the network remained unexplored (we 1383

mainly explored networks with size N = 30), and for computational efficiency we restricted 1384

both the resolution and the combinatorics of the parameter combinations explored. In 1385

future work, we could leverage distributed computing or GPU-accelerated operations to 1386

explore both larger network sizes and parameter combinations. However, in model spaces 1387

with high enough dimension, computational acceleration alone will not suffice, so one 1388

could also reduce the sampled region of parameter space by leveraging efficient search 1389

techniques (e.g. optimal experimental design [141]) or higher-order learning methods such 1390

as Bayesian hyperparameter optimisation [142]. 1391

The generative model used by the single agents was also limited, in the sense that 1392

we only modelled beliefs in one of two mutually exclusive Ideas. Previous research into 1393

opinion or collective dynamics has shown that such binarity may strongly determine the 1394

dynamics of the system [105,143]. From a construct-validity standpoint, such binarity 1395

also vastly simplifies the semantic complexity found in real epistemic communities. For 1396

example, the semantic expression of a particular idea or claim heavily depends on the 1397

community in which it circulates. In future designs, we should strive to make the ideas 1398

more complex and more porous. By porosity we mean ‘semantic cross-over’, in the sense 1399

that multiple ideas may entail more or less similar behavioural consequences, or indeed 1400

entail the truth value of one another. This porosity may give rise to groups who believe in 1401

the same idea from an inference standpoint, but have a different interpretation of it. Starting 1402

from there, we can begin to envisage a specific semantic embedding which leads us to social 1403

scripts [144]. These conceptual embeddings would lead to two different conceptions with 1404

distinct causal relations to the environment. The weak conception of the script corresponds 1405

to an embedding, linking the observation of an event to the belief in a particular idea. The 1406

strong conception of the script leads to a sequencing of the beliefs, such as an entailment 1407

relation (e.g. ‘if I believe X, this entails a belief in Y’). This type of conceptual entailment 1408

possible under a strong conception of social scripts, combined with the ability to express 1409

one’s beliefs, could engender a capacity to act and coordinate through language with other 1410

actors. 1411

Future work could explicitly model these entailment relationships among semantic 1412

entities by violating the typical independence assumption used to factorize the generative 1413

model’s hidden state factors — for instance, instead of having each hidden state factor 1414
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s( f ) being conditionally dependent on only other states/control states within that factor, we 1415

could ‘mix’ hidden state factors to make states of factor i depend on states of factor j. 1416

Another notable feature to include is the variation of prior beliefs about different 1417

ideas or claims. In the current model, agents were often initialised to have uniformly 1418

distributed beliefs about sIdea around the ‘ambivalence’ line of [0.5, 0.5]. Future studies 1419

could quantitatively investigate the dependence of epistemic community formation on 1420

the initial distribution of prior beliefs and how that distribution intersects with structural 1421

features such as network position (e.g. ‘is a very confident agent more influential in 1422

determining information spread, when it’s a peripheral vs. central node in the network?’). 1423

In this way, we could study ‘historical effects’ like whether pre-existing echo-chambers or 1424

belief distributions influence the susceptibility of the network to incoming information or 1425

environmental fluctuations. 1426

In future studies, we hope to investigate individual cognitive differences more quanti- 1427

tatively using the active inference framework. Under active inference, ‘individual differ- 1428

ences’ can be formalized as variance among the parameters of generative models across 1429

agents — e.g. different settings of the inverse volatility parameters for different agents. 1430

Another interesting possibility that is accommodated within the active inference framework 1431

is the idea that agents may learn the parameters of their generative models, as opposed to 1432

keeping them fixed over time. For example, one could imagine that the epistemic confirma- 1433

tion bias associated to a particular neighbour k could change over time as a function of the 1434

reliability of Hashtags observed by the focal agent. This is easily cast as another form of 1435

inference under the Bayesian framework. All one would need to do is define appropriate 1436

priors and approximate posteriors over γ, from which an additional free energy term and 1437

appropriate belief updating scheme could be derived. Learning the parameters may add 1438

ecological validity to the model as well; for example, agents might become accustomed 1439

to their social environment and seek out an epistemic community in order to increase the 1440

predictability of their sensory information, thus requiring them to sample their social envi- 1441

