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Abstract: Damage detection based on modal parameter changes becomes popular in the last
decades. Nowadays are available robust and reliable mathematical relations to predict the natural
frequency changes if damage parameters are known. Using these relations, it is possible to create
databases containing a large variety of damage scenarios. Damage can be thus assessed by applying
an inverse method. The problem is the complexity of the database, especially for structures with
more cracks. In this paper, we propose two machine learning methods, namely the random forest
(RF) and the artificial neural network (ANN) as search tools. The databases we developed contain
damage scenarios for a prismatic cantilever beam with one crack and ideal and non-ideal boundary
conditions. The crack assessment is made in two steps. First, a coarse damage location is found
from the networks trained for scenarios comprising the whole beam. Afterward, the assessment is
made involving a particular network trained for the segment of the beam on which the crack is
previously found. Using the two machine learning methods, we succeed to estimate the crack
location and severity with high accuracy for both simulation and laboratory experiments. Regarding
the location of the crack, which is the main goal of the practitioners, the errors are less than 0.6%.
Based on these achievements, we concluded that the damage assessment we propose, in conjunction
with the machine learning methods, is robust and reliable.

Keywords: damage detection; linear regression; random forest; artificial neural network; training
parameters; natural frequency

1. Introduction

Nondestructive damage detection methods have received increasing attention in
recent decades and became a central research topic for scholars and practitioners
belonging to the structural health monitoring community. Principles of vibration-based
techniques, which are nowadays very popular, can be found in [1-3]. These methods are
based on the deterministic relation between the damage characteristics (mainly location
and severity), and the changes in the modal parameters (natural frequencies, mode
shapes, and curvatures). Among the modal parameters, the natural frequencies are the
easiest to determine and require the involvement of relatively cheap and very robust
instrumentation. Moreover, estimating the natural frequencies require a limited number
of sensors compared to methods based on mode shapes [4]. For this reason, in this paper,
we focus on the analysis of natural frequencies to detect damage.

The temperature change can affect the natural frequencies of the structure. For
accurate damage detection, it is important to remove the effects of temperature on the
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natural frequencies. An algorithm to this aim is presented in [5], where a successful
damage assessment is performed for the case of changing temperatures. Mass changes
also affect the natural frequencies of structures. In [6], it is investigated an analytical
approach developed for a mass-spring-damper system that demonstrates how to localize
mass change.

Detection and measurement of damage features for different crack types in slender
beams using modal analysis is studied in [7]. Assessment of L and T-shaped cracks as well
as delamination in bi-metal structures using natural frequencies is successfully performed
in [8]. Assessment of corrosion and the analysis of the structural capacity of corroded I
girders that belong to steel bridges is studied in [9].

In some real cases, multiple damages can occur at once, and the structures can have
multiple supports. A complex study devoted to calculating the natural frequencies and
mode shapes of multi-span beams is found in [10], and in [11] is presented a method to
assess cracks in continuous beams. A study devoted to identifying multiple damages of
multi-span bridges based on influence lines is presented in [12].

The complexity of damage (the crack shape and the orientation, the associated loss
of mass, the number of cracks), as well as the complexity of the structures (multi-
supported beams, skeletal structures, the use of nonisotropic materials), increase the
dimension of the dataset to be processed for damage detection. For this reason,
researchers who develop methods for detecting damages are increasingly using Artificial
Intelligence (Al) to analyze large amounts of data.

The Artificial Neural Network (ANN) is a commonly applied technique for SHM. A
method to identify the damage location and its severity in a ten-floor structure,
employing an auto-associative neural network combined with transmissibility is
proposed in [13]. The development of a method to detect damages in a truss structure
using an ANN is the subject of the research presented in [14]. A method to predict crack
width for thick as well as for thin concrete elements, which bases on the feed-forward
backpropagation and the radial basis neural networks, is proposed in [15].

The use of Random Forests (RF) and data fusion for structural damage detection are
proposed in [16]. More recently, an RF model was used to Predict the Location of Potential
Damage on Asphalt Pavement [17]. Here, RF data mining is used to analyze the
interrelationships of variables. Another approach is found in [18]. The damage-sensitive
features are extracted from raw sensor data using the cross-correlation function and
wavelet packet decomposition. RF and other Ensemble Learning algorithms such as
XGBoost are used to train the damage pattern classifier.

Despite successful assessment of damage, it is worth mentioning that the damage
considered in most studies presented in the literature either manifests on an element with
significant extent along the beam [13] or has significant severity: 22% to 68% in [19] and
20% to 80% in [20]. For skeletal structures, the damage manifests on one or more structural
elements, see for example [14] and [16-18].

In prior research, we deduced a relation to calculate the natural frequencies of beams
with known crack parameters. This relation is applicable also for beams with non-ideal
boundary conditions. Being an analytical relation, it permits creating, easily and rapidly,
a database with patterns for a multitude of damage scenarios. The database contains the
Relative Frequency Shits (RES) for eight out-of-plain vibration modes for all given damage
locations, severities, and fixing conditions. It is used to train RF and ANN, with a huge
amount of data. The training is first performed for scenarios covering all locations along
the beam and afterward for locations on a specific segment. The proposed damage
detection methodology presumes an initial/coarse assessment to find the crack location,
followed by a second/fine assessment targeting the accurate crack location and severity.

To evaluate the effectiveness of the proposed approach, two examples, comprising
numerical simulations and laboratory experiments on steel beams are performed. The
results obtained by involving RF and ANN are compared; both methods lead to the
correct location and quantification of the damage, regardless of the changes in the fixing
conditions. It was possible to detect cracks with a much smaller depth than those reported


https://doi.org/10.20944/preprints202201.0111.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 January 2022 d0i:10.20944/preprints202201.0111.v1

in the literature. As far as we know, there are no methods for detecting defects that are
applicable even in the event of a change in the conditions for fixing the beam.

The paper is organized as follows. After an introductory section, we present the
theoretical background which permits developing a database consisting of an INPUT and
a TARGET part. The methodology of RF and ANN, along with the training process based
on the database are introduced in Section 3. In the next two sections, we prove the
efficiency of the proposed approach. In section 4 we describe the numerical simulations
performed on a steel cantilever beam, done to find the natural frequency shifts due to
several damage cases. Then, we apply the two machine learning methods. In Section 5 we
repeat the approach for laboratory-scale beams. Eventually, conclusions are formulated.

