Supplementary File

Manuscript title: Case-Crossover Spatial Lag Grid Differences Between Aerosol Optical Depth-PM_{2.5} and Respiratory-Cardiovascular Emergency Department Visits and Inpatient Hospitalizations in Baltimore, Maryland, USA: Identification of Homogeneous Spatial Areas

Journal name: Atmosphere

Author names: John T. Braggio, Eric S. Hall, Stephanie A. Weber, and Amy K. Huff

Corresponding author: John T. Braggio, Maryland Department of Health, Baltimore, MD, 21201, USA; Mt. Diablo Analytical Solutions and Reporting Institute, LLC (Diablo Analytical Institute, DAI), 3474 Tice Creek Drive, Unit 7, Walnut Creek, CA 94595, USA. Email; johntbs@msn.com; Cell: (+1) 510-520-5149 (permanent address)

Four Figures and Two Tables

Figure S1: ED asthma ORs (95% CIs) for the four AOD-PM_{2.5} and baseline PMB fused surfaces during the warm and cold seasons at lag grids 0 (S1a), 1 (S1b), 01 (S1c), and 04 (S1d).

Figure S2: IP asthma ORs (95% CIs) for the four AOD-PM_{2.5} and baseline PMB fused surfaces during the warm and cold seasons at lag grids 0 (S2a), 1 (S2b), 01 (S2c), and 04, (S2d).

Figure S3: IP MI ORs (95% CIs) for the four AOD-PM_{2.5} and baseline PMB fused surfaces during the warm and cold seasons at lag grids 0 (S3a), 1 (S3b), 01 (S3c), and 04 (S3d).

Figure S4: IP HF ORs (95% CIs) for the four AOD-PM_{2.5} and baseline PMB fused surfaces during the warm and cold seasons at lag grids 0 (S4a), 1 (S4b), 01 (S4c), and 04 (S4d).

Table S1: No monitor - Monitor OR Difference Percent (ΔOR%) for the Four AOD-PM_{2.5} and Baseline PMB Fused Surfaces and the Four Respiratory-Cardiovascular ED Visits and IP Hospitalizations Spatial Lag Grid and Temporal Lag Day Analyses in the Baltimore Study Area.

Table S2: Warm - Cold Season OR Difference Percent (ΔOR%) for the Four AOD-PM_{2.5} and Baseline PMB Fused Surfaces and the Four Respiratory-Cardiovascular ED Visits and IP Hospitalizations Spatial Lag Grid and Temporal Lag Day Analyses in the Baltimore Study Area.

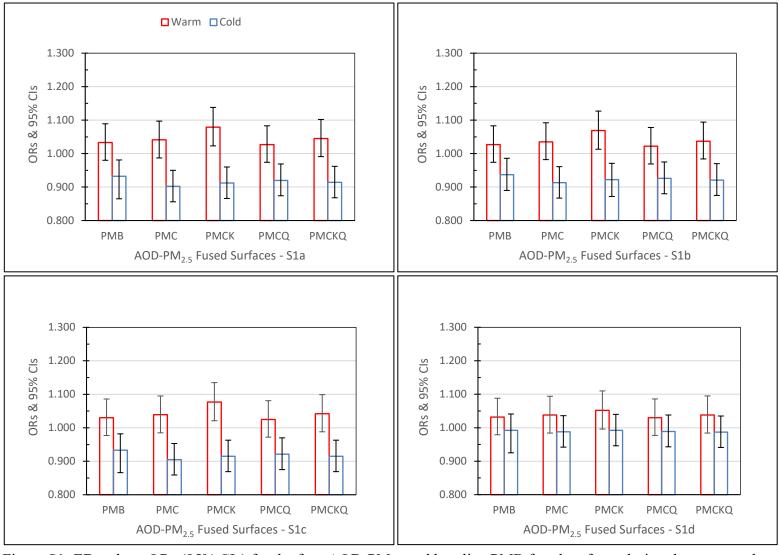


Figure S1: ED asthma ORs (95% CIs) for the four AOD-PM_{2.5} and baseline PMB fused surfaces during the warm and cold seasons at lag grids 0 (S1a), 1 (S1b), 01 (S1c), and 04 (S1d).

