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Abstract. The main goal of this paper is to show that Bayesian optimization could be regarded as a 

general framework for the data driven modelling and solution of problems arising in water distribution 

systems. Hydraulic simulation, both scenario based, and Monte Carlo is a key tool in modelling in water 

distribution systems. The related optimization problems fall in a simulation/optimization framework in 

which objectives and constraints are often black-box. Bayesian Optimization (BO) is characterized by 

a surrogate model, usually a Gaussian process, but also a random forest and increasingly neural 

networks and an acquisition function which drives the search for new evaluation points. These 

modelling options make BO nonparametric, robust, flexible and sample efficient particularly suitable 

for simulation/optimization problems. A defining characteristic of BO is its versatility and flexibility, 

given for instance by different probabilistic models, in particular different kernels, different acquisition 

functions. These characteristics of the Bayesian optimization approach are exemplified by the two 

problems: cost/energy optimization in pump scheduling and optimal sensor placement for early 

detection on contaminant intrusion. Different surrogate models have been used both in explicit and 

implicit control schemes. Showing that BO can drive the process of learning control rules directly from 

operational data. BO can also be extended to multi-objective optimization. Two algorithms have been 

proposed for multi-objective detection problem using two different acquisition functions. 

Keyword: Pump scheduling optimization; Bayesian optimization; Optimal sensor placement; 

Wasserstein distance; Robustness. 

1 Introduction 

Optimization problems arising in environmental modelling are usually very challenging. One reason is the presence of 

several objectives usually conflicting: instances are the financial cost and resilience in designing a water distribution 

network, and in general the issue of sustainability. Optimizing the detection time, cost and probability of detection in 

designing a network to monitor water quality is another instance of multi-objective optimization. Multi-objective (MO) 

problems do not have typically a single best solution: the goal is to identify the set of Pareto optimal solutions such that 

any improvement in one objective means deteriorating another. Another reason is that we are dealing with simulation-

optimization problems in a reference scenario where the objectives are expensive-to-evaluate black-box functions with 

no known analytical expression and no observable gradients. Another challenge is that the system performance has to be 

optimized in different conditions which adds one more element of computational complexity. 

The reference problem is: 

min𝐻(𝑥) = (𝐹1(𝑥), … , 𝐹𝑚(𝑥)) (1) 

𝑥 ∈ 𝑋 ⊂ ℝ𝑑 where 

𝐹𝑖(𝑥) = ∫𝑓𝑖(𝑥, 𝑤) 𝑝(𝑤)𝑑𝑤  in the continuous case (2) 

𝐹𝑖(𝑥) = ∑ 𝑓𝑖(𝑥, 𝑤)

𝑛

𝑤=1

in the discrete case (3) 

Here X is a simple compact (e.g., hyperrectangle, simplex or a finite collection of points, w is a vector belonging to a set 

W, p is finite, has a known analytical form and is inexpensive to evaluate. About 𝑓𝑖(𝑥, 𝑤) in Equation (2) and (3) we have 

no information as linearity or convexity, their evaluation is expensive and does not provide derivatives making (2) and 

(3) black-box global optimization problems.  

Contexts in which problems (2) and (3) naturally arise are: 

• Optimizing average case performance of a system where 𝑓𝑖(𝑥, 𝑤) is the performance of design 𝑥 under the 

environmental condition 𝑤 and 𝑝(𝑤) represents the probability (or the fraction of time) that condition 𝑤 occurs. 
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This is the case of optimal sensor placement in a monitoring network where 𝑥 is the placement of a number of sensors 

over the nodes, the environmental condition 𝑤 is the injection of a contaminant at a node in a Water Distribution 

Network and 𝑓𝑖(𝑥, 𝑤) can be the detection time of the contamination event or of the fake new and 𝐹𝑖 is the detection 

time averaged over all contamination events. 

