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Abstract: This work presents an approach for detecting mathematical formulas in scanned docu-1

ment images. The proposed approach is end-to-end trainable. Since many OCR engines cannot2

reliably work with the formulas, it is essential to isolate them to obtain the clean text for infor-3

mation extraction from the document. Our proposed pipeline comprises a hybrid task cascade4

network with deformable convolutions and a Resnext101 backbone. Both of these modifications5

help in better detection. We evaluate the proposed approaches on the ICDAR-2017 POD and6

Marmot datasets and achieve an overall accuracy of 96% for the ICDAR-2017 POD dataset. We7

achieve an overall reduction of error of 13%. Furthermore, the results on Marmot datasets are8

improved for the isolated and embedded formulas. We achieved an accuracy of 98.78% for the9

isolated formula and 90.21% overall accuracy for embedded formulas. Consequently, it results in10

an error reduction rate of 43% for isolated and 17.9% for embedded formulas.11

Keywords: formula detection; Hybrid Task Cascade network; mathematical expression detection;12

document image analysis; deep neural networks; computer vision13

1. Introduction14

Mathematical formulas are universally used to explain complex information com-15

pactly. Therefore, reliable detection of formulas is a primary step in digitizing scientific16

scanned documents. Mainly, the formulas are further categorized into two categories17

which are isolated formulas and embedded formulas [1]. Like other page objects, the18

isolated formulas are mentioned on a separate line, whereas the embedded formulas rep-19

resenting mathematical symbols are a part of a regular text line. Figure 1 demonstrates20

the detection of isolated and embedded formulas in a document image.21

Several challenges involved in detecting isolated and embedded formulas include22

low inter-class variance (less dissimilarity between formulas and tables), high inter-class23

variance (more dissimilarity between two formulas), complex layouts, textual noise in24

documents, and diversity in mathematical symbols. Figure 1 exhibits a few instances of25

embedded formulas, which can be any mathematical notation written in a greek letter,26

mathematical operators, functions, and English alphabets declared as variables.27

Earlier approaches tried to tackle this problem by exploiting Optical Character28

Recognition (OCR) systems [2,3]. Even after heavily relying on custom heuristics, most29

OCR-based systems produced an unsatisfactory interpretation of mathematical formulas30

in documents. The recent state-of-the-art OCR systems [3–6]. have gained huge success31

in interpreting textual content. However, there is still a massive gap in understanding32
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(a) Isolated formulas (b) Embedded formulas
Figure 1. Figure 1a and Figure 1b highlight boundaries of isolated and embedded formulas, respectively. For brevity, separate images
are used. The isolated formulas marked in Figure 1a are misclassified with other graphical page object such as figures and tables,
whereas the embedding formulas emphasized in Figure 1b are mistreated as a regular textural content.

mathematical content in document images. To comprehend better, Figure 2 visualizes the33

huge difference between the understanding of textual content and mathematical content34

in scanned document images by an OCR. To generate Figure 2, we apply open-source35

LSTM based OCR, Tesseract [6] (available at https://github.com/tesseract-ocr/tesseract36

accessed on 05.01.2022) on a sample document image taken from the Marmot dataset [1].37

Besides OCR-based approaches, researchers have developed rule-based methods [7–38

9] that operate on hand-crafted features to tackle the problem of formula detection in39

documents. Although these methods are effective on a specific type of documents, they40

are prone to several errors in a diverse nature of the documents. Later, machine learning-41

based approaches have progressed the benchmark of formula detection systems [10–13].42

Very recently, deep neural networks based approaches have been presented in this43

domain that have remarkably improved the state-of-art of formula detection in scanned44

document images [13–15]. These approaches have treated the problem of formula45

identifications as an object detection problem by exploiting modern object detection46

algorithms [16–19].47

In this paper, we take a step forward and formulate the problem of formula identifi-48

cation as an instance segmentation problem. Our system localizes each type of formula49

(i.e., isolated and embedded) and classifies several instances in a scanned document50

image. The overall architecture is depicted in Figure 3. In summary, the primary contri-51

butions of this paper are as follows:52

• We propose an end to end trainable network for formula detection in the scanned53

document images54

• We performed an exhaustive evaluation on ICDAR-2017 and Marmot datasets and55

achieved state-of-the-art performance on both.56

The rest of the paper is organized as follow: Section 2 provides a brief overview of57

the related approaches for formula localization in scanned document images. Section58

3 explains the proposed formula localization framework. This section discusses the59

deformable convolutions, backbone network, and hybrid task cascade network. Section60

4 describes the details of the dataset used for evaluations. Section 5 provides the details61

of all the experiments and the results of the proposed approach. Furthermore, this section62

presents the quantitative and qualitative results. Section 6 discusses the conclusion of63

the proposed work and the possible future directions.64
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(a) Document image sample. (b) Retrieved data from OCR.
Figure 2. Figure 2a from the Marmot dataset [1], contains both textual and mathematical information. Figure 2b is the output of an
open source Tesseract-OCR [6] employed on Figure 2a. It is evident that the OCR fails to interpret mathematical content.