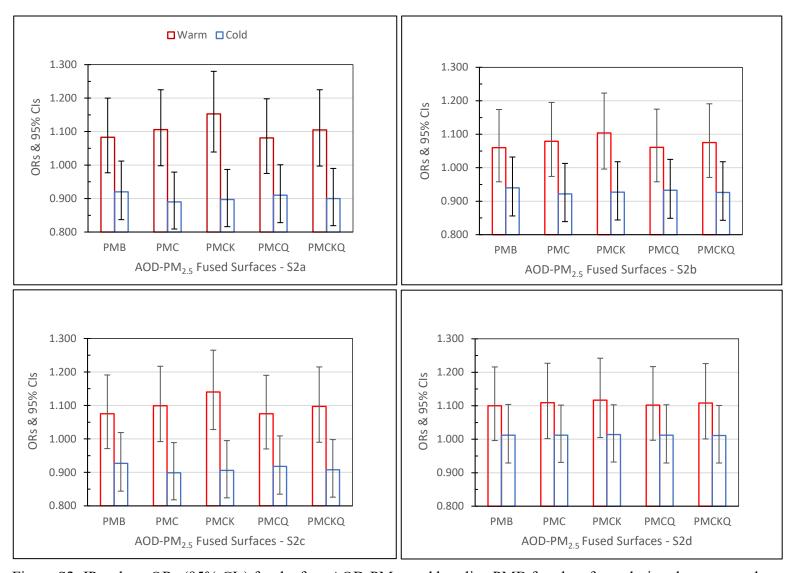


Figure S2: IP asthma ORs (95% CIs) for the four AOD-PM $_{2.5}$ and baseline PMB fused surfaces during the warm and cold seasons at lag grids 0 (S2a), 1 (S2b), 01, (S2c), and 04 (S2d).

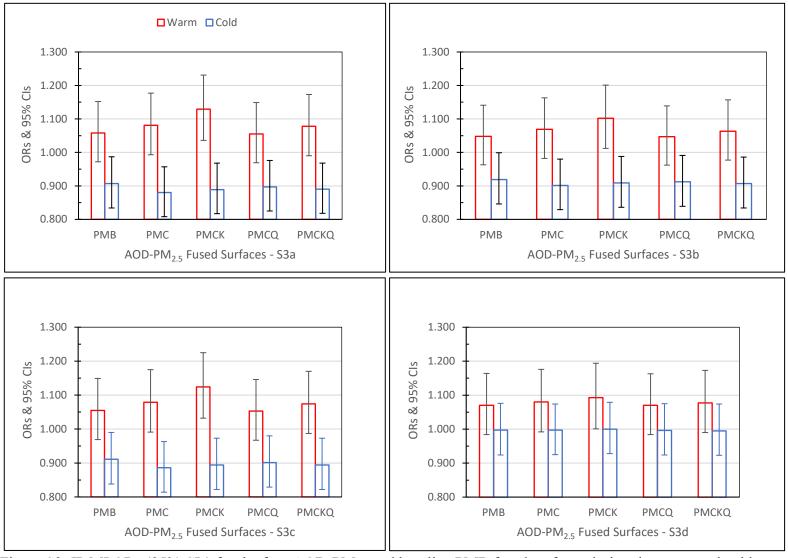


Figure S3: IP MI ORs (95% CIs) for the four AOD-PM_{2.5} and baseline PMB fused surfaces during the warm and cold seasons at lag grids 0 (S3a), 1 (S3b), 01 (S3c), and 04 (S3d).

