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Abstract: Damage detection based on modal parameter changes becomes popular in the last 

decades. Nowadays are available robust and reliable mathematical relations to predict the natural 

frequency changes if damage parameters are known. Using these relations, it is possible to create 

databases containing a large variety of damage scenarios. Damage can be thus assessed by applying 

an inverse method. The problem is the complexity of the database, especially for structures with 

more cracks. In this paper, we propose two machine learning methods, namely the random forest 

(RF) and the artificial neural network (ANN) as search tools. The databases we developed contain 

damage scenarios for a prismatic cantilever beam with one crack and ideal and non-ideal boundary 

conditions.  The crack assessment is made in two steps. First, a coarse damage location is found 

from the networks trained for scenarios comprising the whole beam. Afterward, the assessment is 

made involving a particular network trained for the segment of the beam on which the crack is 

previously found. Using the two machine learning methods, we succeed to estimate the crack 

location and severity with high accuracy for both simulation and laboratory experiments. Regarding 

the location of the crack, which is the main goal of the practitioners, the errors are less than 0.6%. 

Based on these achievements, we concluded that the damage assessment we propose, in conjunction 

with the machine learning methods, is robust and reliable. 

Keywords: damage detection; linear regression; random forest; artificial neural network; training 

parameters; natural frequency 

 

1. Introduction 

Nondestructive damage detection methods have received increasing attention in 

recent decades and became a central research topic for scholars and practitioners 

belonging to the structural health monitoring community. Principles of vibration-based 

techniques, which are nowadays very popular, can be found in [1-3]. These methods are 

based on the deterministic relation between the damage characteristics (mainly location 

and severity), and the changes in the modal parameters (natural frequencies, mode 

shapes, and curvatures). Among the modal parameters, the natural frequencies are the 

easiest to determine and require the involvement of relatively cheap and very robust 

instrumentation. Moreover, estimating the natural frequencies require a limited number 

of sensors compared to methods based on mode shapes [4]. For this reason, in this paper, 

we focus on the analysis of natural frequencies to detect damage.    

The temperature change can affect the natural frequencies of the structure. For 

accurate damage detection, it is important to remove the effects of temperature on the 
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natural frequencies. An algorithm to this aim is presented in [5], where a successful 

damage assessment is performed for the case of changing temperatures. Mass changes 

also affect the natural frequencies of structures. In [6], it is investigated an analytical 

approach developed for a mass-spring-damper system that demonstrates how to localize 

mass change.  

Detection and measurement of damage features for different crack types in slender 

beams using modal analysis is studied in [7]. Assessment of L and T-shaped cracks as well 

as delamination in bi-metal structures using natural frequencies is successfully performed 

in [8]. Assessment of corrosion and the analysis of the structural capacity of corroded I 

girders that belong to steel bridges is studied in [9]. 

In some real cases, multiple damages can occur at once, and the structures can have 

multiple supports. A complex study devoted to calculating the natural frequencies and 

mode shapes of multi-span beams is found in [10], and in [11] is presented a method to 

assess cracks in continuous beams. A study devoted to identifying multiple damages of 

multi-span bridges based on influence lines is presented in [12].  

The complexity of damage (the crack shape and the orientation, the associated loss 

of mass, the number of cracks), as well as the complexity of the structures (multi-

supported beams, skeletal structures, the use of nonisotropic materials), increase the 

dimension of the dataset to be processed for damage detection. For this reason, 

researchers who develop methods for detecting damages are increasingly using Artificial 

Intelligence (AI) to analyze large amounts of data.   

The Artificial Neural Network (ANN) is a commonly applied technique for SHM. A 

method to identify the damage location and its severity in a ten-floor structure,  

employing an auto-associative neural network combined with transmissibility is 

proposed in [13]. The development of a method to detect damages in a truss structure 

using an ANN is the subject of the research presented in [14]. A method to predict crack 

width for thick as well as for thin concrete elements, which bases on the feed-forward 

backpropagation and the radial basis neural networks, is proposed in [15]. 

The use of Random Forests (RF) and data fusion for structural damage detection are 

proposed in [16]. More recently, an RF model was used to Predict the Location of Potential 

Damage on Asphalt Pavement [17]. Here, RF data mining is used to analyze the 

interrelationships of variables. Another approach is found in [18]. The damage-sensitive 

features are extracted from raw sensor data using the cross-correlation function and 

wavelet packet decomposition. RF and other Ensemble Learning algorithms such as 

XGBoost are used to train the damage pattern classifier. 

Despite successful assessment of damage, it is worth mentioning that the damage 

considered in most studies presented in the literature either manifests on an element with 

significant extent along the beam [13] or has significant severity: 22% to 68% in [19] and 

20% to 80% in [20]. For skeletal structures, the damage manifests on one or more structural 

elements, see for example [14] and [16-18].  

In prior research, we deduced a relation to calculate the natural frequencies of beams 

with known crack parameters. This relation is applicable also for beams with non-ideal 

boundary conditions. Being an analytical relation, it permits creating, easily and rapidly, 

a database with patterns for a multitude of damage scenarios. The database contains the 

Relative Frequency Shits (RFS) for eight out-of-plain vibration modes for all given damage 

locations, severities, and fixing conditions. It is used to train RF and ANN, with a huge 

amount of data. The training is first performed for scenarios covering all locations along 

the beam and afterward for locations on a specific segment. The proposed damage 

detection methodology presumes an initial/coarse assessment to find the crack location, 

followed by a second/fine assessment targeting the accurate crack location and severity.           

To evaluate the effectiveness of the proposed approach, two examples, comprising 

numerical simulations and laboratory experiments on steel beams are performed. The 

results obtained by involving RF and ANN are compared; both methods lead to the 

correct location and quantification of the damage, regardless of the changes in the fixing 

conditions. It was possible to detect cracks with a much smaller depth than those reported 
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in the literature. As far as we know, there are no methods for detecting defects that are 

applicable even in the event of a change in the conditions for fixing the beam.  