2. Related work65

The problem of mathematical formula detection in documents has been a well66

studied problem for over two decades [2,7,20,21]. This section discusses the prior67

approaches that have exploited traditional or deep learning-based methods to tackle the68

problem of formula detection in documents.69

2.1. Traditional Approaches70

Initially, similar to the other domains of document image analysis, the task of71

formula detection has been handled through employing heuristics or rule based meth-72

ods [21,22]. Fateman et al. [2] published an Optical Character Recognition (OCR) system73

that can parse mathematical symbols such as (=,+, cos, sin, and x3) in documents. The74

system works by extracting each character information from documents, and the infor-75

mation is passed to mathematical parsers to output the information as a LATEXexpression.76

Later, researchers have proposed approaches similar to [2] that works on character-77

based heuristics to extract information from mathematical formulas in documents [23–78

25]. Inoue et al. [3] classified the mathematical formulas by applying conventional OCR79

on documents. Since, conventional OCR is unable to parse mathematical formulas, the80

system treated rest of unrecognized characters as mathematical formulas.81

Another fuzzy logic based technique to detect formula region is proposed by Kacem82

et al. [26]. The authors exploited the features of mathematical symbols to compute the83

formula boundaries. Jin et al. [7] presented a method to detect isolated and embedded84

formulas in documents. The authors employ Parzen classifier [27] to detect formulas on85

the basis of line height and the indentation features.86

To detect displayed formulas in PDF documents, the authors in [28] isolates the87

regular text lines with the formula lines. Similarly, through segeration of regular text88

lines with the the lines including formulas, Chowdhury et al. [29] incorporate decision89

trees to predict isolated formulas. Another method is proposed in [8], that tackles the90

problem of isolated formula detection in documents by exploiting the projection of the91

features.92

Later, researchers have utilized statistical learning specifically machine learning-93

based algorithms to advance the performance of formula detection systems in docu-94

ments [7,30]. Liu et al. [9] employed the blend of Conditional Random Field (CRF) [31]95

and Support Vector Machine (SVM) [32] to categorize sparse lines in documents. Then96
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the authors applied heuristics to separate mathematical formulas from other graphical97

elements in documents.98

2.2. Deep Learning Approaches99

There has been a noticeable improvement in the field of mathematical formula100

analysis since the trend of applying vision based algorithms [14]. He et al. [33] introduced101

the idea of applying Convolutional Neural Networks (CNNs) to extract spatial features102

in order to detect mathematical formulas in document images. Gao et al. [34] extended103

the idea of [33] by combining CNN with Recurrent Neural Network (RNN) to leverage104

from both vision and character level features.105

In 2017, a Page Object Detection (POD) competition is arranged at ICDAR [35]. The106

competition focused on detecting figures, formulas, and tables in document images.107

NLPR-PAL [35] presented an approach that combines the abilities of Faster R-CNN [16]108

and connected components to precisely localize the boundaries of figures, formulas, and109

tables.110

Yi et al. [36] presented another approach that detects formulas, figures, tables, and111

text lines in document images. The authors adopt the object detection framework and112

replaced Non-Maximum Suppression (NMS) with dynamic programming to filter the113

candidate regions. Ohyama et al. [10] resolved the problem of detecting mathematical114

expressions through applying U-Net [37] in scientific document images.115

Due to the latest improvements of object detection algorithms [17,18,38] in computer116

vision, there is a growing interest of applying these algorithms in the document image117

analysis community. Phong et al. [11] employed YOLO [17] to identify mathematical118

expression detection in document images. Furthermore, the authors applied watch,119

attend, and parse network to extract the content of mathematical expressions.120

Along with YOLO, Mali et al. [12] presented the method equipped with SSD [19] to121

predict mathematical expression in PDF documents. To handle page object detection in122