2. Creating the database for Machine Learning (ML)

As a crack propagates in a structure, it produces an alteration of structural
stiffness. This alteration produces a change in modal parameters, of which the most
obvious and easy to measure are changes in natural frequencies. There is a deterministic
relationship between stiffness change and the decrease in the natural frequencies of the
structure, therefore the position and depth of the crack can be identified if the changes in
the frequencies produced by the defect are known. We proposed a robust and easy-to-use
mathematical relation to predicting the natural frequency f, ,(x,a) of a cracked beam [21].
This relation relies on the features of the healthy beam, namely, the natural frequencies
f.;and the modal curvatures ¢/(x) of the out-of-plain vibration modes, and the damage

severity y(a) , respectively. The mathematical relation is

o) = fru {1 r@[F T . "

In this relation, we denoted the crack position with x, the crack depth with 4, and i
stays for the mode number. From equation (1) we can deduce the relative frequency shift
(RFS), which is the normalized frequency drop due to a crack, as

fiu = fiop(x,4)
fiu

We find the two terms in the right part of equation (2) as follows. The crack severity
is calculated involving an energy method, which says that a beam with a crack will be able
to store less energy than a similar healthy beam and will suffer a greater deformation if
subjected to a force [22]. So, we can calculate the severity involving the mathematical

relation [23]
J3p(@) =5,
ya) =2 N 3
o) ()

In this relation, we denoted 0,, the deflection of the healthy beam, and with &, (a)

2

AFp(x,0) = = 7@ #)] @

the defection of the beam with a crack that has depth a. Note that, the severity is calculated
for the crack located at the position where the biggest curvature (or bending moment,
which is proportional to the curvature) is achieved. In consequence, the position of the
damage for which the severity is calculated differs depending on the boundary conditions
of the beam; for example, for the cantilever beam that is the subject of the study presented
hereinafter this position is the fixed end. On the other hand, the severity depends solely
on the crack depth g, so that for a given depth it is the same regardless of the boundary
conditions.

The effect of the crack position is controlled by the local curvature (or bending
moment). This happens because the stress present in the affected slice is proportional to
the bending moment. In consequence, a smaller effect on the frequency drop is obtained
if the crack is not located at the particular position where the biggest bending moment is
present. There are even situations in which the crack does not cause a decrease in
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frequency, namely when it is located at an inflection point [24]. To consider the effect of
the crack position x on the frequency drop, we use the normalized squared curvature. By
normalization, we assign value one to the curvature or bending moment for the location
where the beam is the most requested and a subunit value for the rest of the positions. For
the cantilever beam, the normalized curvature is

cos 4; +cosh 4

& (x) = 0.5{005(/1, x)+cosh(4x)— sinJ, +sinh [sin (A4x)+sinh (4, x)]} (4)

where we denoted with 4, the eigenvalue of the i-th vibration mode. These values are

indicated in the literature for different boundary conditions of the beam. Note that, other

boundary conditions also lead to other curvature functions.
Taking into account the above, we can summarize that:

e  The severity y(a) depends on the crack depth a and is independent of the crack
position x, boundary conditions, and vibration mode number i. Therefore, the
severity for a beam with a given crack once calculated using equation (3) is valid for
that beam irrespective of the boundary conditions. In practice, we calculate the
severity using static finite element analysis for a cantilever beam because it presents
an important deflection at the free end. A comprehensive description of the
procedure to determine the correct severity is given in [25].

e  The value of the normalized modal curvature %."(x) at the position x where the crack
is located reduces the effect of the severity since at that position less stress is stored
in the beam. This term depends on the vibration mode number i and the boundary
conditions. Therefore, equation (2) is has a large degree of generality; it can be
properly used for any support type if the correct curvature function 4" (x) is
employed. Hereinafter we exemplify the case of a cantilever, thus equation (4) is
used.

In Figure 1 we represent the RFS calculated using equation (2) for vibration modes 1
and 3, for two crack depths.
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Figure 1. Plotted RFS functions for out-of-plain bending vibrations of a cantilever beam with perfect fixing: (a) vibration
mode 1; (b) vibration mode 3. The functions are plotted for a cross-section reduction of 12% and 20%, respectively.

The above approach is valid for perfect boundary conditions. If the fixing is non-
ideal, the frequency drop is bigger. In prior research, we demonstrated that the
superposition principle is valid [26]. For a beam with two cracks, which have position x,
and x,, and depths 4, and a,, respectively, the frequency drop is calculated as the sum of
the two RFS, that is
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A, p(xy,ay,%,,8,) = 71(‘11)[51‘”(3‘1)]2 +72(a2)|:¢7i”(x2 )]2 : ®)

We simulate the non-ideal boundary condition, namely the weak fixing, as a crack at
the clamped end. So, an additional rotation is possible [27], which leads to a frequency
decrease. Knowing that the normalized modal curvature at the fixed end of the cantilever

is 5["(0) =1, equation (5) becomes

A, p(0,a,,%,,8,) = 7,(8,) + 7, (45) [(Ziﬂ(xz )]2 : ©

Hence, we can plot the RFS for the beam with non-ideal boundary conditions as
shown in Figure 2.
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Figure 2. Plotted RFS functions for out-of-plain bending vibrations for a cantilever beam with non-ideal fixing: (a)
vibration mode 1; (b) vibration mode 3. The functions are plotted for a cross-section reduction of 12%, respective 20%.

The inverse method we developed to detect cracks implies, as a first step, calculating
the RFS for numerous damage scenarios and creating a database. The database thus
contains two distinct sections:

e  TARGET elements, which are the local value of the curvature for a given position,
the severity of the defect, and the severity corresponding to the weak fixing. These
are placed on columns, the number of columns m corresponding to the desired
number of scenarios. The index of the column is denoted k, thus k=1,...,m.

e INPUT elements, which are calculated relative frequency shifts RFS;, for a chosen

number of vibration modes n. These are also arranged in columns, each INPUT
column corresponding to a TARGET column.

The second step is monitoring the structure, which presumes to measure the natural
frequencies. If changes are observed, the frequency shifts calculated for the measured
frequencies (RFS;" ) are compared with the elements of the INPUT section of the database,

i.e. RFS;, . The column number k for which the best fit is obtained between the calculated

and measured RFS indicates the crack position and severity. In this study, we propose a
machine learning approach to find the best fit. The chosen methods are the random forest
and the neural network.

3. Machine Learning methods

In the last decade, artificial intelligence (Al) has become a frequently used term for
applications that perform complex tasks that once required human intervention, such as
Structural Health Monitoring methods. In this section, we present the development and
testing of two machine algorithms used for damage detection. The training data is
generated using the method described in the previous chapter. The database contains
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36573 damage scenarios (number of columns in the INPUT and TARGET files). The
number of rows in the INPUT file is eight, comprising the first eight out-of-plain bending
vibration modes. The TARGET file consists of three elements, i.e. three rows, which are:
the damage location, the damage severity, and the severity of the damage simulating the
weak clamping. For this study, we considered 100 locations of the crack evenly distributed
along the beam, the cracks having 17 levels of depth. The beam has both ideal and non-
ideal clamping, for the latter situation 7 cases of weak fixing are generated. It resulted in
36573 damage scenarios. The two files of the database are presented in [28].

Because of the complexity of the application and the accuracy required for
determining the exact position and severity of transverse cracks we propose a two-step
approach. This means that after a coarse localization of the crack using a network trained
for all damage scenarios, we apply a second check, this time for a model trained for the
specific section of the beam on which the crack is found at the first step. As an example, if
the crack is found involving one of the developed methods at 175 mm from the fixed end,
we make the second check for a segment extended between 100 and 250 mm. For this
segment, we train again the model for a limited number of inputs, considering just those
which contain the crack position between the limits 100 and 250 mm. This facilitates
obtaining a better model of the structure and, in consequence, more precise localization
of the crack.

To have a fast estimation, we divide the beam into nine segments, partially
overlapped, and train the ML models a priori for these segments. Overlapping is used to
avoid uncertainty regarding the choice of the right segment. The segments we used and
the name of the network are presented in Table 1.

Table 1. Segments used to train the machine learning models for enhanced damage detection.