• Optimizing the expected value of systems modelled by a discrete event simulation 𝑓(𝑥, 𝑤) where 𝑤 is a random 

variable. In this case 𝐹𝑖(𝑥, 𝑤) = 𝔼(𝐹𝑖(𝑥, 𝑤
∗|) and the objective becomes either (2), if 𝑤 is discrete, or (3) if 𝑤 is 

continuous and we can obtain noisy evaluations of 𝑓𝑖(𝑥, 𝑤) by simulating 𝑓𝑖(𝑥, 𝑤
∗) where 𝑤∗ is drawn from its 

conditional distribution given 𝑤. 

This is the case for instance in the design of a water distribution and transmission systems to maximize several 

performance metrics subject to stochastic patterns of water availability and demands. 

Problem 2 arises in hyperparameter optimization in a machine learning algorithm. In this application 𝑓𝑖(𝑥,𝑤) is the i-

metric (predictive accuracy, fairness, explainability) on fold w using hyperparameter x and our goal is to minimize 

∑𝑓𝑖(𝑥, 𝑤). In this paper we shall not consider this problem, but it has some water specific applications for instance water 

demand forecasting (Candelieri, 2017; Shabani et al., 2018) 

Even if the basic models (2) and (3) share some properties the computational strategies are different and, in this paper, 

we shall focus on the discrete case. The resulting combinatorial problems typically are NP-hard and cannot be solved in 

reasonable computing time. Approximation methods have been found to be very efficient in finding near optimal solutions 

to a wide range of problems settings. In the following the main types of methods are described. 

Metaheuristics in particular those which incorporate randomization and simulation and can be characterised as 

simheuristics (Calvet et al., 2016).  

Multiobjective evolutionary algorithms (MOEA) which offer the advantages of simplicity, applicability, versatility, and 

robustness MOEAs can be naturally extended to multiobjective optimization either using a strategy of non-dominated 

sorting (NSGA) (Deb et al., 2000) which maintains an approximation of the Pareto set or a decomposition / strategy. 

(Zhang et al., 2009) which is a parametrized aggregation of the objective functions whose optimizers for various parameter 

values, span the Pareto set. MOEAs usually require a large number of function evaluations which might make them 

unfeasible for very expensive functions. In order to improve the sample efficiency many recent versions of EA incorporate 

a surrogate model: GP is often chosen as a surrogate since the seminal paper (Zhang et al., 2009) and more recently in 

(Liu et al., 2021). 

Bayesian optimization (BO) methods (Archetti, F., & Candelieri, A. (2019). Are based on a surrogate model and offer 

unparalleled sample efficiency at the cost of a significant computational overhead which makes them the methods of 

choice for very expensive function evaluations. BO methods are usually based on GPs whose kernel allows principled 

uncertainty evaluation, but random forests are also used and morel recently neural networks. Multiobjective Bayesian 

Optimization (MOBO) has been recently the subject of intense research. (Rahat et al., 2017) analyses the 2 main strategies 

for generalizing the surrogate model to the multi-objective context. The first is termed multi-surrogate in which each 

objective function is modelled using a GP and the combined models induce a multivariate predictive distribution from 

which an acquisition function can be derived (Belakaria et al., 2020). The other approach, mono-surrogate, aggregates 

the objectives functions to generate a scalarized model. Both modelling options can be used to derive the acquisition 

functions to the multi-objective case (Emmerich et al., 2016) and more recently have been given to multi-objective EI 

(Zhan et al., 2017) and LCB (Sun et al., 2021). An analysis of MOBO will be given in 2.3. 

The main aim of this paper is to show that the flexibility of BO makes it an effective tool to solve a number of optimization 

problems in WDNs: this feature is exemplified by two basic problems in WSNs.  

The first topic addressed is the energy optimization of pump scheduling.BO can be used to model explicit control, where 

the decision variables are the status of the pumps, and implicit control where the optimization variables are the trigger 

thresholds in learning the pressure based control rules. The Bayesian approach can also be used when only SCADA data 

are available. Also the problem of black-box constraints can be handled in Bayesian optimization. 