PDF document images, Li et al. [39] came up with an hybrid approach that combines123

traditional and deep learning methods. In a recent work, Younas et al. [13] demonstrated124

the capabilities of deformable convolutions [40] in Feature Pyramid Networks (FPN) [18]125

to detect figures and formulas in document images. The presented method depends on126

works on the transformed images which are achieved by applying traditional computer127

vision methods. Very recently, Hashmi et al. [15] exploited the combination of composite128

backbone [41] with cascade Mask R-CNN [38] to improve state-of-the-art results for129

formula detection in scanned document images.130

3. Method131

3.1. Deformable Convolution132

In the traditional convolutional unit [42], the input feature map is sampled at fixed133

positions and the output is computed by summing the weighted samples. Hence, the134

effective receptive field of filters are fixed and decided initially by defining the size of135

the kernel. Since the formulas present in document images have arbitrary layouts, the136

conventional convolutional filters do not captures the features well and lack in localizing137

the precise regions various page objects [13,43,44].138

To address the above problem, we propose the novel idea of applying deformable139

convolution [40] in our ResNeXt backbone and HTC model. Hence, the fixed effective140

receptive field of the convolutional filters are substituted with the dynamic receptive141

field due to the presence of a learnable offset that augments the grid. For each location l0142

in the input feature map x, the regular grid is augmented with the help of an offset ∆li.143

Mathematically, the operation of deformable convolution is explained in [40] as:144

O(l0) = ∑
li∈R

w(li)× x(l0 + li + ∆li) (1)
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Figure 3. Hybrid Task Cascade Architecture. The feature extraction module depicts that classical convolutions are replaced with
deformable convolutions. The block shows the architecture of hybrid task cascade network.

Where li enumerates over the regular grid R, w represents the weights, and O(l0)145

denotes the output of the feature map on each location l0. Since the offset ∆li can update146

with the backpropagtaion of the gradients, it helps the neurons to adjust the receptive147

field which facilitates the network to detect formulas with varying scales. Figure 4148

exhibits the idea of deformable convolution. We refer our readers to [40,45] for a detailed149

understanding of deformable convolutions.150

Deformable
Convolutional

Grid

Input Feature Maps Output Feature Maps

Traditional Convolutional Grid

Conv

Offset Field

Offsets

Figure 4. Deformable Convolution.

3.2. HYBRID TASK CASCADE151

Cascading has been in use for a very long time in computer vision tasks [38]. It is a152

generic and robust architecture that helps in achieving better performance. Consequently,153

this architecture is used to improve the performance of object detection. A naive strategy154

for implementing the cascading in object detection is to apply iterative bounding box155

refinement [38]. Although the performance is increased, the improvement is not so much.156

A hybrid task cascade network introduces a novel way of incorporating the cascade157

architecture in object detection networks. First, it adopts a fully convolutional branch158

to provide the spatial context. Secondly, it blends the detection and segmentation tasks159
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Figure 5. Hybrid Task Cascade Network’s architecture. It shows different heads used for predic-
tions. B denotes the bounding box head and M denotes the mask head. Whereas, S represents
the

within the cascading framework such that at each cascading stage, we perform both the160

detection and segmentation. Hence, it is referred to as joint multistage processing. Due161

to joint multistage processing, object detection and segmentation improve each other.162

For example, better detection can help to improve the performance of mask prediction163

and segmentation [46]. The architecture is shown in Figure 3.164

The isolated architecture of the hybrid task cascade network is depicted in Figure 5.165

There exist multiple heads for bounding box prediction and segmentation. Moreover,166

the input is processed at different scales. The first bounding box head(B1) receives167

input from the RPN at the first stage, and then the cascade starts, and each subsequent168

bounding box head receives input from the corresponding ROI align. However, each169

mask head receives two inputs. The first input comes from the semantic feature maps.170

The second input comes from the ROI pooling. The mask prediction fuses both of them171

to generate accurate masks. In summary, the first object proposals come from RPN,172

which are processed by ROI pooling. The head B1 takes the output of ROI pooling and173

generates the initial bounding box coordinates. It predicts the confidence of the object174

proposal as well. M1 generates pixel-wise predictions in terms of masks in the second175

stage. The rest of the cascaded stages follow the same pattern.176

4. Datasets177

4.1. ICDAR17178

The ICDAR-2017-POD [35] dataset was collected for the competition of graphical179

page object detection at ICDAR in 2017. The dataset includes information for figures,180

formulas, and tables in document images. The dataset includes 2417 document images181

in English language that are retrieved from 1500 scientific papers form CiteSeer. Out182

of 2417 document images, 1600 images are utilized in training and the remaining 817183

samples are used as a test set. The dataset demonstrates a variety of single, double, and184

multi-column pages having single to several isolated formulas on each image. Recently,185