ronment less frequently. This is the kind of phenomenon that could be modelled by letting 1442

the inverse social volatilities ωSoc become free, learn-able parameters. With larger net- 1443

works, we may be able to simulate the emergence of similar but distant sub-communities, 1444

which become epistemically similar without coming into direct contact, or only through 1445

very distant contact with one another. This leads us to the possibility of simulating the 1446

way epistemic and pragmatic practices become cemented, giving way to social meaning 1447

semantics and scripts, which seem to separate cultures. Simulating the emergence of similar 1448

semantics and scripts across different communities may help us further understand their 1449

common underlying processes. Finally, in future studies, we could model an explicit state 1450

of conformity, by modeling the agent’s assumptions about the groups they can identify 1451

around themselves, and be driven to model their behavior after the group they feel most 1452

kinship to. 1453
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Appendix A 1760

In this appendix we provide additional mathematical details on the update equations 1761

for perception and action (policy inference) under active inference. 1762

We begin by recalling the POMDP generative model and the approximate posterior 1763

over hidden states and policies: 1764

P(õ, s̃, ũ, π) = P(s1)P(π)
T

∏
τ=2

P(sτ | sτ−1, uτ)P(uτ | π)
T

∏
τ=1

P(oτ | sτ)

Q(sτ |π) = Cat(sπτ)

Q(π) = Cat(π)

Q(s1:T , π) = Q(π)
T

∏
τ=1

Q(sτ |π) (A30)

Given this generative model and approximate posterior, we can now write down the 1765

variational free energy over time: 1766

F1:T = EQ(s1:T ,π)[ln Q(s1:T , π)− ln P(o1:T , s1:T , π)]

Due to the Markovian nature of the POMDP generative model and the factorized form 1767

of the posterior, the free energy over trajectories can be factorized into a per-timestep free 1768

energy Fτ , which has the following simple form: 1769

Fτ = EQ(sτ |π)Q(π)[ln Q(sτ |π)− ln P(oτ , sτ |sτ−1, π)] (A31)

In the following subsections we show how state estimation (perception) and policy 1770

inference (decision-making/planning) are derived by minimizing the variational free 1771

energy functionals with respect to the parameters of the posterior Q(s1:T , π). 1772

State estimation 1773

State state estimation consists in optimizing the Q(s1:T |π) over hidden states under 1774

different policies. Because our approximate posterior and generative model are defined 1775

using categorical distributions, the problem of state estimation becomes minimizing free 1776

energy gradients of the form ∂F
∂s , where s are the parameters of the approximate posterior 1777

distribution over hidden states, Q(s) = Cat(s), where the notation P(x) = Cat(ϕ) denotes 1778

a categorical distribution over some random variable x with parameters ϕ. 1779

In the ‘full construct’ version of active inference (see e.g. [87]), the full joint posterior 1780

Q(s1:T , π) is optimized simultaneously, meaning that the posterior over hidden states is 1781

conditioned on policies. This means that the full posterior beliefs at any timestep t include 1782

a separate Q(st|π) under each policy, where the beliefs about a given timestep under a 1783

given policy are often denoted by the sufficient statistics sπτ . For the current model, we 1784

have simplified posterior inference to rely on an approximate posterior where hidden states 1785

are independent of policies. This move is justified because the practical differences between 1786

the ‘full construct’ and simplified versions are negligible, in the limit of small policy spaces 1787

and short time horizons (such as in the current work). Therefore in the current study we 1788

amended the variational posterior to have the following form: 1789
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Q(s1:T , π) = Q(π)
T

∏
τ=1

Q(sτ)

Given this simplified posterior, state estimation proceeds by optimizing the posterior 1790

belief about hidden states at the current timestep Q∗(st) using the current observation ot. 1791

This can be found using the gradients of the variational free energy from Equation (A31), 1792

now using the simplified form of the posterior: 1793

Ft = EQ(st)Q(π)[ln Q(st)− ln P(ot, st|st−1, π)]

=⇒ ∂Ft

∂Q(st)
= 0 ⇐⇒ Q∗(st) = σ(ln P(ot|st) + ln(P(st|st−1, ut−1)P(st−1))) (A32)

where σ(x) = ex

∑x ex is the normalized exponential or softmax function. Equation (A32) 1794

is a type of ‘fixed-point solution’ for the posterior, where the beliefs about hidden states are 1795

directly set to the solution of minimal free energy (where ∂Ft
∂Q(st)