The paper is organized as follows. After an introductory section, we present the 

theoretical background which permits developing a database consisting of an INPUT and 

a TARGET part. The methodology of RF and ANN, along with the training process based 

on the database are introduced in Section 3. In the next two sections, we prove the 

efficiency of the proposed approach. In section 4 we describe the numerical simulations 

performed on a steel cantilever beam, done to find the natural frequency shifts due to 

several damage cases. Then, we apply the two machine learning methods. In Section 5 we 

repeat the approach for laboratory-scale beams. Eventually, conclusions are formulated. 

2. Creating the database for Machine Learning (ML) 

As a crack propagates in a structure, it produces an alteration of structural 

stiffness. This alteration produces a change in modal parameters, of which the most 

obvious and easy to measure are changes in natural frequencies. There is a deterministic 

relationship between stiffness change and the decrease in the natural frequencies of the 

structure, therefore the position and depth of the crack can be identified if the changes in 

the frequencies produced by the defect are known. We proposed a robust and easy-to-use 

mathematical relation to predicting the natural frequency
−

( , )i Df x a of a cracked beam [21]. 

This relation relies on the features of the healthy beam, namely, the natural frequencies

i U
f
−

and the modal curvatures ( )
i

x of the out-of-plain vibration modes, and the damage 

severity ( )a , respectively. The mathematical relation is 

  
− −

 = −  
2

( , ) 1 ( ) ( )i D i U if x a f a x . (1) 

In this relation, we denoted the crack position with x, the crack depth with a, and i 

stays for the mode number. From equation (1) we can deduce the relative frequency shift 

(RFS), which is the normalized frequency drop due to a crack, as 

 − −
−

−

−
  = =  

2( , )
( , ) ( ) ( )i U i D

i D i
i U

f f x a
f x a a x

f
. (2) 

We find the two terms in the right part of equation (2) as follows. The crack severity 

is calculated involving an energy method, which says that a beam with a crack will be able 

to store less energy than a similar healthy beam and will suffer a greater deformation if 

subjected to a force [22]. So, we can calculate the severity involving the mathematical 

relation [23] 

 




−
=

( )
( )

( )

D U

D

a
a

a
. (3) 

In this relation, we denoted U
 the deflection of the healthy beam, and with ( )

D
a  

the defection of the beam with a crack that has depth a. Note that, the severity is calculated 

for the crack located at the position where the biggest curvature (or bending moment, 

which is proportional to the curvature) is achieved. In consequence, the position of the 

damage for which the severity is calculated differs depending on the boundary conditions 

of the beam; for example, for the cantilever beam that is the subject of the study presented 

hereinafter this position is the fixed end. On the other hand, the severity depends solely 

on the crack depth a, so that for a given depth it is the same regardless of the boundary 

conditions.  

The effect of the crack position is controlled by the local curvature (or bending 

moment). This happens because the stress present in the affected slice is proportional to 

the bending moment. In consequence, a smaller effect on the frequency drop is obtained 

if the crack is not located at the particular position where the biggest bending moment is 

present. There are even situations in which the crack does not cause a decrease in 
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frequency, namely when it is located at an inflection point [24]. To consider the effect of 

the crack position x on the frequency drop, we use the normalized squared curvature. By 

normalization, we assign value one to the curvature or bending moment for the location 

where the beam is the most requested and a subunit value for the rest of the positions. For 

the cantilever beam, the normalized curvature is 

( ) ( ) ( ) ( )
cos cosh

( ) 0.5 cos cosh sin sinh
sin sinh

i i
i i i i i

i i

x x x x x
 

    
 

 +
  = + − +  + 

. (4) 

where we denoted with
i
 the eigenvalue of the i-th vibration mode. These values are 

indicated in the literature for different boundary conditions of the beam. Note that, other 

boundary conditions also lead to other curvature functions.  

Taking into account the above, we can summarize that: 

• The severity ( )a depends on the crack depth a and is independent of the crack 

position x, boundary conditions, and vibration mode number i. Therefore, the 

severity for a beam with a given crack once calculated using equation (3) is valid for 

that beam irrespective of the boundary conditions. In practice, we calculate the 

severity using static finite element analysis for a cantilever beam because it presents 

an important deflection at the free end. A comprehensive description of the 

procedure to determine the correct severity is given in [25].       

• The value of the normalized modal curvature ( )
i

x at the position x where the crack 

is located reduces the effect of the severity since at that position less stress is stored 

in the beam. This term depends on the vibration mode number i and the boundary 

conditions. Therefore, equation (2) is has a large degree of generality; it can be 

properly used for any support type if the correct curvature function ( ) i x is 

employed. Hereinafter we exemplify the case of a cantilever, thus equation (4) is 

used.   

In Figure 1 we represent the RFS calculated using equation (2) for vibration modes 1 

and 3, for two crack depths.   

 

  

(a) (b) 

Figure 1. Plotted RFS functions for out-of-plain bending vibrations of a cantilever beam with perfect fixing: (a) vibration 

mode 1; (b) vibration mode 3. The functions are plotted for a cross-section reduction of 12% and 20%, respectively.  

The above approach is valid for perfect boundary conditions. If the fixing is non-

ideal, the frequency drop is bigger. In prior research, we demonstrated that the 

superposition principle is valid [26]. For a beam with two cracks, which have position 1
x

and 2
x , and depths 1

a and 2
a , respectively, the frequency drop is calculated as the sum of 

the two RFS, that is 
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   
−

     = +   
2 2

1 1 2 2 1 1 1 2 2 2( , , , ) ( ) ( ) ( ) ( )i D i if x a x a a x a x . (5) 

We simulate the non-ideal boundary condition, namely the weak fixing, as a crack at 

the clamped end. So, an additional rotation is possible [27], which leads to a frequency 

decrease. Knowing that the normalized modal curvature at the fixed end of the cantilever 

is (0) 1
i
 = , equation (5) becomes 

  
−

  = +  
2

1 2 2 1 1 2 2 2(0, , , ) ( ) ( ) ( )i D if a x a a a x . (6) 

Hence, we can plot the RFS for the beam with non-ideal boundary conditions as 

shown in Figure 2. 