Younas et al. [13] pointed out some faulty annotations in the dataset and released the186

improved version of the dataset. We used the improved version of our dataset in order187

to have direct comparison with the prior literature.188

4.2. Marmot189

We evaluate the proposed method on the Marmot dataset [1] as well. This dataset is190

constructed by extracting PDF documents from CiteSeerX. The dataset contains formula191

regions for both isolated and embedded formulas in document images. There are 400192

document pages retrieved from 194 PDF documents containing 1575 isolated and 7907193

embedded formulas. The frequency of isolated and embedded formulas on each sample194

make this a challenging dataset. For each image, the ground truth is stored in a separate195

XML file wheres the bounding box of each formula is stored in the hexadecimal numbers.196
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For straight comparisons with previous works [11,47], we used 330 images for training197

and 70 images for testing.198

5. Result and Discussion199

We use two datasets ICDAR-2017 POD [35] and Marmot [1] to report the results.200

This section discusses the qualitative and quantitative results of the proposed approach201

for both of the datasets mentioned above. Therefore, we will examine both the positive202

and the negative examples. Moreover, we compare our results with the current state-of-203

the-art methods.204

5.1. ICDAR-17205

We use the corrected version of this dataset [13]. Thus, we only compare ourselves206

with the methods using the same dataset version. We perform the evaluation based207

on the same protocol as discussed ICDAR-2017 POD [35]. We start the evaluations by208

computing the test set’s true positives, false positives, and false negatives. Then, we209

translate these raw values into precision, recall and F1-Score as it is illustrated in the210

previous methods [13,39]. Moreover, we compute mean average precision (mAP) at the211

same set. Besides these metrics, we also present report IoU at the threshold levels 0.6212

and 0.8 as suggested in the competition.213

We report the results in Table 1 depicts the results of our approach. It is important214

to mention that for these results, no pre-processing is used. We achieve a precision of ,215

recall of and f1-score of , and mAP of for the threshold value of 0.6. We achieve better216

results than the state-of-the-art and the overall achieved accuracy is 96%.217

However, the proposed approach achieves much better results in comparison with218

state-of-the-art methods when the IoU threshold is set to 0.8. We achieve a precision of219

0.924, recall of 0.926 and f1-score of 0.925, and mAP 0.96 of for the threshold value of220

0.8. We achieve better results than the state-of-the-art. Following the protocol devised221

by Hashmi et al. [15] we also evaluate the performance on threshold levels of 0.5 and 1.0.222

Some of the qualitative results of the proposed approach are illustrated in Figures 6 and223

7. Whereas, Figure 8 depicts f1-score for all of the above mentioned threshold.224

Comparison with State-of-the-art Methods225

As reported in Table 1, the proposed approach outperforms the state-of-the-art226

methods [15]. We obtain an f1-score of 0.975, resulting in a relative error improvement227

of 8.5% for IoU of 0.6. However, when it comes to more strict threshold that is 0.8, the228

relative error rate is much decreased. We acheive an f1 score of 0.96 with that results in229

relative error reduction of 13%.230

5.2. Marmot231

As per the convention we followed for ICDAR-2017 POD dataset, we follow the232

same protocol as the previous approaches for evaluating the Marmot dataset. It enables233

us to compare our results directly with the other approaches. It is essential to mention234

that we detect the isolated and the embedded formulas separately. We outline the235

quantitative results of our approach in the Table 2. We compute the accuracy of both236

complete and partial detections. The proposed approach achieves the correct detection237

accuracy of 93.5%. For embedded formulas, the proposed approach obtains the correct238

detection accuracy of 82.1%. We evaluate the performance over a range of IoU threshold,239

starting from 0.5 to 1.0 as highlighted in Figure 9. As far as the qualitative performance is240

concerned, the Figures 10, 11, and 12 depicts the performance of the proposed approach.241

Comparison with State-of-the-Art Methods242

The comparison of our results with earlier approaches on the Marmot dataset is243

depicted in Table 2. We outperform the current state-of-the-art with a good margin.244

For embedded formula, we achieve an accuracy of 82.1%, thereby reducing the relative245
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(a) True positives on a two-column document image. (b) True positives on a single column document image.
Figure 6. Isolated Formula detection results on the ICDAR-2017-POD dataset. The green colour depicts the ground truth, while red
denotes predictions. Figures 6a and 6b exhibit instances of true positives.