= 0). Note that this differs 1796

with the classic ‘gradient descent’ scheme used to optimize the variational posterior with 1797

marginal message passing or variational message passing, as proposed in [87], which was 1798

originally invoked as a biologically-plausible update scheme that could be implemented by 1799

neuronal population dynamics. Since we are not interested in simulating neurophysiologi- 1800

cal responses and the belief updating is simpler, for the simulations presented in this paper, 1801

we used this simpler update rule. 1802

The functional form of (A32) invites a straightforward Bayesian interpretation: the 1803

‘best’ posterior belief Q∗(st) is proportional to the product of a likelihood term P(ot|st) 1804

and a prior term P(st|st−1, ut−1)P(st−1)—the definition of Bayes rule. In practice, we use 1805

a ‘moving empirical prior’ rule, where the posterior from last timestep’s optimization 1806

Q∗(st−1) becomes the prior P(st−1). This means the update rule can be re-written as 1807

follows: 1808

P(st−1) ≈ Q(st−1)

=⇒ Q∗(st) = σ(ln P(ot|st) + lnEQ(st−1)
[P(st|st−1, ut−1)]) (A33)

This means that at each timestep, the current posterior is a Bayesian average between 1809

the likelihood term and the previous timestep’s posterior belief, passed through the action- 1810

conditioned transition dynamics P(st|st−1, ut−1) of the generative model. Note that this 1811

update rule can be extended to generative models with factorized observations o and 1812

hidden states s by rewriting Equation (A33) for a particular marginal Q∗(s f
t ) as follows: 1813

Q∗(s f
t ) = σ

(
EQi\ f [ln P(ot|st] + lnE

Q(s f
t−1)

[P(s f
t |s

f
t−1, ut−1)]

)
(A34)

where the expectation EQi\ f denotes an expectation with respect to all posterior 1814

marginals Q(si
t) besides the marginal Q(s f

t ) currently being optimized. To find the full, 1815

multi-factor posterior Q∗(st), this equation is iterated across marginals, holding the existing 1816

solutions for all other marginals fixed while a particular one is updated [145]. 1817

Policy inference 1818

Under active inference, policies π inferred, i.e. the agent optimizes a variational 1819

posterior over policies denoted by Q(π). The optimal posterior over policies Q∗(π) is 1820

obtained by minimizing the free energy with respect to the categorical parameters π (c.f. 1821
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Equation (A30)). This can be shown by rewriting the full variational free energy over time 1822

F1:T as the sum of a complexity term that measures the divergence between the posterior 1823

and prior over policies, and an expected ‘accuracy’-like term: 1824

F1:T = EQ(s1:T ,π)[ln Q(s1:T , π)− ln P(o1:T , s1:T , π)]

= EQ(s1:T ,π)[ln Q(π) +
T

∑
τ=1

ln Q(sτ |π)− ln P(π)− ln P(o1:T , s1:T |π)]

= DKL[Q(π) ∥ P(π)] +EQ(π)[F(π)] (A35)

where the second term is the expected variational free energy of policies F(π), which 1825

is defined as follows: 1826

F(π) = −EQ(s1:T |π)[ln P(o1:T , s1:T |π)− H[Q(s1:T |π)] (A36)

The optimal posterior that minimizes the full variational free energy F is found by 1827

taking the derivative of F with respect to Q(π) and setting this gradient to 0, yielding the 1828

following free-energy-minimizing solution for Q(π): 1829

Q∗(π) = argmin
π

F = σ(ln P(π)− F(π)) (A37)

Therefore in the same way that state estimation or optimization of Q(s) in Equation 1830

(A33) resembles a Bayesian average of a likelihood and a prior term, policy inference also 1831

becomes an average of the policy prior P(π) and the ‘evidence’ afforded to each policy, 1832

scored by F(π). Recall here that the policy prior P(π) is itself decomposed as a combination 1833

of the expected free energy prior and the ‘habit vector’: P(π) = P(π0)− G. 1834

Appendix B 1835

In this appendix derive a quantitative relationship between the epistemic confirmation 1836

bias γ and the negative ambiguity term of the epistemic value. Recall the definition of the 1837

epistemic value: 1838

EQ(oτ |π)[DKL(Q(sτ |oτ , π) ∥ Q(sτ |π)] = −EQ(sτ |π)[H[P(oτ |sτ)]] + H[Q(oτ |π)]