Segment limits  0-150 100-300  250-400  350-500 450-600 550-700  650-800  750-900 850-1000
Network name Sector1l Sector2 Sector3 Sector4 Sector5 Sector6  Sector7 Sector8  Sector9

The two ML methods and the settings applied for the training are presented in the
next two sub-sections. For both methods, we use 70% of the data for training, 15% for
testing, and 15% for validation.

3.1. Random Forest

Decision Trees have proven successful at exploring non-linear relationships between
input and target variables [29]. Such trees work by splitting the dataset in instances that
have a minimum amount of node impurity or in other words, are homogenous. Purity
here means that each leaf node represents data points that are in the same class and is
defined as the sum of square deviations in class predictions. The biggest drawback of
decision trees is that they can easily overfit. This can be mitigated by aggregating such
trees to reduce variance.

RF is a technique that employs an ensemble of decision trees and can be used for
regression and classifications tasks. The prediction made by an RF aggregates the output
of individual trees into a single variable [30]. When building trees, the algorithm
randomly selects a given number of features. This essentially prevents multiple decision
trees that rely on the same feature. The process is repeated until a group of regression
trees, each trained on a randomly selected subset of data, is created. This induced
randomness is what compensates for the weakness of each individual tree.

The performance of an RF model can be tweaked by tuning a few key parameters,
with some studies reporting that there is a significant benefit to tuning RF parameters
away from their default settings [31]. Table 2 summarizes the most common
hyperparameters of the RF model.
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Table 2. RF Hyperparameters.

Parameter Meaning Value
n_estimations The number of estimators in the forest 400
max_features max number of features considered for splitting a node  sqrt

max_depth max number of levels in each decision tree None

min number of data points placed in a node before the

min_samples_split node is split 2
min_samples_leaf min number of data points allowed in a leaf node 1
bootstrap method for sampling data points. True= bootstrap true
samples

The number of trees in the forest should be in principle as high as possible but in
practice, performance plateaus appear after a few hundred trees. In general, increasing
the number of featur considered in splitting a node will improve performance as each
node will have now have a higher number of options to consider, a lower value will
increase the chance of selecting features with small effects which in turn could lead to
improved performance in cases where such feature would be masked. Parameter
min_samples_leaf represents the minimum size of terminal nodes. A higher number will
lead to small trees while a smaller leaf size makes the tree more prone to noise in data.

The hyperparameters of the RF were tuned using a randomized search
(RandomizedSearchCV in Scikit-Learn) with 5-fold cross-validation, that randomly
chooses one of the possible values for each one of the hyperparameters and scores the
estimator. The best estimator is used in the model. Table 2 also shows the tuned values
for each parameter The training results using RF are presented in Figure 3 for the entire
beam and sector 9, respectively.

Preliminary Random Forest (RF) — Test data Refined Random Forest (RF) — Test data
1.0
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a) b)

Figure 3. Random forest training results; (a) obtained for coarse estimation involving all input data; (b) obtained for
accurate localization involving the Sector 9 input data.

3.2. Artificial Neural Networks

Numerous studies have shown the versatility and power of ANNs when applied to
different computational tasks such as prediction or classification in many real-world
applications [32]. In particular, they are universal approximators capable of detecting
nonlinearities in an n-dimensional input. This is achieved by including a large number of
nonlinear transformations between the input to an output mapping. A typical neural
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network consists of several connected neurons, organized in layers, as shown in Figure 4.
A neuron will generally process information coming from its connections using a
nonlinear activation function. A neural network is trained to perform a specific function
by adjusting the values of the connections between its neurons.

Input Layer Hidden Layers Output Layer

Input Output

_—

Figure 4. Typical neural network structure.

Feedforward neural networks are ANNs where the topology is organized such that
every neuron in one layer projects only onto subsequent layers. This topology excludes
thus recurrent connections and essentially means that information flows through the
network from one layer to another until it reaches the output.

By using the methodology presented in section 2, we calculated the required data for
training. The calculated data involves the INPUT data as the calculated RFS values for the
first 8 transverse vibration modes and the TARGET data consisting of 3 values, i.e. crack
position, crack severity, and the severity for the weak clamping. If the boundary condition
is perfect, the third output is set to zero.

The ANN is developed using Matlab software, as shown in Figure 5. A feedforward-
backpropagation network type is employed, for which we choose: the Bayesian
reqularization training function, the Levenberg-Marquardt learning function, the Mean
squared error (MSE) performance function, and the Hyperbolic tangent sigmoid transfer
function.

Mame

network1

Network Properties

Metwork Type: Feed-forward backprop ~
Input data: input ~
Target data: target ~
Training function: TRAIMEBR.
Adaption learning function: LEARMNGDM -~
Performance function: MSE ~
Mumber of layers: 4

Properties for: |Layer3

Mumber of neurcns: |30

Transfer Function: TAMNSIG

Figure 5. The setup for the training of network 1.
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The ANN, nominated as network 1, consists of 1 input layer with 8 neurons, three
hidden layers with 30 neurons each, and an output layer with 3 neurons, see Figure 6.

Neural Network
> Bl Bl PR
Algorithms

Data Division: Randorm (dividerand)

Training: Bayesian Regularization (trainbr)
Performance: Mean Squared Error  (mize)
Calculations:  MEX

Progress
Epoch: 0 250 iterations | 1000
Time: 1:30:19 |

Performance: 0.0335 : 0.00
Gradient: 0314 E 1.00e-07

Mu: 0.00500 5.00e +03 | 1.00e+10
Effective # Param:  2.22e+03 || 1.#3e+(3 | 0.00
Surn Squared Param: 357 2.5de+07 | 0.00
Validation Checks: 0 | 30 | 30

Figure 6. Network 1 configuration and training parameters.

The obtained training performance for network 1 is presented in Figure 7 in
comparison with one of the particular networks, section 9.
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Figure 7. Neural network training results: (a) obtained for coarse estimation involving network 1; (b) obtained for accurate
localization involving the Sector 9 network.

3.3. Evaluation of the models

In this study, two criteria were used for evaluating the accuracy of the models relative
to the ones obtained through FEM analysis and experimental tests, error(x) for the position
and error(y) for the severity. The error in the position is

_X(N-x()
error(x) = 1000 100 [%] 7)

Here, x(r) is the real position of the crack expressed in mm, x(e) is the estimated
position using the ML models and 1000 represents the total length of the beam in mm. The
severity error is calculated as

error(y) = M 100 [%] (8)
In this relation, y(r) is the real severity of the crack, y(e) is the estimated severity of
the crack found using the ML models, and 1 represents the maximum value that can be
achieved by the crack severity.
In addition to the two above-mentioned errors, we evaluate the capacity of the
models to detect weak clamping. The possible responses are false or true.

4. Numerical validation

For testing the reliability of the damage detection methods described in the previous
section, we first involve the finite element method (FEM). Modal analysis is performed
using the ANSYS software. We generate a prismatic steel cantilever beam, like that shown
in Figure 8, with dimensions: length L=1000mm, width B=50mm, and thickness H=5mm.
The assigned material is S355 JR steel with a modulus of elasticity E=2:10° MPa and a
density of 7850 kg/m?.

The target was to find the first eight natural frequencies for the out-of-plain vibration
modes, for the healthy beam and the beam with different damages, respectively. Both
ideal clamping and non-ideal clamping are simulated.
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Figure 8. Main dimensions of the considered beam geometry with a transversal crack.