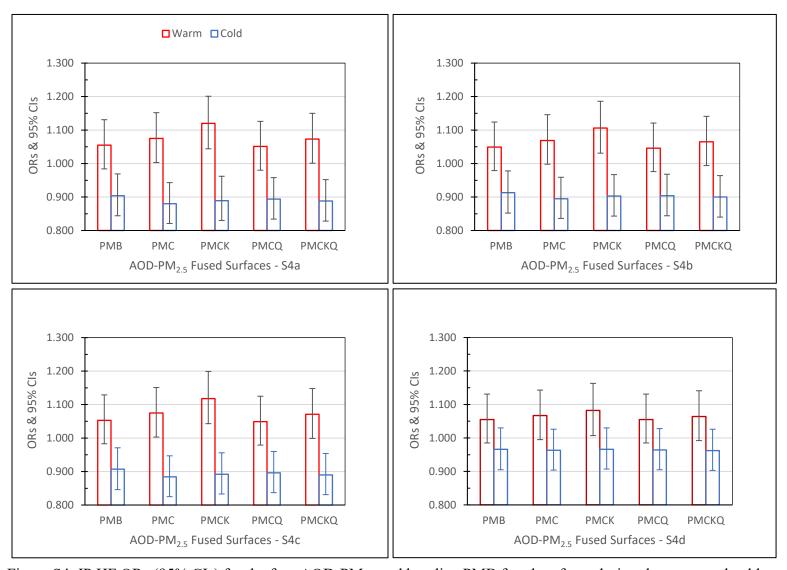


Figure S4: IP HF ORs (95% CIs) for the four AOD-PM_{2.5} and baseline PMB fused surfaces during the warm and cold seasons at lag grids 0 (S4a), 1 (S4b), 01 (S4c), and 04 (S4d).

Table S1: No Monitor - Monitor OR Difference Percent (ΔOR%) for the Four AOD-PM_{2.5} and Baseline PMB Fused Surfaces and the Four Respiratory-Cardiovascular ED Visits and IP Hospitalizations Spatial Lag Grid and Temporal Lag Day Analyses in the Baltimore Study Area.