 

  

(a) (b) 

Figure 2. Plotted RFS functions for out-of-plain bending vibrations for a cantilever beam with non-ideal fixing: (a) 

vibration mode 1; (b) vibration mode 3. The functions are plotted for a cross-section reduction of 12%, respective 20%.  

The inverse method we developed to detect cracks implies, as a first step, calculating 

the RFS for numerous damage scenarios and creating a database. The database thus 

contains two distinct sections: 

• TARGET elements, which are the local value of the curvature for a given position, 

the severity of the defect, and the severity corresponding to the weak fixing. These 

are placed on columns, the number of columns m corresponding to the desired 

number of scenarios. The index of the column is denoted k, thus k=1,…,m. 

• INPUT elements, which are calculated relative frequency shifts c

i-k
RFS  for a chosen 

number of vibration modes n. These are also arranged in columns, each INPUT 

column corresponding to a TARGET column.  

The second step is monitoring the structure, which presumes to measure the natural 

frequencies. If changes are observed, the frequency shifts calculated for the measured 

frequencies ( m

i
RFS ) are compared with the elements of the INPUT section of the database, 

i.e. c

i-k
RFS . The column number k for which the best fit is obtained between the calculated 

and measured RFS indicates the crack position and severity. In this study, we propose a 

machine learning approach to find the best fit. The chosen methods are the random forest 

and the neural network.   

3. Machine Learning methods 

In the last decade, artificial intelligence (AI) has become a frequently used term for 

applications that perform complex tasks that once required human intervention, such as 

Structural Health Monitoring methods. In this section, we present the development and 

testing of two machine algorithms used for damage detection. The training data is 

generated using the method described in the previous chapter. The database contains 
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36573 damage scenarios (number of columns in the INPUT and TARGET files). The 

number of rows in the INPUT file is eight, comprising the first eight out-of-plain bending 

vibration modes. The TARGET file consists of three elements, i.e. three rows, which are: 

the damage location, the damage severity, and the severity of the damage simulating the 

weak clamping. For this study, we considered 100 locations of the crack evenly distributed 

along the beam, the cracks having 17 levels of depth. The beam has both ideal and non-

ideal clamping, for the latter situation 7 cases of weak fixing are generated. It resulted in 

36573 damage scenarios. The two files of the database are presented in [28]. 

Because of the complexity of the application and the accuracy required for 

determining the exact position and severity of transverse cracks we propose a two-step 

approach. This means that after a coarse localization of the crack using a network trained 

for all damage scenarios, we apply a second check, this time for a model trained for the 

specific section of the beam on which the crack is found at the first step. As an example, if 

the crack is found involving one of the developed methods at 175 mm from the fixed end, 

we make the second check for a segment extended between 100 and 250 mm. For this 

segment, we train again the model for a limited number of inputs, considering just those 

which contain the crack position between the limits 100 and 250 mm. This facilitates 

obtaining a better model of the structure and, in consequence, more precise localization 

of the crack.  

To have a fast estimation, we divide the beam into nine segments, partially 

overlapped, and train the ML models a priori for these segments. Overlapping is used to 

avoid uncertainty regarding the choice of the right segment. The segments we used and 

the name of the network are presented in Table 1.     

Table 1. Segments used to train the machine learning models for enhanced damage detection. 

Segment limits 0-150 100-300 250-400 350-500 450-600 550-700 650-800 750-900 850-1000 

Network name Sector 1 Sector 2 Sector 3 Sector 4 Sector 5 Sector 6 Sector 7 Sector 8 Sector 9 

 

The two ML methods and the settings applied for the training are presented in the 

next two sub-sections. For both methods, we use 70% of the data for training, 15% for 

testing, and 15% for validation.   

3.1. Random Forest 

Decision Trees have proven successful at exploring non-linear relationships between 

input and target variables [29]. Such trees work by splitting the dataset in instances that 

have a minimum amount of node impurity or in other words, are homogenous. Purity 

here means that each leaf node represents data points that are in the same class and is 

defined as the sum of square deviations in class predictions. The biggest drawback of 

decision trees is that they can easily overfit. This can be mitigated by aggregating such 

trees to reduce variance. 

RF is a technique that employs an ensemble of decision trees and can be used for 

regression and classifications tasks. The prediction made by an RF aggregates the output 

of individual trees into a single variable [30]. When building trees, the algorithm 

randomly selects a given number of features. This essentially prevents multiple decision 

trees that rely on the same feature. The process is repeated until a group of regression 

trees, each trained on a randomly selected subset of data, is created. This induced 

randomness is what compensates for the weakness of each individual tree. 

The performance of an RF model can be tweaked by tuning a few key parameters, 

with some studies reporting that there is a significant benefit to tuning RF parameters 

away from their default settings [31]. Table 2 summarizes the most common 

hyperparameters of the RF model. 
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Table 2. RF Hyperparameters. 

Parameter Meaning Value 

n_estimations The number of estimators in the forest 400 

max_features max number of features considered for splitting a node sqrt 

max_depth max number of levels in each decision tree None 

min_samples_split 
min number of data points placed in a node before the 

node is split 
2 

min_samples_leaf min number of data points allowed in a leaf node 1 

bootstrap 
method for sampling data points. True= bootstrap 

samples 
true 

The number of trees in the forest should be in principle as high as possible but in 

practice, performance plateaus appear after a few hundred trees. In general, increasing 

the number of featur considered in splitting a node will improve performance as each 

node will have now have a higher number of options to consider, a lower value will 

increase the chance of selecting features with small effects which in turn could lead to 

improved performance in cases where such feature would be masked. Parameter 

min_samples_leaf represents the minimum size of terminal nodes. A higher number will 

lead to small trees while a smaller leaf size makes the tree more prone to noise in data.  