To implement the crack and simulate the effect of the weak clamping, we involve
separate elements which are not fixed on one surface, as shown in Figure 9. In this way,
we assign the same mass for the beams with damage and non-ideal clamping and yet
obtain discontinuities. For simulating real-life scenarios where in most cases measurement
data can contain noise, we have also considered different meshing sizes for the damage
scenarios to have small differences in the frequency results. The maximum edge size is set
to 2 mm for scenarios 1-5 and 1 mm for scenarios 6-10.

The FEM model is composed of the beam body and the two parameterized elements
used to create discontinuities.

\
Weak clampingﬁi-b

Clamped end +

Free surface ] Bonded surfaces
(transversal crack)

Figure 9. The FEM model of the damaged beam with weak clamping.

The frequencies obtained from the FEM analysis for the undamaged and damaged
beam cases are presented in Table 3. The complete dataset is presented in [33]

Table 3. Obtained natural frequencies for the defined damage scenarios.

Crack Crack Weak Natural frequencies obtained for the first 8 modes
Scen.  pos. depth  clamp.

x[mm] a:[mm] & [%] Mode1 Mode2 Mode3 Mode4 Mode5 Mode6 Mode7 Mode 8
0 Undamaged 4.09 25.627  71.757  140.63 23253 34746 48547  646.59
1 100 1 0 4.081 25606  71.745 140.631 232.472 347.229 484.947 645.751
2 150 1 0 4.082 25.620  71.754 140.552 232.257 347.024 485.083 646.448
3 400 1 0 4.087 25.601 71.708 140.588 232.186 347.447 484.904 646.092
4 550 1 0 4.089 25.588 71.739  140.478 232.383 347.238 484950 646.435
5 613 1 0 4.089 25.593 71.686  140.609 232.189 347.401 485.079 645.855
6 133 1 20 4.073 25.568 71.624  140.323 231.864 346.328 483.945 644.903
7 280 1.2 20 4.073 25.555 71.445 140.116 231.936 346.097 483.238 644.674
8 410 1 20 4.080 25.549 71.579  140.300 231.744 346.819 483.831 645.103
9 570 1 20 4.082 25.512 71.586  140.209 231.700 346.824 483.324 645.633
10 962 0.6 10 4.088 25616  71.727 140.571 232430 347.305 485.241 646.262

The variables used for the studied damage scenarios are the crack location, which is
measured from the fixed end, and the proportion in which the clamped end is affected.


https://doi.org/10.20944/preprints202201.0111.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 January 2022 d0i:10.20944/preprints202201.0111.v1

The weak clamping is replicated by adding the separate element of known thickness a,
to the fixed end. Thus, 7 =4 /H [%] replicates the weak clamping. The RFS values

obtained for the studied damage scenarios are presented in Table 4, where crack position
x, crack deptha, and weak clamping a, represent the output values.

Table 4. Calculated RFS values for the defined damage scenarios.

Crack

Crack

Weak

Scen.  pos. depth clamp. REFS for the first 8 modes
x[mm] a:[mm] & [%] RFS1 RFS2 RFS3 RFS4 RFS5 RFS6 RFS7 RFSS
1 100 1 0 0.002393 0.001227 0.000540 0.000099 0.000015 0.000075 0.000336 0.000652
2 150 1 0 0.001899 0.000254 0.000038 0.000552 0.001173 0.001254 0.000798 0.000219
3 400 1 0 0.000644 0.001020 0.000683 0.000299 0.001480 0.000037 0.001166 0.000771
4 550 1 0 0.000240 0.001535 0.000256 0.001080 0.000632 0.000640 0.001072 0.000240
5 613 1 0 0.000141 0.001343 0.000991 0.000146 0.001467 0.000171 0.000805 0.001136
6 133 1 20 0.002224 0.000466 0.000003 0.000336 0.001015 0.001417 0.00131 0.00077
7 280 1.2 20 0.004237 0.002804 0.004348 0.003654 0.002554 0.003922 0.004598 0.002963
8 410 1 20 0.002522 0.003063 0.002483 0.002346 0.003381 0.001844 0.003377 0.002300
9 570 1 20 0.000218 0.00167 0.000507 0.000837 0.00116 0.000208 0.001627 0.00002
10 962 0.6 10 0.000412 0.000412 0.000414 0.000419 0.000429 0.000446 0.000472 0.000507

The outputs obtained using the two ML methods based on the RFS values (Table 4)
are presented in Tables 5-8. Table 5 contains the results from the preliminary ML random
forest model, and Table 6 the results obtained using the refined random forest model. In
Table 7 we present the results obtained involving coarse estimation with network 1, and in
Table 8 are the results obtained with the specific ANN networks chosen for the particular
cases after the coarse estimation. The severity of the cracks with depth a=Imm, a=1.2mm,
and a=0.6mm is: y2(1)=0.0033459, 2(1.2)=0.0051239 and y2(0.6)= 0.0011911.

Table 5. Results obtained using Random forest rough model — first step.

FEM Scenarios Random Forest preliminary output
Scen. Position Severity |Position Severity P(;Srlrt;;m S;‘;:::y Weak clamping
[mm]  y2a2) | [mm]  yi(a) [%] [%]
1 100 0.0033459| 99.5 0.0028 0.05 0.05 Not detected True
2 150 0.0033459| 151.6  0.0029 0.16 0.04 Not detected True
3 400 0.0033459| 458.0 0.0024 5.80 0.09 Not detected True
4 550 0.0033459| 515.8  0.0028 3.42 0.05 Notdetected  True
5 613 0.0033459| 602.5  0.0028 1.05 0.05 Notdetected  True
6 133 0.0033459| 138.1  0.0027  0.51 0.06 Notdetected False
7 280 0.0051239| 204.9  0.0068 7.51 0.17 Detected True
8 410 0.0033459| 365.1 0.0044  4.49 0.11 Detected True
9 570 0.0033459| 547.3 0.0063  2.27 0.30 Detected True
10 962 0.0011911| 941.1 0.0129 2.09 1.17 Not detected  False

One can observe that, after the first check, the largest error in estimating the crack
position is 7.51%, which is unacceptable. The severity is precisely found, the errors being
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less than 1.17%. The method was not able to indicate correctly if the clamping is non-ideal.
In consequence, this machine learning method is not qualified to assess the crack position
and severity at this stage.

Table 6. Results obtained using Random forest enhanced model - second step.

FEM Scenarios Refined Random Forest output
Scen. Position Severity | Position Severity P(ert;:n S;‘;:;l:y Weak clamping
[mm]  vy2(a2) | [mml  vi(ar) [%] [%]
1 100 0.0033459| 97.7 0.0030 0.23 0.03 Detected False
2 150 0.0033459| 148.3  0.0029 0.17 0.04 Detected False
3 400 0.0033459| 400.0  0.0025 0 0.08 Not detected True
4 550 0.0033459| 539.6  0.0028 1.04 0.05 Detected False
5 613 0.0033459| 615.3  0.0026 0.23 0.07 Not detected True
6 133 0.0033459| 136.3  0.0024 0.33 0.09 Notdetected False
7 280 0.0051239| 303.4  0.0087 2.34 0.36 Detected True
8 410 0.0033459| 410.1  0.0046 0.01 0.13 Detected True
9 570  0.0033459| 570.1 0.0058 0.01 0.25 Detected True
10 962 0.0011911| 976.3 0.010 1.43 0.88 Detected True

Localization after the second check with the RF method is accurate, errors being
below 1%. Estimating the severity of the defect is done also with small errors, up to 0.88%.
As shown in Table 6, weak clamping is detected incorrectly for some damage scenarios.