We define the first term on the RHS of the decomposition as the negative ambiguity 1839

H = −EQ(sτ |π)[H[P(oτ |sτ)]]. We drop the τ subscript hereafter for simplicity, and restrict 1840

ourselves only to the computation of this term for the neighbour k tweet observation 1841

modality oNTk and the hidden states that it depends on, sIdea and sMBk. We further condition 1842

our analysis only on those policies that entail sampling neighbour k, i.e. those policies 1843

where sWho = uWho = k. Therefore we redefine Q(s) here as Q(sIdea, sMBk). 1844

Theorem A1. The negative ambiguity is proportional to the epistemic confirmation bias parameter
γ.

H ∝ kγ log kγ

Proof. WLOG, we simplify the state space to only consider the states sIdea and sMBk and 1845

the observation of neighbour k’s Hashtag oNTk. Recall that observation likelihood for oNTk, 1846

in the case that sIdea = sMBk is as a softmax transformation of (certain columns of) the base 1847

likelihood P(oNTk|sIdea, sMBk) and the epistemic confirmation bias parameter γ: 1848
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P(oNTk|sIdea = sMBk, γ) =
eγP(oNTk |sIdea=sMBk))

∑ eγP(oNTk |sIdea=sMBk))
(A38)

In this case, the likelihood P(oNTk|sMBk) is comprised of two Bernoulli distributions, where

P(oNTk|sMBk) = {Bern(ph), Bern(1 − ph)}

where ph is the ‘Hashtag reliability’ parameter of the matrix h:

h =

[
ph 1 − ph

1 − ph ph

]
where this matrix is ‘copied‘ across the dimension of the likelihood corresponding to the 1849

two settings of sIdea. 1850

Note also that the posterior over hidden states is factorized into two independent
marginal posteriors.

Q(sIdea, sMBk) = Q(sIdea)Q(sMBk) (A39)

The definition of negative ambiguity is

H = −EQ(s|π)[H[P(oNTk|s)]] (A40)

(A41)

And we can write the negative entropy of the given likelihood as

−H[P(oNTk|sMBk)] = ph log ph + (1 − ph) log(1 − ph)

Using Equation (A38) we have

−H[P(oNTk|sMBk = sIdea)] =
pγ

h
C

log
pγ

h
C

+
(1 − ph)

γ

C
log

(1 − ph)
γ

C

where C = pγ + (1 − p)γ
1851

The negative entropy can be decomposed into a sum of negative entropies:

−H[P(oNTk|sMBk)] = − H[P(oNTk|sMBk = sIdea)]− H[P(oNTk|sMBk ̸= sIdea)]

which then means the total negative ambiguity can be written as follows, expanding 1852

the expressions for the entropies in terms of the Bernoulli parameter ph: 1853

H = EQ(sIdea,sMBk)

[
1
C
[pγ

h log pγ
h + (1 − ph)

γ log(1 − ph)
γ − 2 log C]

+[ph log ph + (1 − ph) log(1 − ph)]

]
(A42)

Since all terms in Equation (A42) are increasing in γ insofar as ph ≥ 0, then negative 1854

ambiguity is directly proportional to γ. 1855

Theorem A2. For any γ > 1, and for any realization of the posterior Q(sIdea, sMBk) the negative 1856

ambiguity will be maximized in the case that the posterior beliefs about sIdea and the posterior beliefs 1857

about sMBk are either both greater than 0.5 or both less than 0.5. 1858
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∀γ > 1

maxH ∈ {H : sgn(Q((sIdea)− 0.5) = sgn(Q(sMBk)− 0.5)}

Proof. We now use the fact that Q(sIdea) and Q(sMBk) are also Bernoulli probability distri-
butions, such that

Q(sIdea) = Bern(p)

Q(sMBk) = Bern(q)

We also note that since the γ parameter only scaled the likelihood in the case that 1859

sIdea = sMBk, the values of the posterior that these correspond to are only those along 1860

the diagonal of the joint probability distribution of Q(sIdea, sMBk), namely the joint line of 1861

solutions through p and q connected by the points qp and (1 − q)(1 − p). 1862

Expanding the expectation in Equation (A42), we can write the negative ambiguity as 1863