The hyperparameters of the RF were tuned using a randomized search 

(RandomizedSearchCV in Scikit-Learn) with 5-fold cross-validation, that randomly 

chooses one of the possible values for each one of the hyperparameters and scores the 

estimator. The best estimator is used in the model. Table 2 also shows the tuned values 

for each parameter The training results using RF are presented in Figure 3 for the entire 

beam and sector 9, respectively. 

  

a) b) 

Figure 3. Random forest training results; (a) obtained for coarse estimation involving all input data; (b) obtained for 

accurate localization involving the Sector 9 input data. 

3.2. Artificial Neural Networks 

Numerous studies have shown the versatility and power of ANNs when applied to 

different computational tasks such as prediction or classification in many real-world 

applications [32]. In particular, they are universal approximators capable of detecting 

nonlinearities in an n-dimensional input. This is achieved by including a large number of 

nonlinear transformations between the input to an output mapping. A typical neural 
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network consists of several connected neurons, organized in layers, as shown in Figure 4. 

A neuron will generally process information coming from its connections using a 

nonlinear activation function. A neural network is trained to perform a specific function 

by adjusting the values of the connections between its neurons. 

 

Figure 4. Typical neural network structure.  

Feedforward neural networks are ANNs where the topology is organized such that 

every neuron in one layer projects only onto subsequent layers. This topology excludes 

thus recurrent connections and essentially means that information flows through the 

network from one layer to another until it reaches the output. 

By using the methodology presented in section 2, we calculated the required data for 

training. The calculated data involves the INPUT data as the calculated RFS values for the 

first 8 transverse vibration modes and the TARGET data consisting of 3 values, i.e. crack 

position, crack severity, and the severity for the weak clamping. If the boundary condition 

is perfect, the third output is set to zero. 

The ANN is developed using Matlab software, as shown in Figure 5. A feedforward-

backpropagation network type is employed, for which we choose: the Bayesian 

regularization training function, the Levenberg-Marquardt learning function, the Mean 

squared error (MSE) performance function, and the Hyperbolic tangent sigmoid transfer 

function.  

 

Figure 5. The setup for the training of network 1. 
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The ANN, nominated as network 1, consists of 1 input layer with 8 neurons, three 

hidden layers with 30 neurons each, and an output layer with 3 neurons, see Figure 6.  

 

Figure 6. Network 1 configuration and training parameters. 

The obtained training performance for network 1 is presented in Figure 7 in 

comparison with one of the particular networks, section 9.  
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(a) (b) 

Figure 7. Neural network training results: (a) obtained for coarse estimation involving network 1; (b) obtained for accurate 

localization involving the Sector 9 network. 

3.3. Evaluation of the models 

In this study, two criteria were used for evaluating the accuracy of the models relative 

to the ones obtained through FEM analysis and experimental tests, error(x) for the position 

and error(γ) for the severity. The error in the position is  

( ) ( )
( ) 100 [%]

1000

x r x e
error x

−
=   (7) 

Here, x(r) is the real position of the crack expressed in mm, x(e) is the estimated 

position using the ML models and 1000 represents the total length of the beam in mm. The 

severity error is calculated as 

2 2( ) ( )
( ) 100 [%]

1

r e
error

 


−
=   (8) 

In this relation, γ(r) is the real severity of the crack, γ(e) is the estimated severity of 

the crack found using the ML models, and 1 represents the maximum value that can be 

achieved by the crack severity. 

In addition to the two above-mentioned errors, we evaluate the capacity of the 

models to detect weak clamping. The possible responses are false or true.  

4. Numerical validation 

For testing the reliability of the damage detection methods described in the previous 

section, we first involve the finite element method (FEM). Modal analysis is performed 

using the ANSYS software. We generate a prismatic steel cantilever beam, like that shown 

in Figure 8, with dimensions: length L=1000mm, width B=50mm, and thickness H=5mm. 

The assigned material is S355 JR steel with a modulus of elasticity E=2∙105 MPa and a 

density of 7850 kg/m3. 

The target was to find the first eight natural frequencies for the out-of-plain vibration 

modes, for the healthy beam and the beam with different damages, respectively. Both 

ideal clamping and non-ideal clamping are simulated.  
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Figure 8. Main dimensions of the considered beam geometry with a transversal crack. 

To implement the crack and simulate the effect of the weak clamping, we involve 

separate elements which are not fixed on one surface, as shown in Figure 9. In this way, 

we assign the same mass for the beams with damage and non-ideal clamping and yet 

obtain discontinuities. For simulating real-life scenarios where in most cases measurement 

data can contain noise, we have also considered different meshing sizes for the damage 

scenarios to have small differences in the frequency results. The maximum edge size is set 

to 2 mm for scenarios 1-5 and 1 mm for scenarios 6-10. 

The FEM model is composed of the beam body and the two parameterized elements 

used to create discontinuities.  

 

Figure 9. The FEM model of the damaged beam with weak clamping. 

The frequencies obtained from the FEM analysis for the undamaged and damaged 

beam cases are presented in Table 3. The complete dataset is presented in [33] 

Table 3. Obtained natural frequencies for the defined damage scenarios.  

Scen. 

Crack 

pos. 

x [mm] 

Crack 

depth 

a2 [mm] 

Weak 

clamp. 