Lag Day Analyses in the Battimore Study Area.											
Case-Crossover Lag Grid or Lag Day Analyses ¹⁻⁴											
Lag Value	Fused Surfaces	Grids				Days					
		ED	IP	IP	IP	ED	IP	IP	IP		
		AS	AS	MI	HF	AS	AS	MI	HF		
0	PMB	-0.7 ^{†,‡}	-0.9 ^{†,‡}	$-0.7^{\dagger,\ddagger}$	-0.6 ^{†,‡}	-0.7 ^{†,‡}	-0.9 ^{†,‡}	-0.7 ^{†,‡}	-0.6†,‡		
	PMC	$2.0^{\dagger,\dagger}$	$1.7^{\dagger,\ddagger}$	$2.2^{\dagger,\ddagger}$	$2.0^{\dagger,\ddagger}$	$2.0^{\dagger,\ddagger}$	$1.7^{\dagger,\ddagger}$	$2.2^{\dagger,\ddagger}$	$2.0^{\dagger,\ddagger}$		
	PMCK	2.3†,‡	$2.5^{\dagger,\ddagger}$	$2.5^{\dagger,\ddagger}$	2.3 ^{†,‡}	2.3†,‡	$2.5^{\dagger,\ddagger}$	$2.5^{\dagger,\ddagger}$	2.3†,‡		
	PMCQ	$0.0^{\dagger, \ddagger}$	-0.4 ^{†,‡}	$0.0^{\dagger, \ddagger}$	-0.1 ^{†,‡}	$0.0^{\dagger, \ddagger}$	-0.4†,‡	$0.0^{\dagger, \ddagger}$	-0.1†,‡		
	PMCKQ	0.7†,‡	$0.5^{\dagger,\ddagger}$	$0.7^{\dagger,\ddagger}$	$0.7^{\dagger,+}$	$0.7^{\dagger,\ddagger}$	$0.5^{\dagger,\ddagger}$	$0.7^{\dagger,\ddagger}$	$0.7^{\dagger,\ddagger}$		
1	PMB	-0.5 ^{†,‡}	-0.6†,‡	-0.5†,‡	-0.5 ^{†,‡}	-0.7†,‡	-1.0 ^{†,‡}	-0.7†,‡	-0.6 ^{†,‡}		
	PMC	1.9†,‡	1.1†,‡	1.8†,‡	1.8†,‡	2.1†,‡	$1.6^{\dagger,\ddagger}$	2.1†,‡	1.9†,‡		
	PMCK	2.1†,‡	$1.6^{\dagger,\ddagger}$	$2.0^{\dagger,\ddagger}$	2.1†,‡	$2.2^{\dagger,\ddagger}$	$2.4^{\dagger,\ddagger}$	$2.4^{\dagger,\ddagger}$	2.3†,‡		
	PMCQ	$0.0^{\dagger, \ddagger}$	-0.2†,‡	$0.0^{\dagger,\ddagger}$	0.1†,‡	$0.0^{\dagger,\ddagger}$	-0.4†,‡	$0.0^{\dagger, \ddagger}$	-0.1†,‡		
	PMCKQ	$0.7^{\dagger,\ddagger}$	$0.3^{\dagger,\ddagger}$	$0.6^{\dagger,\ddagger}$	$0.7^{\dagger,\ddagger}$	$0.6^{\dagger, \ddagger}$	$0.4^{*,\ddagger}$	$0.6^{\dagger,\ddagger}$	$0.7^{\dagger,\ddagger}$		
01	PMB	-0.6 ^{†,‡}	-0.8 ^{†,‡}	-0.5 ^{†,‡}	-0.5 ^{†,‡}	-0.9 ^{†,‡}	-1.4 ^{†,‡}	-1.2 ^{†,‡}	-1.1 ^{†,‡}		
	PMC	$2.2^{\dagger,\ddagger}$	$1.7^{\dagger,\ddagger}$	$2.3^{\dagger,\ddagger}$	2.1†,‡	4.5†,‡	4.3†,‡	5.0 ^{†,‡}	4.3†,‡		
	PMCK	2.5†,‡	$2.6^{\dagger,\ddagger}$	$2.7^{\dagger,\ddagger}$	$2.6^{\dagger,\ddagger}$	4.7†,‡	5.7†,‡	5.6 ^{†,‡}	$4.8^{\dagger,\ddagger}$		
	PMCQ	$0.0^{\dagger, \ddagger}$	-0.3†,‡	$0.1^{\dagger,\ddagger}$	$0.1^{\dagger,\ddagger}$	$0.2^{\dagger,\ddagger}$	-0.4†,‡	$0.0^{\dagger, \ddagger}$	$0.1^{\dagger,\ddagger}$		
	PMCKQ	$0.9^{\dagger,\ddagger}$	$0.7^{\dagger,\ddagger}$	$0.8^{\dagger,\ddagger}$	0.9†,‡	1.4†,‡	$1.0^{\dagger,\ddagger}$	$1.1^{\dagger,\ddagger}$	$1.2^{\dagger,\ddagger}$		
04	PMB	-0.6,‡	-0.5	-0.6 [‡]	-0.3†,‡						
	PMC	0.1†,‡	0.0^{\dagger}	0.3†,‡	0.5†,‡						
	PMCK	$0.2^{\dagger,\ddagger}$	0.3^{\dagger}	$0.5^{\dagger,\ddagger}$	$0.5^{\dagger,\ddagger}$						
	PMCQ	-0.4 ^{†,‡}	-0.4	-0.4 ^{†,‡}	-0.2 ^{†,‡}						
	PMCKQ	-0.3 ^{†,‡}	-0.2	-0.2†,‡	-0.1 ^{†,‡}						

¹Each cell includes no monitor - monitor Δ OR% values. ²Significance of ORs for monitor grid conditions (grids without [no] or with [yes] air monitors), $p \le 0.05$: † = no, ‡ = yes. ³Red hue indicates higher lag day value than lag grid value, while blue hue represents lower lag day value than lag grid value. ⁴Underlined cell value identifies a difference between the significance of the outcome for a lag grid OR and a lag day OR.