−qp(H[P(oNTk|sMBk = sIdea)])− (1 − q)(1 − p)(H[P(oNTk|sMBk = sIdea)])

−q(1 − p)(H[P(oNTk|sMBk ̸= sIdea)])− p(1 − q)(H[P(oNTk|sMBk ̸= sIdea)]) (A43)

Suppose that γ > 1. This means that for nonzero ph, the entropy terms in Equation 1864

(A43) will be exponentiated by a power greater than 1, which implies that 1865

H[P(oNTk|sMBk = sIdea)]) < H[P(oNTk|sMBk ̸= sIdea)]) (A44)

Now take the case that Q(sIdea) > 0.5 and Q(sMBk) > 0.5. This means that the 1866

largest coefficient scaling the entropy of the likelihood will necessarily be qp, which scales 1867

−H[P(oNTk|sMBk = sIdea)]). 1868

Similarly, if Q(sIdea) < 0.5 and Q(sMBk) < 0.5, the largest coefficient scaling the en- 1869

tropy of the likelihood will necessarily be (1− p)(1− q), which also scales −H[P(oNTk|sMBk =1870

sIdea)]). 1871

However, if sgn(Q((sIdea)− 0.5) ̸= sgn(Q(sMBk)− 0.5), the largest coefficients will 1872

be either (1 − p)q or p(1 − q) which will be scaling −H[P(oNTk|sMBk ̸= sIdea)]. 1873

Therefore, because of Equations (A43) and (A44), the maximum negative ambiguity for 1874

any value of γ > 1 will always be reached when sgn(Q((sIdea)− 0.5) = sgn(Q(sMBk)− 0.5) 1875

1876

Figure A7 provides a visual intuition for the relationship between the two marginal 1877

posteriors (defined by Bernoulli parameters p and q), the epistemic confirmation bias γ 1878

and the components of the epistemic value, decomposed here as the negative ambiguity 1879

H = EQ(s|π)[H[P(o|s)]] and the entropy of the predictive distribution over observations 1880

Q(o|π). 1881

Theorem A3. The inverse social volatility ωSoc is inversely related to the epistemic value of policies 1882

that entail sampling a particular neighbour - in other words EV ∝ 1
ωSoc . 1883

Proof. Recall the decomposition of the expected free energy in the section on Policy in- 1884

ference for a policy π into the negative instrumental value and the negative salience or 1885

epistemic value. For convenience, we define a pseudo-‘value’ function for policies as the 1886

negative of the expected free energy V(π) ≡ −G(π): 1887

V(π) = EQ(oτ |π)

[
ln P̃(oτ)

]︸ ︷︷ ︸
Instrumental value

+ EQ(oτ |π)[DKL[Q(sτ |oτ , π)∥Q(sτ |π)]]︸ ︷︷ ︸
Epistemic value

(A45)
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Figure A7. Exploration of the relationship between ‘agreement’ between an agent and one of its
neighbours, the epistemic confirmation bias parameter γ, and the epistemic value of reading that
neighbour’s tweet content. Here, the two marginal posteriors Q(sIdea) and Q(sMBk) are expressed
as two Bernoulli distributions with respective parameters p and q, where ‘agreement’ is the case
when p = q and hence (1 − p) = (1 − q). The top row shows heatmaps of the negative ambiguity
H, entropy H[Q(o)], and the full epistemic value EV = H+ H[Q(o)] for a fixed value of γ = 15.0,
under all possible values of p and q. The ‘epistemic confirmation bias‘ effect is seen in the negative
ambiguity surface H (upper left plot), which is maximized when posterior beliefs about the validity
of Idea 1, measured by p, are aligned with posterior beliefs about a neighbour’s meta-belief about
Idea 1, q. The bottom row of plots shows a complementary perspective, demonstrating the effect of
increasing γ on the epistemic value and its components, for different settings of q when p = 0.0. The
subplot on furthest to the right of the bottom row shows that increasing γ increases epistemic value
most when q is on the same side of 0.5 as p (q = 0.2, q = 0.4), and the effect of γ on epistemic value
deceases once q passes 0.5. Note that the epistemic value is 0 when p = q = 0, because although the
negative ambiguity is maximized in this case, it is counteracted by the entropy term which is 0 since
both posteriors are certain.
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It is straightforward to show the positive relationship between the entropy of the 1888