1a  [%] 

Natural frequencies obtained for the first 8 modes 

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 

  0 Undamaged 4.09 25.627 71.757 140.63 232.53 347.46 485.47 646.59 

1 100 1 0 4.081 25.606 71.745 140.631 232.472 347.229 484.947 645.751 

2 150 1 0 4.082 25.620 71.754 140.552 232.257 347.024 485.083 646.448 

3 400 1 0 4.087 25.601 71.708 140.588 232.186 347.447 484.904 646.092 

4 550 1 0 4.089 25.588 71.739 140.478 232.383 347.238 484.950 646.435 

5 613 1 0 4.089 25.593 71.686 140.609 232.189 347.401 485.079 645.855 

6 133 1 20 4.073 25.568 71.624 140.323 231.864 346.328 483.945 644.903 

7 280 1.2 20 4.073 25.555 71.445 140.116 231.936 346.097 483.238 644.674 

8 410 1 20 4.080 25.549 71.579 140.300 231.744 346.819 483.831 645.103 

9 570 1 20 4.082 25.512 71.586 140.209 231.700 346.824 483.324 645.633 

10 962 0.6 10 4.088 25.616 71.727 140.571 232.430 347.305 485.241 646.262 

 

The variables used for the studied damage scenarios are the crack location, which is 

measured from the fixed end, and the proportion in which the clamped end is affected. 
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The weak clamping is replicated by adding the separate element of known thickness 1a

to the fixed end. Thus, 
1 1 /a a H=  [%] replicates the weak clamping. The RFS values 

obtained for the studied damage scenarios are presented in Table 4, where crack position 

x, crack depth
2

a  and weak clamping 1a  represent the output values. 

Table 4. Calculated RFS values for the defined damage scenarios. 

Scen. 

Crack 

pos. 

x [mm] 

Crack 

depth 

a2 [mm] 

Weak 

clamp. 

1a  [%] 

RFS for the first 8 modes 

RFS 1 RFS 2 RFS 3 RFS 4 RFS 5 RFS 6 RFS 7 RFS 8 

1 100 1 0 0.002393 0.001227 0.000540 0.000099 0.000015 0.000075 0.000336 0.000652 

2 150 1 0 0.001899 0.000254 0.000038 0.000552 0.001173 0.001254 0.000798 0.000219 

3 400 1 0 0.000644 0.001020 0.000683 0.000299 0.001480 0.000037 0.001166 0.000771 

4 550 1 0 0.000240 0.001535 0.000256 0.001080 0.000632 0.000640 0.001072 0.000240 

5 613 1 0 0.000141 0.001343 0.000991 0.000146 0.001467 0.000171 0.000805 0.001136 

6 133 1 20 0.002224 0.000466 0.000003 0.000336 0.001015 0.001417 0.00131 0.00077 

7 280 1.2 20 0.004237 0.002804 0.004348 0.003654 0.002554 0.003922 0.004598 0.002963 

8 410 1 20 0.002522 0.003063 0.002483 0.002346 0.003381 0.001844 0.003377 0.002300 

9 570 1 20 0.000218 0.00167 0.000507 0.000837 0.00116 0.000208 0.001627 0.00002 

10 962 0.6 10 0.000412 0.000412 0.000414 0.000419 0.000429 0.000446 0.000472 0.000507 

 

The outputs obtained using the two ML methods based on the RFS values (Table 4) 

are presented in Tables 5-8. Table 5 contains the results from the preliminary ML random 

forest model, and Table 6 the results obtained using the refined random forest model. In 

Table 7 we present the results obtained involving coarse estimation with network 1, and in 

Table 8 are the results obtained with the specific ANN networks chosen for the particular 

cases after the coarse estimation. The severity of the cracks with depth a=1mm, a=1.2mm, 

and a=0.6mm is: γ2(1)=0.0033459, γ2(1.2)=0.0051239 and γ2(0.6)= 0.0011911. 

Table 5. Results obtained using Random forest rough model – first step. 

FEM Scenarios Random Forest preliminary output 

Scen. 
Position 

[mm] 

Severity 

γ2(a2) 

Position 

[mm] 

Severity 

γ2(a2) 

Position 

error 

[%] 

Severity  

Error 

[%] 

Weak clamping 

1 100 0.0033459 99.5 0.0028 0.05 0.05 Not detected True 

2 150 0.0033459 151.6 0.0029 0.16 0.04 Not detected True 

3 400 0.0033459 458.0 0.0024 5.80 0.09 Not detected True 

4 550 0.0033459 515.8 0.0028 3.42 0.05 Not detected True 

5 613 0.0033459 602.5 0.0028 1.05 0.05 Not detected True 

6 133 0.0033459 138.1 0.0027 0.51 0.06 Not detected False 

7 280 0.0051239 204.9 0.0068 7.51 0.17 Detected True 

8 410 0.0033459 365.1 0.0044 4.49 0.11 Detected True 

9 570 0.0033459 547.3 0.0063 2.27 0.30 Detected True 

10 962 0.0011911 941.1 0.0129 2.09 1.17 Not detected False 

One can observe that, after the first check, the largest error in estimating the crack 

position is 7.51%, which is unacceptable. The severity is precisely found, the errors being 
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less than 1.17%. The method was not able to indicate correctly if the clamping is non-ideal.   

In consequence, this machine learning method is not qualified to assess the crack position 

and severity at this stage. 

Table 6. Results obtained using Random forest enhanced model – second step. 