Assessing the crack with the ANN method is also made in two steps. First, a coarse
estimation is made with nefwork 1, which considers the locations along the entire beam.
Here, we coarsely estimate the damage location and choose the segment on which the
crack is supposed to exist and perform a second check for the network trained for
scenarios available on this segment.

Table 7. Results obtained using network 1 — coarse estimation.

FEM Scenarios Coarse network — Network 1 output
Scen. Position Severity | Position Severity strlrt;:n S;‘;:(r:y Weak clamping
[mm]  vy2a2) | [mm]  yi(a) [%] [%]
1 100  0.0033459| 99.6 0.0027 0.04 0.06  Not detected False
2 150 0.0033459| 147.7  0.0023 0.23 0.10  Not detected False
3 400 0.0033459| 3929  0.0011 0.71 0.22  Not detected False
4 550 0.0033459| 5539  0.0031 0.39 0.02  Not detected False
5 613 0.0033459| 6044  0.0022 0.86 0.11  Not detected False
6 133 0.0033459| 1329  0.0047 0.01 0.14 Detected  True
7 280  0.0051239| 261.5  0.0098 1.85 0.47 Detected  True
8 410 0.0033459| 377.5  0.0033 3.25 0.00 Detected  True
9 570  0.0033459| 569.1 0.0072 0.09 0.39 Detected  True
10 962  0.0011911| 971 0.0134 0.9 1.22 Detected  True

After the first check, the largest error obtained is 3.3 % for the position, and small
errors were obtained for the crack severity. The model wrongly detects non-ideal
clamping for the first five damage scenarios. But, in this stage, we can estimate the
segment on which the crack occurred with high confidence.
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Table 8. Results obtained using the particular networks — fine estimation.

FEM Scenarios Accuracy enhanced network output
Position  Severity Network  Position  Severity Position Severity .
Scen. error Error Weak clamping
[mm] Y2a2) used [mm] Y@ [%] [%]

1 100 0.0033459 Sector 1 99.6 0.003332 0.04 0.00  Notdetected True
2 150 0.0033459 Sector 2 148.9 0.003174 0.11 0.02  Not detected True
3 400 0.0033459 Sector 4 398.3 0.003031 0.17 0.03  Not detected True
4 550 0.0033459 Sector 5 554.7 0.002947 0.47 0.04  Not detected False
5 613 0.0033459 Sector 6 612.6 0.002936 0.04 0.04  Not detected True
6 133 0.0033459 Sector 1 132.3 0.003385 0.07 0.00 Detected  True
7 280 0.0051239 Sector 3 280.8 0.004469 0.08 0.07 Detected True
8 410 0.0033459 Sector 4 409.4 0.003086 0.06 0.03 Detected  True
9 570 0.0033459 Sector 6 570.4 0.003353 0.04 0.00 Detected True
10 962 0.0011911 Sector 9 962.2 0.001419 0.02 0.02 Detected True

Knowing the approximate position of the crack we can select the appropriate
segment and use the network trained for this particular segment. The results obtained in
the second step are given in Table 8. One can observe that now the largest error obtained
is 0.5 % for the position and 0.07 % for the crack severity. In addition, the model can detect
non-ideal clamping with high accuracy. These results allow us to conclude that the two-
step ANN method is more efficient in crack assessment.

5. Experimental validation

To validate the developed ANN models, experimental studies were carried out by
measuring the first natural frequencies for five steel beams with the dimensions indicated
in the previous section. In the first 5 damage scenarios, the beams were perfectly clamped.
Furthermore, the capability of the developed method to detect non-ideal clamping was
also tested for the damaged beams by mounting rubber blocks between the jaws of the
vise and the beam (Figure 10).

a) b)

Figure 10. Clamping system: (a) rigid clamping obtained by direct fixing in the vise; (b) weak
clamping obtained by intercalating rubber layers.

The acceleration signals are recorded with a Kistler 8772 accelerometer mounted on
the tested beam. It transmits the measured signal through the analog-to-digital conversion
module NI9234 and a compact chassis NIcDAQ-9175 to a connected laptop. To excite the
beam at the desired resonant frequencies, see the procedure in [34], an audio excitation
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system consisting of a loudspeaker, amplifier, and dedicated software installed on a
second laptop is used. The experimental setup is shown in Figure 11.

Figure 11. Experimental setup.

The natural frequencies are estimated one by one, with high accuracy, after a
procedure described in [35]. The Python code to estimate the frequencies is given in [36].

5.1. Perfect clamping experiments

In the first experimental study, each beam is mounted into a vise, thus achieving a
rigid clamping. The resulted frequencies for the undamaged beams are shown in Table 9.

Table 9. Frequencies estimated for the undamaged beams.

Natural frequencies [Hz]

Test beam Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8
Beam 1 4,035 25,284 70,970 139,090 230,336 344,196 481,809 641,261
Beam 2 4,060 25,439 71,426 139,902 231,038 344,750 482,503 641,823
Beam 3 4,034 25,341 71,064 139,15 230,138 341,868 480,773 636,769
Beam 4 4,030 25,367 71,213 139,342 230,295 343,254 480,795 639,510
Beam 5 4,044 25,482 71,287 139,42 228,528 344,177 481,213 641,114

Several damage scenarios are generated by saw cutting each of the five beams at
different positions and depths thus replicating a transversal crack. The position and depth
for every scenario are according to Table 10.

Table 10. Estimated natural frequencies for the test beams containing a crack of known position and depth.

Test  Crack  Crack Natural frequencies [Hz]

beam position depth Model Mode2 Mode3 Mode4 Mode5 Mode6 Mode7 Mode8
1 98 2,5 3.952 25.086 70.854  139.086  229.859  342.143 477105  633.647
2 310 1,25 4.053 25.422 71259  139.818 230913  343.835 481913  641.729
3 569 2,5 4.024 24.904 70.707  137.883 227494  340.994 472.791  636.758
4 126 2,5 4.200 25.226 71208  138.982 228245  338.441 473771  632.801
5 759 2,5 4.043 25.343 70.051 137.012 227517  343.834 475.326  630.614

By using the measured frequencies for the beams in an undamaged and damaged
state, we obtain the RFS values with Eq.2; the results are presented in Table 11.
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Table 11. Calculated RFS value for each test beam.

Test Crack  Crack Calculated RFS values

beam position depth Model Mode2 Mode3 Mode4 Mode5 Mode6 Mode7 ModeS8
1 98 2,5 0.020610 0.007828 0.001629 0.000031 0.002070 0.005964 0.009762 0.011873
2 310 1,25  0.001795 0.000660 0.002334 0.000600 0.000542 0.002654 0.001223 0.000146
3 569 2,5 0.002382 0.017252 0.005019 0.009109 0.011488 0.002556 0.016603 0.000017
4 126 2,5 0.023458 0.005550 0.000064 0.002581 0.008901 0.014021 0.014610 0.010491
5 759 2,5 0.000288 0.005461 0.017336 0.017272 0.004422 0.000996 0.012234 0.016377

The RFS data is fed to the coarse ML models to obtain the estimated crack position
and severity for the five damage scenarios. The results obtained after the first estimation
are shown in Tables 12 for the RF model and in Table 13 for the ANN model.