The second topic specifically addressed is the design of a sensor network for the detection of intrusion of contaminants 

in a WDN: it is shown that the optimal sensor placement in presence of different contamination scenarios can be 

formulated as a sample average approximation (SAA) multi-objective optimization problem and shown to be amenable 

to BO with a specific acquisition functions. based on hypervolume improvement. This is at the authors’ knowledge the 

first case in which Hypervolume improvement has been used in the optimal sensor problem. The focus of this paper is 

not on the computational performance per se but rather on the analysis of a benchmark problem. 
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1.1 Related works 

The literature on energy optimization of pump scheduling is extremely wide. 

A recent survey (Mala-Jetmarova et al., 2017) under the evocative title of “Lost in optimisation of water distribution 

systems?” presents a wide ranging literature review. MOEAs algorithms have been widely used since the seminal paper 

of (Van Zyl et al., 2004). Castro-Gama et al. (2015) gives an application of NSGA-II for a large scale WDN. Bayesian 

optimization has been first considered in (Candelieri et al., 2018). The BO approach has been subsequently applied in 

(Candelieri et al., 2021), towards data efficient learning of implicit control strategies in Water Distribution Networks. A 

further step has been outlined in (Candelieri et al., 2021-April) where active learning of optimal controls for pump 

scheduling optimization is performed based only on SCADA data. The issue of crash constraints is particularly relevant 

in the optimization of WDS: the EPANET simulator in case of violation of some constraints does not yield any results. A 

specific method for this problem is proposed in (Tsai et al., 2018) where stochastic optimization for feasibility 

determination is applied to water pump operation in water distribution network. This approach has been generalized in 

(Candelieri, 2021) which addresses the issue in general terms modelling it as a classification/optimization problem. 

The literature on Optimal sensor placement is extremely wide. 

This is also a key problem in water research literature which has been studied in the last 2 decades following different 

approaches. Early contributions are (Guestrin et al., 2005) which models the optimal sensor placement using gaussian 

processes and (Ostfeld et al., 2008) which defined “The battle of the water sensor networks (BWSN)”. An early 

application of BO for sensor set selection is (Garnett et al., 2010) in which the metric to be optimized is predictive 

accuracy of the air temperature across the UK. The use of BO for contaminant source localization, given information at 

each monitoring wells has been proposed in (Pirot et al., 2019). A related management problem is ground water 

remediation in which the pumping rates of “pump and treat” wells are fine-tuned using Bayesian optimization 

(Pourmohamad and Lee, 2021). Recent contributions to the optimal sensor placement are using several methodological 

approaches. He et al. (2018) proposes a multi-objective optimization method for water quality sensor placement allowing 

contamination prob-ability variations. Naserizade et al. (2018) proposes a risk-based multi-objective model for optimal 

placement of sensors. Zhang et al. (2020) proposes to assess the quality of a sensor placement strategies by a resilience 

index with respect to sensor failures. A new approach to optimal sensor has been proposed in (Ponti et al., 2021). The 

novelty of this approach is that a sensor placement is represented as a histogram which captures better than the sample 

average of all the information gathered during the simulation. The Wasserstein (WST) distance between histograms 

enables the design of a new algorithm called MOEA/WST which has shown a remarkable performance in solving the 

optimal sensor placement problem. 

1.2 Our Contribution 

• An analysis of the constraints in pump scheduling optimization focusing on the black-box case also when the 

objective function is undefined outside the feasible region. 

• Hydraulic simulation can be embedded in a BO framework exploiting its sample efficiency to deal with expensive 

function evaluation. 

• BO can drive the learning process of the pressure control rules in implicit models of pump scheduling 

• The sample efficiency is carried over the multi-objective case where an hyper-volume based acquisition function is 

shown to outperform the approach based on Chebyshev scalarization and expected improvement. 