(a) True positives and a false positive. (b) False positives and a false negative.
Figure 7. Instances of faulty predictions on the ICDAR-2017-POD dataset. The green colour depicts the ground truth, while red
denotes the predicted bounding boxes. Figure 7a contains a single false positive, while Figure 7b illustrates a single false negative.
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Figure 8. F1-score of our method on ICDAR 17 POD Dataset on IoU ranging from 0.5 - 1.0.

(a) Isolated formula detection. (b) Embedded formula detection.
Figure 9. Illustrating the decline of detection accuracy on increasing IoU threshold from 0.5 to 1.0. Figure 9a highlights accuracy on
isolated formulas, whereas Figure 9b shows an accuracy on embedded formulas.
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(a) Correct detections.

(b) Partial and missed detections.

Figure 10. Qualitative results on the Marmot dataset. The greens represents the correct detections, red and blue highlight incorrect and
missed detection, respectively.
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Table 1. Comparison with existing state-of-the-art methods on the ICDAR-2017 POD dataset.

ICDAR-2017 POD

Method IoU = 0.6 IoU = 0.8
Precision Recall F1-Score AP Precision Recall F1-Score AP

NLPR-PAL [35] 0.901 0.929 0.915 0.839 0.888 0.916 0.902 0.816

Li et al. [39] 0.935 0.331 0.489 0.312 0.877 0.310 0.459 0.274

Fi-Fo Detector
Non Deformable [13] 0.910 0.927 0.918 0.953 0.860 0.877 0.868 0.928

Fi-Fo Detector
Deformable [13] 0.957 0.952 0.954 0.949 0.913 0.908 0.910 0.898

Hashmi et al. [15] 0.954 0.952 0.953 0.970 0.918 0.916 0.917 0.954

Our Method 0.961 0.954 0.957 0.975 0.924 0.926 0.925 0.960

Figure 11. Visualization of correct detections of embedded formulas. For better under-
standing, a fragment of document images is taken from the marmot dataset. The green
shows ground truth, whereas red displays the predictions.
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Figure 12. Partial and missed detections in case of embedded formulas on the Marmot
dataset. Green highlights correct predictions, partial and missed detections are depicted
with red and blue, respectively.

error by 4.3%. Furthermore, the rate of partial detection is improved from 4.86% [15]246

to 5.28% using the proposed method. This, in turn, increases the overall accuracy from247

97.86% [15] to 98.78%. Thus we achieve an overall error reduction of 43% for isolated248

formula. In the case of embedded formulas, we achieve an accuracy of 82.1%. However,249

the partial detection rate improves from 6.77% [15] to 8.11%. As a result, we achieve250

an overall accuracy of 90.21%. This resulted in the overall reduction of the error rate of251

17.9%. These results further highlight the supremacy of the proposed approach.252

Table 2. Quantitative analysis between our method and previous state-of-the-art ap-
proaches on the Marmot dataset.

Method Formula Correct (%) Partial (%) Total

Chu et al. [48] Isolated 26.87 44.87 71.76
Embedded 1.74 28.87 30.61

Phong et al. [47] Isolated 50.37 39.14 91.18
Embedded 22.9 58.45 81.35

Phong et al. [11] Isolated 93 - -
Embedded 73 - -

Hashmi et al. [15] Isolated 93 4.86 97.86
Embedded 81.3 6.77 88.07

Our method Isolated 93.5 5.28 98.78
Embedded 82.1 8.11 90.21

6. Conclusion and Future Work253

We proposed an end-to-end trainable network to localize embedded and isolated254

formulas in the scanned document images. We replace classical convolutions with255

deformable convolutions. Furthermore, we used the backbone ResNext101. Both of256
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these modifications result in the superior performance of the network. We evaluate257

the proposed method on ICDAR2017-POD and Marmot datasets. We report both the258

qualitative and quantitative results for the proposed approach. We observe a significant259

improvement in the relative error rate both for the embedded and the isolated formulas,260

thereby validating the superiority of the proposed approach. Furthermore, we observe261

that the proposed approach performs significantly better with a higher threshold than262

the current state of the art.263

One future direction to extend the work is the introduction of a rather powerful264

backbone. We expect a performance gain if the backbone is more profound and can265

provide refined proposals. Furthermore, other graphical objects such as charts, figures,266

and tables [49] can benefit from the proposed work.267
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