Table 12. Results obtained using the preliminary Random Forest model

Damage Scenarios Preliminary Random Forest

. . i .. Position Severit
Position Severity | Position Severity veny

Scen. error Error Weak clamping
[mm] v2(az) [mm] v2(a2) [%] [%]
1 98 0.026224 | 96.99 0.0264 0.10 0.02  Not detected True
2 310  0.005124 | 309.85  0.0051 0.01 0.00  Not detected True
3 569  0.026224 | 564.87  0.0331 0.41 0.69  Not detected True
4 126 0.026224 | 12542  0.0329 0.06 0.67  Not detected True
5 759  0.026224 | 75825  0.0329 0.08 0.67  Not detected True

Table 13. Results obtained using the ANN — Network 1

Damage Scenarios Coarse ANN - Network 1 output

Position Severity | Position Severity Position Severity

Scen. [mm] ya(a) [mm] Ya(a) error Error Weak clamping
[%] [%]
1 98 0.026224 | 97.8 0.0282 0.02 020  Not detected False
2 310  0.005124 | 313.2 0.0042 0.32 0.09  Not detected False
3 569  0.026224 | 567.2 0.0323 0.18 0.61  Not detected False
4 126 0.026224 | 126 0.0337 0.00 0.75  Not detected False
5 759  0.026224 | 757.8 0.0331 0.12 0.69  Not detected False

We identify the segments in which cracks were found and select the corresponding
networks. Afterward, by employing the enhanced ML models we obtain more precise
results, as presented in Table 14 for the refined Random forest model and in Table 15 for
the enhanced ANN model.
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Table 14. Obtained results using the refined Random Forest model

Damage Scenarios Refined Random Forest
Position Severity | Position Severity Position Severity .
Scen. error Error Weak clamping
[mm] v2(az) [mm] v2(az) [%] [%]
1 98 0.026224 | 99.40 0.0260 0.14 0.02  Not detected True
2 310  0.005124 | 309.73  0.0049 0.03 0.02  Not detected True
3 569  0.026224 | 568.22  0.0327 0.08 0.65  Not detected True
4 126 0.026224 | 127.84  0.0329 0.18 0.67  Not detected True
5 759  0.026224 | 758.19  0.0328 0.08 0.66  Not detected True

Table 15. Obtained results using the precision sector ANN

Damage Scenarios Enhanced network output

Position Severity | Position Severity Position Severity

Scen. [mm] Va(a) [mm] ya(a) error Error Weak clamping
[%] [%]
1 98 0.026224 98 0.0275 0.00 0.13  Not detected True
2 310 0.005124 310 0.0054 0.00 0.03 Not detected True
3 569  0.026224 | 568 0.0343 0.10 0.81  Not detected True
4 126 0.026224 126 0.0343 0.00 0.81 Not detected True
5 759  0.026224 758 0.0343 0.10 0.81  Not detected True

One can observe from Tables 14 and 15 that, for the case of ideal clamping, the
damage location and severity are found with high accuracy irrespective of the employed
method. Remarkably, ideal clamping is detected in all cases.

5.2. Improper clamping experiments

This study concerns the ability of the proposed approach to detect cracks in two
different cases:

e  The structure has initially ideal boundary conditions, but after a while, a crack occurs
and an alteration of the fixing system is present, i.e. the clamping becomes non-ideal

e  The structure has from the beginning non-ideal boundary conditions, so the fixing
system remains unchanged, and is affected after a while by a crack.

The experiment is made for test beam 1. Improper clamping was ensured by
mounting rubber blocks between the jaws of the vise and the test beam, as shown in Figure
10b. The crack is generated at distance x, =98 mm and has depth a, =2.5mm, The
natural frequencies were obtained from the measured data. The results for the
undamaged beam with ideal and non-ideal clamping, as well as the frequencies for the
test beam 1 with non-ideal fixing and a crack are shown in Table 16.
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Table 16. Estimated natural frequencies.

Test  Crack  Crack Calculated natural frequencies [Hz]

beam position depth Model Mode2 Mode3 Mode4 Mode5 Mode6 Mode7 ModeS8
Undamaged withideal ) po5 95081 70970 139,000 230336 344196 481,809 641,261
clamping

Undamaged with non-
ideal clamping
1 98 2,5 3.926 24.935 70.420 138.211  228.362  339.873  474.057  630.080

4.0051 25.111 70.48 138.95 229.21 341.18 476.93 635.49

The calculated RFS values are presented in Table 17, first for the undamaged beam
with ideal fixing (case 1i) and afterward, for the undamaged beam with initially non-ideal
fixing (case 1n-i), In both cases, the damaged beam has non-ideal clamping.

Table 17. Calculated RFS values for the improperly clamped damaged beam.

Test Crack Crack Calculated RFS values
beam position depth Model Mode2 Mode3 Mode4 Mode5 Mode6 Mode7 Mode8
1i 98 2,5 0.026955 0.013803 0.007749 0.006322 0.008572 0.012559 0.016089 0.017436
1n-i 98 2,5 0.019749  0.007008 0.000851 0.005318 0.003699 0.003830 0.006023 0.008513

The crack assessment is made employing the two ML methods, in compliance with
the two evaluation stages. The results for case 1i are presented in Table 18, while the results
for case 1n-i are presented in table 19.

Table 18. Crack assessment for a damaged beam with non-ideal clamping for the case the undamaged beam had initially an ideal
fixing (case 1i).

Damage Scenario Results obtained with the ML models
Position Severity Position Severity Position Severlty .
Scen. error Error Weak clamping
[mm] Y2(a2) [mm] v2(a2) [%] [%]
First-step RF 129.36 0.038300 3.14 1.21 Detected  True
Second-step RF 92.68 0.039000 0.53 1.28 Detected  True
98 0.026224

First-step ANN 102.07 0.031283 0.41 0.51 Detected  True
Second-step ANN 99.13 0.027038 0.11 0.08 Detected  True

Table 19. Crack assessment for a damaged beam with non-ideal (but unchanged) clamping (case 1ii).

Damage Scenarios Results obtained with the ML models
Position Severity |Position Severity Position  Severity .
Scen. error Error Weak clamping
[mm] Y2(a2) [mm] v2(a2) o o
[%] [%]
First-step RF 82.54 0.0353 1.546 -0.9076 Not detected  True
Second-step RF 32.05 0.0292 6.595 -0.2976 Not detected  True
98 0.026224

First-step ANN 74.63 0.0247 2.337 0.1524 Not detected  False
Second-step ANN 96.4 0.0247 0.16 0.1524 Not detected  True

Reviewing Tables 18 and 19, we can conclude that for the beam with changing
boundary conditions the crack position and severity were found accurately after the
second step. The best result is obtained using the ANN, which located the crack with an
error of 0.11% and found the severity with an error below 0.1%.