1.3 Organization of the paper 

Sect. 2 outlines the basic notion of BO explaining the probabilistic model, the acquisition function and the basis of multi-

objective optimization. 

Sect. 3 outlines the features of BoTorch a Bayesian optimization library which will be used in the solution of the optimal 

sensor placement. 

Sect. 4 contains the data and software resources used in this paper. 

Sect. 5 contains two formulation of the problem of energy/cost optimization of pump scheduling 3 and the computational 

results on two networks. 

Sect. 6 gives the multi-objective formulation of the optimal sensor placement problem. The two BO algorithms developed 

and the computational results.  

Sect. 7 is devoted to conclusions and perspectives. 
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2 Bayesian Optimization 

This section contains a basic description of the key components of BO for the single objective case (2.1 and 2.2) and the 

outline of its generalization to the multi-objective problem (2.3). 

 

Figure 1. The general scheme of a problem underlying BO. 

Although BO can work for any kind of optimization problems, its substantial computational overhead has been making 

it a de-facto standard in black-box situations (Figure 1) where the objective functions are expensive to evaluate, the 

analytical form of objectives and constraints and derivatives is available, and we can evaluate f at a sequence of points 

with the aim of determining a near optimal approximation after a small number of evaluations. which can be also noisy.  

Bayesian Optimization is a statistically principled approach to adaptively and sequentially select these query points (or 

batches of query points) that enables an effective trade-off between evaluating f in regions of good observed performance 

and regions of high uncertainty. 

 

Figure 2. The general scheme of a BO framework. 

In order to be sample efficient, that is optimize 𝑓 within a small number of evaluations, we need a way of extrapolating 

our belief about what 𝑓 looks like at points not yet evaluated. In Bayesian Optimization, (Figure 2) this is enabled by a 

surrogate model which should also be able to quantify the uncertainty of its predictions in form of a posterior distribution 

over function values 𝑓(𝑥) at points 𝑥. Posteriors represent the belief a model has about the function values about points 

not yet observed. Therefore, the posterior is the distribution over the outputs conditioned on the data observed so far. 

When using the Gaussian process model the posterior is given explicitly as a multivariate distribution. 

2.1 Probabilistic model 

A GP is a random distribution over functions 𝑓: 𝛺 ⊂ ℜ𝑑 → ℜ denoted with 𝑓(𝑥)~𝐺𝑃(𝜇(𝑥), 𝑘(𝑥, 𝑥′)) where 𝜇(𝑥) =

𝔼(𝑓(𝑥)): Ω → ℜ is the mean function of the GP and 𝑘(𝑥, 𝑥’): Ω × Ω → ℜ is the kernel or covariance function. One way 

to interpret a GP is as a collection of correlated random variables, any finite number of which have a joint Gaussian 

distribution, so 𝑓(𝑥) can be considered as a sample drawn from a multivariate normal distribution (Williams and 

Rasmussen 2006). GPs provide probabilistic predictions by conditioning 𝜇(𝑥) and 𝜎2(𝑥) on a set of available 

data/observations. 

Let denote with X1:𝑛 = {𝑥
(𝑖)}

𝑖=1,…,𝑛
 a set of 𝑛 locations in Ω ⊂ ℜ𝑑 and with 𝑦1:𝑛 = {𝑓(𝑥(𝑖)) + 𝜀}

𝑖=1,..,𝑛
 the associated 

function values, possibly noisy with 𝜀 a zero-mean Gaussian noise 𝜀~𝒩(0, 𝜆2). Then 𝜇(𝑥) and 𝜎2(𝑥) are the GP’s 

posterior predictive mean and standard deviation, conditioned on X1:𝑛 and 𝑦1:𝑛 according to the following equations: 

𝜇(𝑥) = k(𝑥, X1:𝑛) [K + 𝜆
2𝐼]−1 𝑦1:𝑛 (4) 

𝜎2(𝑥) = 𝑘(𝑥, 𝑥) − k(𝑥, X1:𝑛) [K + 𝜆
2𝐼]−1 k(X1:𝑛, 𝑥) (5) 

where k(𝑥, X1:𝑛) = {𝑘(𝑥, 𝑥
(𝑖))}

𝑖=1,…,𝑛
 and K ∈ ℜ𝑛×𝑛 with entries K𝑖𝑗 = 𝑘(𝑥

(𝑖), 𝑥(𝑗)). 