Table S2: Warm - Cold Season OR Difference Percent (Δ OR%) for the four AOD-PM_{2.5} and Baseline PMB Fused Surfaces and the Four Respiratory-Cardiovascular ED Visits and IP Hospitalizations Spatial Lag Grid and Temporal Lag Day Analyses in the Baltimore Study Area.

Study Area.										
Case-Crossover Lag Grid or Lag Day Analyses ¹⁻⁴										
Lag Value	Fused Surfaces	Grids				Days				
		ED	IP	IP	IP	ED	IP	IP	IP	
		AS	AS	MI	HF	AS	AS	MI	HF	
0	PMB	10.8 [‡]	17.7	16.6 [‡]	16.7 [‡]	10.8 [‡]	17.7	16.6 [‡]	16.7 [‡]	
	PMC	15.4 [‡]	24.3 [‡]	22.8 [‡]	22.2†,‡	15.4 [‡]	24.3 [‡]	22.8 [‡]	22.2†,‡	
	PMCK	18.3 ^{†,‡}	28.5†,‡	$27.0^{\dagger,\ddagger}$	26.0†,‡	18.3 ^{†,‡}	28.5†,‡	27.0†,‡	26.0†,‡	
	PMCQ	11.6 [‡]	18.8	17.6 [‡]	17.6 [‡]	11.6 [‡]	18.8	17.6 [‡]	17.6 [‡]	
	PMCKQ	14.3‡	22.8‡	21.1‡	20.8†,‡	14.3‡	22.8‡	21.1‡	20.8†,‡	
1	PMB	9.6‡	12.8	14.0‡	14.9‡	10.6‡	16.1	16.2‡	16.3‡	
	PMC	13.4‡	17.0	18.6 [‡]	19.4‡	14.7‡	<u>21.9‡</u>	21.9‡	21.5 ^{†,‡}	
	PMCK	15.9†,‡	19.1	21.2†,‡	22.5†,‡	17.5†,‡	25.4 ^{†,‡}	25.6†,‡	24.9†,‡	
	PMCQ	10.4‡	13.7	14.8‡	15.7‡	11.4‡	17.0	17.0‡	17.2‡	
	PMCKQ	12.6 [‡]	16.1	17.2‡	18.3 [‡]	13.9‡	<u>20.7‡</u>	20.4‡	20.3‡	
01	PMB	10.4 [‡]	16.0	15.8 [‡]	16.1 [‡]	17.4 [‡]	<u>26.8‡</u>	26.2 [‡]	25.1‡	
	PMC	14.8 [‡]	22.2 [‡]	21.8‡	21.6†,‡	24.6 [‡]	38.1 ^{†,‡}	<u>36.7^{†,‡}</u>	33.9†,‡	
	PMCK	$17.7^{\dagger,\ddagger}$	25.8†,‡	25.7†,‡	25.3†,‡	28.4†,‡	45.2†,‡	44.1†,‡	40.5†,‡	
	PMCQ	11.3‡	17.1‡	16.9‡	17.1‡	18.7‡	28.6‡	27.8+	26.6‡	
	PMCKQ	11.3‡	20.8^{\ddagger}	20.1‡	20.3‡	23.1‡	33.1 ^{†,‡}	33.9†,‡	<u>32.2†,‡</u>	
04	PMB	4.0	8.7	7.3	9.2					
	PMC	5.1	9.6	8.3	10.8					
	PMCK	6.0	10.2 [†]	9.3 [†]	12.0 [†]					
	PMCQ	4.1	8.9	7.4	9.4					
	PMCKQ	5.2	9.6	8.2	10.6					

¹Each cell includes warm - cold season Δ OR% values. ²Significance of warm-cold season ORs, p≤0.05: † = warm; ‡ = cold. ³Red hue indicates a higher lag day OR value than a lag grid OR value. ⁴Underlined cell value identified a difference in the significance of the outcome for a lag grid OR and a lag day OR.