The changed boundary conditions are detected with both ML methods. Dissimilar,
the case when the beam had initially a weak fixing was properly solved just by the ANN
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method. The errors accuracy, in this case, is sustained by errors less than 0.16%, for
position and severity as well. Both ML methods did not find an alteration of the fixing in
the vise, thus we consider the response Not detected as true.

6. Conclusions

In this paper, we apply RF and ANN to identify the crack location and severity in a
steel cantilever beam with rectangular cross-section. The beam has different levels of
fixing, including ideal and non-ideal clamping, and we also aim to find if the fixing
condition changes. To train the network we use as inputs the RFS found applying an
original method and as the crack parameters and the fixing condition, respectively. To
improve the accuracy of the assessment method, we perform crack assessment in two
steps: (i) in the first step we apply coarse estimation, for the network trained for all
damage scenarios — here the region in which the crack occurred is identified; (ii) in the
second step we apply a fine estimation, for the network trained for a specific segment of
the beam which includes the damaged region — here the crack position and severity are
found, along with the changes in clamping, if any.

Both ML methods were able to learn and classify new data with characteristics
comparable with that of the training data. After training, the networks are successfully
used to assess other scenarios, which come from FEM simulation and laboratory
experiments. We found that, for all cases, the ability to accurately detect the crack location
and severity increases when using assessment in two steps. After the second step, the
errors in locating the crack are below xx%, and the errors in assessing the crack severity
are less than yy%. The ANN leads to better results. The smallest crack we found had
0.6mm depth, in a beam with a thickness of 5mm. We did not search after smaller crack
depths because of the training data we produced and knowing that the ANN method is
more efficient in interpolation than in extrapolation.

Further investigation should be conducted to evaluate the ability of the proposed
approach to identifying cracks in the early stage and on large-scale structures.

Author contributions: Conceptualization, GRG and ZIP; methodology, CT; software, CR, CS and
CT; validation, NG and CS; formal analysis MA; investigation, GRG and CT; writing —original draft
preparation, MA; writing—review and editing, NG.; visualization, CT; supervision, GRG. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received financial support through the project" Entrepreneurship for
innovation through doctoral and postdoctoral research ": POCU / 380/6/13/123866, a project co-
financed by the European Social Fund through the Operational Program Human Capital 2014-2020.

Data Availability Statement: The data presented in this study are openly available in Mendeley at
DOI:10.17632/db94d5ccr6.1 and DOI:10.17632/dn4pxx6b3m.1.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.  Doebling, S.W; Farrar, C.; Prime, M.B. A Summary Review of Vibration-Based Damage Identification Methods. The Shock and
Vibration Digest 1988, 30(2), 91-105. DOI: 10.1177/058310249803000201

2. Radzienski, M.; Krawczuk, M.; Palacz, M. Improvement of damage detection methods based on experimental modal
parameters. Mech. Syst. Signal Process. 2011, 25, 2169-2190. DOI:10.1016/j.ymssp.2011.01.007

3.  Fan, W,; Qiao, P.Z. Vibration-based damage identification methods: A review and comparative study. Struct. Health Monit. 2011,
10, 83-111. DOI:10.1098/rsta.2000.0717

4. Yang, Y.; Zhang, Y.; Tan, X. Review on Vibration-Based Structural Health Monitoring Techniques and Technical Codes.
Symmetry 2021, 13, 1998. DOI:10.3390/sym13111998

5. Gillich, G.R.; Furdui, H.; Wahab, M.A; Korka, Z.I. A robust damage detection method based on multi-modal analysis in variable
temperature conditions. Mech. Syst. Signal Process. 2019, 115, 361-379. d0i:10.1016/j.ymssp.2018.05.037

6. Cheng, L; Cigada, A. An analytical perspective about structural damage identification based on transmissibility function. Struct.
Health Monit. 2020, 19(1), 142-155. DOI:10.1177/1475921719838079

7. Pacheco-Chérrez, J.; Cardenas, D.; Probst, O. Experimental Detection and Measurement of Crack-Type Damage Features in

Composite Thin-Wall Beams Using Modal Analysis. Sensors 2021, 21, 8102. DOI:10.3390/s21238102


https://doi.org/10.1016/j.ymssp.2011.01.007
https://doi.org/10.20944/preprints202201.0111.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 January 2022 d0i:10.20944/preprints202201.0111.v1

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.
34.

35.

36.

Ravi, J.T.; Nidhan, S.; Muthu, N.; Maiti, S.K. Analytical and experimental studies on detection of longitudinal, L and inverted T
cracks in isotropic and bi-material beams based on changes in natural frequencies, Mech. Syst. Signal Process. 2018, 101(15), 67-
96. DOLI: 10.1016/j.ymssp.2017.08.025

Bao, A.; Gulasey, M.; Guillaume, C.; Levitova, N.; Moraes, A.; Satter, C. Structural Capacity Analysis of Corroded Steel Girder
Bridges. In Proceedings of the 3rd International Conference on Civil, Structural and Transportation Engineering, Niagara Falls,
ON, Canada, 10-12 June 2018. DOI:10.11159/iccste18.118

Saeedi, K.; Bhat B.R. Clustered Natural Frequencies in Multi-Span Beams with Constrained Characteristic Functions. Shock and
Vibration 2011, 18(5), 697-707. DOI: 10.3233/SAV-2010-0592

ZI Praisach, N Gillich, I Negru I. Natural Frequency Changes of Euler-Bernoulli Continuous Beams with Two Spans due to
Crack Occurrence. Romanian Journal of Acoustics and Vibration 2014, 11 (2), 80-83.

Zhang, Y.; Xie, Q.; Li, G.; Liu, Y. Multi-Damage Identification of Multi-Span Bridges Based on Influence Lines. Coatings 2021,
11, 905. DOI:10.3390/coatings11080905

Zhou, Y.L.; Abdel Wahab, M. Damage detection using vibration data and dynamic transmissibility ensemble with auto-
associative neural network. Mechanika 2017, 23(5), 688-95. DOI:10.5755/j01.mech.23.5.15339

Kim, B.; Kim, C.; Ha, S.-H. Multiple Damage Detection of an Offshore Helideck through the Two-Step Artificial Neural Network
Based on the Limited Mode Shape Data. Sensors 2021, 21, 7357. DOI:10.3390/s21217357

Elshafey, A.A.; Dawood, N.; Marzouk, H.; Haddara, M. Crack width in concrete using artificial neural networks. Eng Struct.
2013, 1(52), 676-86.

Zhou, Q.; Ning, Y.; Zhou, Q.; Luo, L.; Lei, J. Structural damage detection method based on random forests and data fusion.
Struct. Health Monit. 2013, 12(1), 48-58. DOI:10.1177/1475921712464572

Guo, X.; Hao, P. Using a Random Forest Model to Predict the Location of Potential Damage on Asphalt Pavement. Appl. Sci.
2021, 11, 10396. DOI:10.3390/app112110396

Huang, D.; Hu, D.; He J.; Xiong, Y. Structure Damage Detection Based on Ensemble Learning. In Proceedings of the 9th
International Conference on Mechanical and Aerospace Engineering (ICMAE), Budapest, Hungary, 10-13 July 2018.
DOI:10.1109/ICMAE.2018.8467650.