FEM Scenarios Refined Random Forest output 

Scen. 
Position 

[mm] 

Severity 

γ2(a2) 

Position 

[mm] 

Severity 

γ2(a2) 

Position 

error 

[%] 

Severity  

Error 

[%] 

Weak clamping 

1 100 0.0033459 97.7 0.0030 0.23 0.03 Detected False 

2 150 0.0033459 148.3 0.0029 0.17 0.04 Detected False 

3 400 0.0033459 400.0 0.0025 0 0.08 Not detected True 

4 550 0.0033459 539.6 0.0028 1.04 0.05 Detected False 

5 613 0.0033459 615.3 0.0026 0.23 0.07 Not detected True 

6 133 0.0033459 136.3 0.0024 0.33 0.09 Not detected False 

7 280 0.0051239 303.4 0.0087 2.34 0.36 Detected True 

8 410 0.0033459 410.1 0.0046 0.01 0.13 Detected True 

9 570 0.0033459 570.1 0.0058 0.01 0.25 Detected True 

10 962 0.0011911 976.3 0.010 1.43 0.88 Detected True 

Localization after the second check with the RF method is accurate, errors being 

below 1%. Estimating the severity of the defect is done also with small errors, up to 0.88%. 

As shown in Table 6, weak clamping is detected incorrectly for some damage scenarios. 

Assessing the crack with the ANN method is also made in two steps. First, a coarse 

estimation is made with network 1, which considers the locations along the entire beam. 

Here, we coarsely estimate the damage location and choose the segment on which the 

crack is supposed to exist and perform a second check for the network trained for 

scenarios available on this segment.  

Table 7. Results obtained using network 1 – coarse estimation. 

FEM Scenarios Coarse network – Network 1 output 

Scen. 
Position 

[mm] 

Severity 

γ2(a2) 

Position 

[mm] 

Severity 

γ2(a2) 

Position 

error 

[%] 

Severity  

Error 

[%] 

Weak clamping 

1 100 0.0033459 99.6 0.0027 0.04 0.06 Not detected False 

2 150 0.0033459 147.7 0.0023 0.23 0.10 Not detected False 

3 400 0.0033459 392.9 0.0011 0.71 0.22 Not detected False 

4 550 0.0033459 553.9 0.0031 0.39 0.02 Not detected False 

5 613 0.0033459 604.4 0.0022 0.86 0.11 Not detected False 

6 133 0.0033459 132.9 0.0047 0.01 0.14 Detected True 

7 280 0.0051239 261.5 0.0098 1.85 0.47 Detected True 

8 410 0.0033459 377.5 0.0033 3.25 0.00 Detected True 

9 570 0.0033459 569.1 0.0072 0.09 0.39 Detected True 

10 962 0.0011911 971 0.0134 0.9 1.22 Detected True 

After the first check, the largest error obtained is 3.3 % for the position, and small 

errors were obtained for the crack severity. The model wrongly detects non-ideal 

clamping for the first five damage scenarios. But, in this stage, we can estimate the 

segment on which the crack occurred with high confidence. 
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Table 8. Results obtained using the particular networks – fine estimation. 

FEM Scenarios Accuracy enhanced network output 

Scen. 
Position 

[mm] 

Severity 

γ2(a2) 

Network 

used 

Position 

[mm] 
Severity 

γ2(a2) 

Position 

error 

[%] 

Severity  

Error 

[%] 

Weak clamping 

1 100 0.0033459 Sector 1 99.6 0.003332 0.04 0.00 Not detected True 

2 150 0.0033459 Sector 2 148.9 0.003174 0.11 0.02 Not detected True 

3 400 0.0033459 Sector 4 398.3 0.003031 0.17 0.03 Not detected True 

4 550 0.0033459 Sector 5 554.7 0.002947 0.47 0.04 Not detected False 

5 613 0.0033459 Sector 6 612.6 0.002936 0.04 0.04 Not detected True 

6 133 0.0033459 Sector 1 132.3 0.003385 0.07 0.00 Detected True 

7 280 0.0051239 Sector 3 280.8 0.004469 0.08 0.07 Detected True 

8 410 0.0033459 Sector 4 409.4 0.003086 0.06 0.03 Detected True 

9 570 0.0033459 Sector 6 570.4 0.003353 0.04 0.00 Detected True 

10 962 0.0011911 Sector 9 962.2 0.001419 0.02 0.02 Detected True 

Knowing the approximate position of the crack we can select the appropriate 

segment and use the network trained for this particular segment. The results obtained in 

the second step are given in Table 8. One can observe that now the largest error obtained 

is 0.5 % for the position and 0.07 % for the crack severity. In addition, the model can detect 

non-ideal clamping with high accuracy. These results allow us to conclude that the two-

step ANN method is more efficient in crack assessment. 

5. Experimental validation 

To validate the developed ANN models, experimental studies were carried out by 

measuring the first natural frequencies for five steel beams with the dimensions indicated 

in the previous section. In the first 5 damage scenarios, the beams were perfectly clamped. 

Furthermore, the capability of the developed method to detect non-ideal clamping was 

also tested for the damaged beams by mounting rubber blocks between the jaws of the 

vise and the beam (Figure 10).  

  

a) b) 

     Figure 10. Clamping system: (a) rigid clamping obtained by direct fixing in the vise; (b) weak 

clamping obtained by intercalating rubber layers. 

The acceleration signals are recorded with a Kistler 8772 accelerometer mounted on 

the tested beam. It transmits the measured signal through the analog-to-digital conversion 

module NI9234 and a compact chassis NIcDAQ-9175 to a connected laptop. To excite the 

beam at the desired resonant frequencies, see the procedure in [34], an audio excitation 
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system consisting of a loudspeaker, amplifier, and dedicated software installed on a 

second laptop is used. The experimental setup is shown in Figure 11. 

 

Figure 11. Experimental setup. 

The natural frequencies are estimated one by one, with high accuracy, after a 

procedure described in [35]. The Python code to estimate the frequencies is given in [36]. 

5.1. Perfect clamping experiments 

In the first experimental study, each beam is mounted into a vise, thus achieving a 

rigid clamping. The resulted frequencies for the undamaged beams are shown in Table 9.  

Table 9. Frequencies estimated for the undamaged beams. 