The choice of the kernel establishes prior assumptions over the structural properties of the underlying (aka latent) function 

𝑓(𝑥), specifically its smoothness. Moreover, almost every kernel has its own hyperparameters to tune – usually via 
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Maximum Log-likelihood Estimation (MLE) or Maximum A Posteriori Probability (MAP) – for reducing the potential 

mismatches between prior smoothness assumptions and the observed data. Common kernels for GP regression – 

considered in this paper – are: 

• Squared Exponential: 𝑘𝑆𝐸(𝑥, 𝑥′) = 𝑒
− 
‖𝑥−𝑥′‖2

2ℓ2  

• Exponential: 𝑘𝐸𝑋𝑃(𝑥, 𝑥′) = 𝑒
− 
‖𝑥−𝑥′‖

ℓ  

• Power-exponential: 𝑘𝑃𝐸(𝑥, 𝑥′) = 𝑒− 
‖𝑥−𝑥′‖𝑝

ℓ𝑝  

• Matérn3/2: 𝑘𝑀3/2(𝑥, 𝑥′) = (1 +
√3 ‖𝑥−𝑥′‖

ℓ
) 𝑒− 

√3 ‖𝑥−𝑥′‖

ℓ   

• Matérn5/2: 𝑘𝑀5/2(𝑥, 𝑥′) = [1 +
√5 ‖𝑥−𝑥′‖

ℓ
+

5

3
(
 ‖𝑥−𝑥′‖

ℓ
)
2

] 𝑒− 
√5 ‖𝑥−𝑥′‖

ℓ  

2.2 Acquisition functions 

The acquisition function is the mechanism to implement the trade-off between exploration and exploitation in the BO. In 

particular, any acquisition function aims to guide the search of the optimum towards points with potential high values of 

objective function either because the prediction of 𝑓(𝑥), based on 𝜇(𝑥) is high or the uncertainty is high (or both). While 

exploiting means to consider the area providing more chance to improve the current solution (with respect to the current 

surrogate model), exploring means acquiring new knowledge moving towards less explored regions of the search space. 

The literature on acquisition functions is very large: the reader is referred to (Archetti and Candelieri, 2019; Frazier, 

2018). 

The expected Improvement (EI)  measures the expectation of the improvement on 𝑓(𝑥) with respect to the predictive 

distribution of the surrogate model. The parameter ξ is used to handle the trade-off between exploitation and exploration. 

When exploring, points associated to high uncertainty of the surrogate model are chosen, while when exploiting, points 

associated to high value of the mean of the surrogate model are selected. ξ should be adjusted dynamically to decrease as 

the optimization moves along. 

𝐸𝐼(𝑥) =  {
(𝜇(𝑥) − 𝑓(𝑥+) − 𝜉)ϕ(𝑍) + 𝜎(𝑥)𝜙(𝑍) 𝑖𝑓 𝜎(𝑥) > 0

0 𝑖𝑓 𝜎(𝑥) = 0
(6) 

Where 𝜙 and Φ are the probability and the cumulative distribution functions, respectively, and 

𝑍 =  {

𝜇(𝑥) − 𝑓(𝑥+) − 𝜉

𝜎(𝑥)
 𝑖𝑓 𝜎(𝑥) > 0

0 𝑖𝑓 𝜎(𝑥) = 0

(7) 

The other acquisition function selects the next point to evaluate according to the Confidence Bound concept. Lower 

Confidence Bound – LCB – and Upper Confidence Bound – UCB – in the minimization and maximization case, 

respectively. For the case of minimization, LCB is given by: 

LCB(𝑥) =  𝜇(𝑥) − k𝜎(𝑥) (8) 

where k ≥ 0 is the parameter to manage the exploration/exploitation trade-off (k = 0 means pure exploitation). 