Tran-Ngoc, H.; Khatir, S.; De Roeck, G.; Bui-Tien, T.; Abdel Wahab, M. An efficient artificial neural network for damage
detection in bridges and beam-like structures by improving training parameters using cuckoo search algorithm. Eng. Struct.
2019, 199, 109637. DOI: 10.1016/j.engstruct.2019.109637

Senthilkumar, M.; Manikanta Reddy, S.; Sreekanth, T.G. Dynamic Study and Detection of Edge Crack in Composite Laminates
Using Vibration Parameters. Trans. Indian Inst. Met. 2021, 74. DOI:10.1007/s12666-021-02419-y

Gillich, G.R.; Praisach, Z.I. Modal identification and damage detection in beam-like structures using the power spectrum and
time-frequency analysis. Signal Processing 2014, 96, 29-44. DOI:10.1016/j.sigpro.2013.04.027

Gillich, G.R.; Aman, A.T.; Wahab, M. A ; Tufisi C. Detection of Multiple Cracks Using an Energy Method Applied to the Concept
of Equivalent Healthy Beam. Proceedings of the 13th International Conference on Damage Assessment of ...

Gillich, G.R.; Tufoi, M.; Korka, Z.I; Stanciu, E.; Petrica, A. The relations between deflection, stored energy and natural
frequencies, with application in damage detection. Romanian Journal of Acoustics and Vibration 2016, 13(2), 87-93.

Gillich, G.R,; Praisach Z.I. Robust method to identify damages in beams based on frequency shift analysis. Health Monitoring
of Structural and Biological Systems 2012 8348, 83481D

Gillich, N.; Tufisi, C.; Vasile, O.; Gillich, GR. Statistical Method for Damage Severity and Frequency Drop Estimation for a
Cracked Beam using Static Test Data. Romanian Journal of Acoustics and Vibration 2019, 16(1), 47-51.

Gillich, G.R.; Maia, N.M.M.; Wahab, M.A_; Tufisi, C.; Korka, Z.I; Gillich, N.; Pop, M.V. Damage Detection on a Beam with
Multiple Cracks: A Simplified Method Based on Relative Frequency Shifts. Sensors 2021, 21(15), 5215. DOI:10.3390/s21155215
Negru, I; Praisach, Z.I1; Gillich, G.R.; Vasile, O. About the Neutral Axis Distortion due to Cracks and its Influence upon the
Beams Natural Frequencies. Romanian Journal of Acoustics and Vibration 2012, 12(1), 35-38.

[dataset] Tufisi, C.; Gillich, G.R. 2021. Training data for cantilever beam with transverse cracks; Mendeley Data; V1;
DOI:10.17632/db94d5ccr6.1

Marsland, S. Machine learning: an algorithmic perspective. Chapman and Hall/CRC, 2011.

Breiman, L. Random forests. Machine learning 2001, 45(1), 5-32. DOI:10.1023/A:1010933404324

Probst, P.; Boulesteix, A.L. To tune or not to tune the number of trees in random forest. J. Mach. Learn. Res. 2017, 18(1), 6673-
6690. https://arxiv.org/pdf/1705.05654.pdf

Abiodun, O.I; Jantan, A.; Omolara, A.E.; Dada, K.V.; Mohamed, N.A.; Arshad, H. State-of-the-art in artificial neural network
applications: A survey. Heliyon 2018, 4(11), €00938. DOI:10.1016/j.heliyon.2018.e00938

[dataset] Tufisi, C. 2021. FEM simulation results; Mendeley Data; V1; DOI:10.17632/dn4pxx6b3m.1.

Mituletu, I.C.; Gillich, G.R.; Maia, N.M.M. A method for an accurate estimation of natural frequencies using swept-sine acoustic
excitation. Mechanical Systems and Signal Processing 2019, 116, 693-709. DOI:10.1016/j.ymssp.2018.07.018

Nedelcu, D; Gillich, G.R. A structural health monitoring Python code to detect small changes in frequencies. Mechanical Systems
and Signal Processing 2021, 147, 107087. DOI:10.1016/j.ymssp.2020.107087

[dataset] Gillich, G.R.; Nedelcu, D. Data for: PyFEST - a Python code for accurate frequency estimation; Mendeley Data; V1;
DOI:10.17632/g6tc23z48p.1


https://scholar.google.ro/citations?view_op=view_citation&hl=en&user=SqirlRAAAAAJ&cstart=20&pagesize=80&alert_preview_top_rm=2&citation_for_view=SqirlRAAAAAJ:qxL8FJ1GzNcC
https://scholar.google.ro/citations?view_op=view_citation&hl=en&user=SqirlRAAAAAJ&cstart=20&pagesize=80&alert_preview_top_rm=2&citation_for_view=SqirlRAAAAAJ:qxL8FJ1GzNcC
https://scholar.google.com/citations?view_op=view_citation&hl=ro&user=htoz88QAAAAJ&alert_preview_top_rm=2&citation_for_view=htoz88QAAAAJ:MGPUR4WVBMEC
https://scholar.google.com/citations?view_op=view_citation&hl=ro&user=htoz88QAAAAJ&cstart=20&pagesize=80&sortby=pubdate&alert_preview_top_rm=2&citation_for_view=htoz88QAAAAJ:oFn-K-OQSCAC
https://scholar.google.com/citations?view_op=view_citation&hl=ro&user=htoz88QAAAAJ&cstart=20&pagesize=80&sortby=pubdate&alert_preview_top_rm=2&citation_for_view=htoz88QAAAAJ:oFn-K-OQSCAC
https://scholar.google.com/citations?view_op=view_citation&hl=ro&user=htoz88QAAAAJ&sortby=pubdate&alert_preview_top_rm=2&citation_for_view=htoz88QAAAAJ:LlXTz_FrCmAC
https://scholar.google.com/citations?view_op=view_citation&hl=ro&user=htoz88QAAAAJ&sortby=pubdate&alert_preview_top_rm=2&citation_for_view=htoz88QAAAAJ:LlXTz_FrCmAC
https://doi.org/10.3390/s21155215
https://www.sciencedirect.com/science/article/pii/S2405844018332067#!
https://www.sciencedirect.com/science/article/pii/S2405844018332067#!
https://www.sciencedirect.com/science/article/pii/S2405844018332067#!
https://www.sciencedirect.com/science/article/pii/S2405844018332067#!
https://www.sciencedirect.com/science/article/pii/S2405844018332067#!
https://doi.org/10.1016/j.heliyon.2018.e00938
https://scholar.google.com/citations?view_op=view_citation&hl=ro&user=htoz88QAAAAJ&cstart=20&pagesize=80&sortby=pubdate&alert_preview_top_rm=2&citation_for_view=htoz88QAAAAJ:bCjgOgSFrM0C
https://scholar.google.com/citations?view_op=view_citation&hl=ro&user=htoz88QAAAAJ&cstart=20&pagesize=80&sortby=pubdate&alert_preview_top_rm=2&citation_for_view=htoz88QAAAAJ:bCjgOgSFrM0C
https://doi.org/10.1016/j.ymssp.2018.07.018
https://scholar.google.com/citations?view_op=view_citation&hl=ro&user=htoz88QAAAAJ&sortby=pubdate&alert_preview_top_rm=2&citation_for_view=htoz88QAAAAJ:oXKBmVzQOggC
https://doi.org/10.20944/preprints202201.0111.v1