Test beam 
Natural frequencies [Hz] 

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 

Beam 1 4,035 25,284 70,970 139,090 230,336 344,196 481,809 641,261 

Beam 2 4,060 25,439 71,426 139,902 231,038 344,750 482,503 641,823 

Beam 3 4,034 25,341 71,064 139,15 230,138 341,868 480,773 636,769 

Beam 4 4,030 25,367 71,213 139,342 230,295 343,254 480,795 639,510 

Beam 5 4,044 25,482 71,287 139,42 228,528 344,177 481,213 641,114 

Several damage scenarios are generated by saw cutting each of the five beams at 

different positions and depths thus replicating a transversal crack. The position and depth 

for every scenario are according to Table 10.  

Table 10. Estimated natural frequencies for the test beams containing a crack of known position and depth.  

Test 

beam 

Crack 

position 

Crack 

depth 

Natural frequencies [Hz] 

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 

1 98 2,5 3.952 25.086 70.854 139.086 229.859 342.143 477.105 633.647 

2 310 1,25 4.053 25.422 71.259 139.818 230.913 343.835 481.913 641.729 

3 569 2,5 4.024 24.904 70.707 137.883 227.494 340.994 472.791 636.758 

4 126 2,5 4.200 25.226 71.208 138.982 228.245 338.441 473.771 632.801 

5 759 2,5 4.043 25.343 70.051 137.012 227.517 343.834 475.326 630.614 

By using the measured frequencies for the beams in an undamaged and damaged 

state, we obtain the RFS values with Eq.2; the results are presented in Table 11. 
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Table 11. Calculated RFS value for each test beam.  

Test 

beam 

Crack 

position 

Crack 

depth 

Calculated RFS values 

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 

1 98 2,5 0.020610 0.007828 0.001629 0.000031 0.002070 0.005964 0.009762 0.011873 

2 310 1,25 0.001795 0.000660 0.002334 0.000600 0.000542 0.002654 0.001223 0.000146 

3 569 2,5 0.002382 0.017252 0.005019 0.009109 0.011488 0.002556 0.016603 0.000017 

4 126 2,5 0.023458 0.005550 0.000064 0.002581 0.008901 0.014021 0.014610 0.010491 

5 759 2,5 0.000288 0.005461 0.017336 0.017272 0.004422 0.000996 0.012234 0.016377 

 

The RFS data is fed to the coarse ML models to obtain the estimated crack position 

and severity for the five damage scenarios. The results obtained after the first estimation 

are shown in Tables 12 for the RF model and in Table 13 for the ANN model. 

Table 12. Results obtained using the preliminary Random Forest model 

Damage Scenarios Preliminary Random Forest 

Scen. 
Position 

[mm] 

Severity 

γ2(a2) 

Position 

[mm] 

Severity 

γ2(a2) 

Position 

error 

[%] 

Severity  

Error 

[%] 

Weak clamping 

1 98 0.026224 96.99 0.0264 0.10 0.02 Not detected True 

2 310 0.005124 309.85 0.0051 0.01 0.00 Not detected True 

3 569 0.026224 564.87 0.0331 0.41 0.69 Not detected True 

4 126 0.026224 125.42 0.0329 0.06 0.67 Not detected True 

5 759 0.026224 758.25 0.0329 0.08 0.67 Not detected True 

Table 13. Results obtained using the ANN – Network 1 

Damage Scenarios Coarse ANN – Network 1 output 

Scen. 
Position 

[mm] 

Severity 

γ2(a2) 

Position 

[mm] 

Severity 

γ2(a2) 

Position 

error 

[%] 

Severity  

Error 

[%] 

Weak clamping 

1 98 0.026224 97.8 0.0282 0.02 0.20 Not detected False 

2 310 0.005124 313.2 0.0042 0.32 0.09 Not detected False 

3 569 0.026224 567.2 0.0323 0.18 0.61 Not detected False 

4 126 0.026224 126 0.0337 0.00 0.75 Not detected False 

5 759 0.026224 757.8 0.0331 0.12 0.69 Not detected False 

 

We identify the segments in which cracks were found and select the corresponding 

networks. Afterward, by employing the enhanced ML models we obtain more precise 

results, as presented in Table 14 for the refined Random forest model and in Table 15 for 

the enhanced ANN model. 
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Table 14. Obtained results using the refined Random Forest model 

Damage Scenarios Refined Random Forest 

Scen. 
Position 

[mm] 

Severity 

γ2(a2) 

Position 

[mm] 

Severity 

γ2(a2) 

Position 

error 

[%] 

Severity  

Error 

[%] 

Weak clamping 

1 98 0.026224 99.40 0.0260 0.14 0.02 Not detected True 

2 310 0.005124 309.73 0.0049 0.03 0.02 Not detected True 

3 569 0.026224 568.22 0.0327 0.08 0.65 Not detected True 

4 126 0.026224 127.84 0.0329 0.18 0.67 Not detected True 

5 759 0.026224 758.19 0.0328 0.08 0.66 Not detected True 

Table 15. Obtained results using the precision sector ANN 

Damage Scenarios Enhanced network output  

Scen. 
Position 

[mm] 

Severity 

γ2(a2) 

Position 

[mm] 

Severity 

γ2(a2) 

Position 

error 

[%] 

Severity  

Error 

[%] 

Weak clamping 

1 98 0.026224 98 0.0275 0.00 0.13 Not detected True 

2 310 0.005124 310 0.0054 0.00 0.03 Not detected True 

3 569 0.026224 568 0.0343 0.10 0.81 Not detected True 

4 126 0.026224 126 0.0343 0.00 0.81 Not detected True 

5 759 0.026224 758 0.0343 0.10 0.81 Not detected True 

One can observe from Tables 14 and 15 that, for the case of ideal clamping, the 

damage location and severity are found with high accuracy irrespective of the employed 

method. Remarkably, ideal clamping is detected in all cases.  