policy-conditioned beliefs H[Q(sτ |π)] and the epistemic value. We begin by isolating 1889

further analysis only to the meta-belief hidden state factor sMBk for a particular neighbour 1890

k and the corresponding observation modality: oNTk. For notational convenience, we let 1891

s = sMBk and o = oNTk. Using this notation, we can then rewrite the epistemic value as 1892

the predictive mutual information between states and observations, using the predictive 1893

distributions Q(oτ |π) and Q(sτ |π): 1894

EQ(oτ |π)[DKL[Q(sτ |oτ , π)∥Q(sτ |π)]] = DKL[Q(oτ , sτ |π)∥Q(sτ |π)Q(oτ |π)] ≡ Ipred(O; S)

= ∑
oτ ,sτ

Q(oτ , sτ |π) ln
Q(oτ , sτ |π)

Q(sτ |π)Q(oτ |π)

= −H[Q(oτ , sτ |π)] + HQ(oτ ,sτ |π)[Q(oτ |π)]− ∑
oτ ,sτ

Q(oτ , sτ |π) ln Q(sτ |π)

(A46)

Using the factorization of the joint posterior predictive density Q(oτ , sτ |π) = P(oτ |sτ)Q(sτ |π),1895

the final term on the RHS of Equation (A46) can be rewritten: 1896

− ∑
oτ ,sτ

Q(oτ , sτ |π) ln Q(sτ |π) = − ∑
oτ ,sτ

P(oτ |sτ)Q(sτ |π) ln Q(sτ |π) (A47)

≥ H[Q(sτ |π)] + EQ(sτ |π)[ln P(oτ |sτ)] (A48)

where the inequality going from (A47) to (A48) follows from Jensen’s inequality. Equa- 1897

tion (A48) demonstrates that uncertainty about hidden states (as quantified by H[Q(sτ |π)]) 1898

is directly proportional to the drive to reduce that uncertainty, subject to the log probability 1899

of observations expected under hidden states EQ(sτ |π)[ln P(oτ |sτ)]. 1900

We can then use the dependence of P(sτ |sτ−1, π) on ωSoc to relate the inverse social 1901

volatility to the posterior entropy H[Q(sτ |π)]. 1902

Q(sτ |π) = P(sτ |sτ−1, π, ωSoc)Q(sτ−1|π) =
eωSocP(sτ |sτ−1,π)

∑sτ
eωSocP(sτ |sτ−1,π)

Q(sτ−1|π)

(A49)

ln Q(sτ |π) = ωSocP(sτ |sτ−1, π)− ln ∑
s

eωSocP(sτ |sτ−1,π) + ln Q(sτ−1|π) (A50)

ln Q(sτ |π) = ωSocP(sτ |sτ−1, π)− C + ln Q(sτ−1) (A51)

EQ(sτ |π)[ln Q(sτ |π)] = ωSocEQ(sτ |π)[P(sτ |sτ−1, π)] +EQ(sτ |π)[ln Q(sτ−1)− C] (A52)

=⇒ H[Q(sτ |π)] ∝ −ωSocEQ(sτ |π)[P(sτ |sτ−1, π)] (A53)

The final line demonstrates that the entropy of the predictive posterior is inversely 1903

proportional to the inverse social volatility ωSoc, and thus controls the rate at which the 1904

focal agent’s uncertainty about their neighbours‘ belief-states increases, and therefore also 1905

determines the epistemic value of policies that entail reading that neighbour’s tweets. Intu- 1906

itively, if an agent believes their social world is volatile (the beliefs of neighbouring agents 1907

quickly grow uncertain), the agent will become incentivised to sample those neighbours 1908

more frequently, in order to resolve rapidly-growing uncertainty about sMB. Importantly, 1909

this epistemic value will grow over time for a particular neighbour as long as that neigh- 1910

bour’s tweets are not read, so a particular value of ωSoc entails a characteristic ‘social 1911

re-attendance rate’ for each neighbour. 1912

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 January 2022                   doi:10.20944/preprints202201.0124.v1

https://doi.org/10.20944/preprints202201.0124.v1