5.2. Improper clamping experiments 

This study concerns the ability of the proposed approach to detect cracks in two 

different cases: 

• The structure has initially ideal boundary conditions, but after a while, a crack occurs 

and an alteration of the fixing system is present, i.e. the clamping becomes non-ideal 

• The structure has from the beginning non-ideal boundary conditions, so the fixing 

system remains unchanged, and is affected after a while by a crack.  

The experiment is made for test beam 1. Improper clamping was ensured by 

mounting rubber blocks between the jaws of the vise and the test beam, as shown in Figure 

10b. The crack is generated at distance 2 98x = mm and has depth 2 2.5a = mm, The 

natural frequencies were obtained from the measured data. The results for the 

undamaged beam with ideal and non-ideal clamping, as well as the frequencies for the 

test beam 1 with non-ideal fixing and a crack are shown in Table 16. 
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Table 16. Estimated natural frequencies. 

Test 

beam 

Crack 

position 

Crack 

depth 

Calculated natural frequencies [Hz] 

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 

Undamaged with ideal 

clamping 
4,035 25,284 70,970 139,090 230,336 344,196 481,809 641,261 

Undamaged with non-

ideal clamping 
4.0051 25.111 70.48 138.95 229.21 341.18 476.93 635.49 

1 98 2,5 3.926 24.935 70.420 138.211 228.362 339.873 474.057 630.080 

The calculated RFS values are presented in Table 17, first for the undamaged beam 

with ideal fixing (case 1i) and afterward, for the undamaged beam with initially non-ideal 

fixing (case 1n-i), In both cases, the damaged beam has non-ideal clamping.  

Table 17. Calculated RFS values for the improperly clamped damaged beam. 

Test 

beam 

Crack 

position 

Crack 

depth 

Calculated RFS values 

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 

1i 98 2,5 0.026955 0.013803 0.007749 0.006322 0.008572 0.012559 0.016089 0.017436 

1n-i 98 2,5 0.019749 0.007008 0.000851 0.005318 0.003699 0.003830 0.006023 0.008513 

 

The crack assessment is made employing the two ML methods, in compliance with 

the two evaluation stages. The results for case 1i are presented in Table 18, while the results 

for case 1n-i are presented in table 19. 

Table 18. Crack assessment for a damaged beam with non-ideal clamping for the case the undamaged beam had initially an ideal 

fixing (case 1i). 

Damage Scenario Results obtained with the ML models 

Scen. 
Position 

[mm] 

Severity 

γ2(a2) 

Position 

[mm] 

Severity 

γ2(a2) 

Position 

error 

[%] 

Severity  

Error 

[%] 

Weak clamping 

First-step RF 

98 0.026224 

129.36 0.038300 3.14 1.21 Detected True 

Second-step RF 92.68 0.039000 0.53 1.28 Detected True 

First-step ANN 102.07 0.031283 0.41 0.51 Detected True 

Second-step ANN 99.13 0.027038 0.11 0.08 Detected True 

Table 19. Crack assessment for a damaged beam with non-ideal (but unchanged) clamping (case 1ii). 

Damage Scenarios Results obtained with the ML models 

Scen. 
Position 

[mm] 

Severity 

γ2(a2) 

Position 

[mm] 

Severity 

γ2(a2) 

Position 

error 

[%] 

Severity  

Error 

[%] 

Weak clamping 

First-step RF 

98 0.026224 

82.54 0.0353 1.546 -0.9076 Not detected True 

Second-step RF 32.05 0.0292 6.595 -0.2976 Not detected True 

First-step ANN 74.63 0.0247 2.337 0.1524 Not detected False 

Second-step ANN 96.4 0.0247 0.16 0.1524 Not detected True 

 

Reviewing Tables 18 and 19, we can conclude that for the beam with changing 

boundary conditions the crack position and severity were found accurately after the 

second step. The best result is obtained using the ANN, which located the crack with an 

error of 0.11% and found the severity with an error below 0.1%.  

The changed boundary conditions are detected with both ML methods. Dissimilar, 

the case when the beam had initially a weak fixing was properly solved just by the ANN 
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method. The errors accuracy, in this case, is sustained by errors less than 0.16%, for 

position and severity as well. Both ML methods did not find an alteration of the fixing in 

the vise, thus we consider the response Not detected as true.      

6. Conclusions 

In this paper, we apply RF and ANN to identify the crack location and severity in a 

steel cantilever beam with rectangular cross-section. The beam has different levels of 

fixing, including ideal and non-ideal clamping, and we also aim to find if the fixing 

condition changes. To train the network we use as inputs the RFS found applying an 

original method and as the crack parameters and the fixing condition, respectively. To 

improve the accuracy of the assessment method, we perform crack assessment in two 

steps: (i) in the first step we apply coarse estimation, for the network trained for all 

damage scenarios – here the region in which the crack occurred is identified; (ii) in the 

second step we apply a fine estimation, for the network trained for a specific segment of 

the beam which includes the damaged region – here the crack position and severity are 

found, along with the changes in clamping, if any.  

Both ML methods were able to learn and classify new data with characteristics 

comparable with that of the training data. After training, the networks are successfully 

used to assess other scenarios, which come from FEM simulation and laboratory 

experiments. We found that, for all cases, the ability to accurately detect the crack location 

and severity increases when using assessment in two steps. After the second step, the 

errors in locating the crack are below xx%, and the errors in assessing the crack severity 

are less than yy%. The ANN leads to better results. The smallest crack we found had 

0.6mm depth, in a beam with a thickness of 5mm. We did not search after smaller crack 

depths because of the training data we produced and knowing that the ANN method is 

more efficient in interpolation than in extrapolation.    

Further investigation should be conducted to evaluate the ability of the proposed 

approach to identifying cracks in the early stage and on large-scale structures. 
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