2.3 Multi-Objective Bayesian Optimization 

As far as the surrogate model is concerned there are two main strategies for generalizing BO to the multi-objective context. 

(Rahat et al., 2017) The first is termed multi-surrogate in which each objective function is modelled using a GP and the 

combination of these models induces a multivariate predictive distribution from which an acquisition function can be 

derived. The second, mono-surrogate, aggregates the objectives into a scalarized model which is used to compute the 

acquisition function. The weight of the 𝑚 objectives are sampled from a uniform distribution to construct a single 

objective function whose optimizers can be shown to span, under wide conditions, the whole Pareto set (Paria et al., 

2020). As far as the acquisition functions are concerned a survey of multi-objective versions is given in (Emmerich et al., 

2016). Specific versions have been more recently given to multi-objective expected improvement (Zhan et al., 2017) and 

lower confidence bound (Sun et al., 2021).  

The hypervolume is an indicator of the solution quality that measures the objective space between a non-dominated set 

and a predefined reference vector. Figure 3 displays the mechanism of hypervolume improvement in the case of 

max𝐹(𝑥) = (𝑓(1)(𝑥), 𝑓(2)(𝑥)). Figure 3a displays 4 points 𝑙𝑖 with 𝑖 = 1,… ,4 non dominated in the objective space (the 
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dominated space is in red), a new point 𝑥1 dominates the previous ls, but 𝑙1 bringing about an improvement of the dominate 

hypervolume (in blue, Figure 3b), x2 dominates 𝑙1,𝑙2,𝑙3 and is not dominated by 𝑙4 and brings about a further improvement 

(in green, Figure 3c). 

 

Figure 3. Hypervolume improvement. 

Indeed, it can be shown that the maximization of the dominated hypervolume is equivalent to locating the optimal Pareto 

set and gives anyway approximate Pareto fronts with excellent coverage (Couckuyt et al., 2014). 

As such the Expected Hypervolume Improvement (EHVI) is also a natural acquisition function. A drawback of the 

hypervolume is its computational cost, an even more critical factor if it is to be repeatedly optimized as in acquisition 

functions. A number of computational improvements focused on efficient methods for approximating EHVI have been 

suggested (Yang et al., 2019; Balandat et al., 2020; Golovin and Zhang 2020) but its computation is still very expensive. 

Very recently the issue of MOBO has been analyzed also in connection with multi-fidelity and multiple information 

sources (Belakaria et al., 2020; Khatamsaz et al., 2021). 

 The situation is further complicated when constraints are also black-box or even undefined outside the feasible set. In 

this case MOEA algorithm are not easily made suitable for this kind of problem. A general solution is proposed in 

(Antonio, 2021). 

2.4 BoTorch 

Two libraries are used in this paper: mlrMBO for Pump Scheduling Optimization (Sect. 5) and Ax-BoTorch (Bakshy, 

2018; Balandat, 2020) for the optimal sensor placement (Sect. 6) 

BoTorch is a library for Bayesian Optimization built on top of PyTorch and is part of the PyTorch ecosystem. In this 

section we present a short analysis of its main features. The reader is referred to (Balandat et al., 2020) for a detailed 

exposition. BoTorch is particularly suitable to exploit the defining characteristic of BO as its versatility and flexibility, 

given by different probabilistic models, in particular different kernels and different acquisition functions. BoTorch 

supports a wider set of kernels than the basic set in Sect. 2.1 and therefore a wider set of surrogate models. Beyond the 

acquisition functions EI and L/U confidence bounds in Sect. 2.2, BoTorch supports knowledge gradient and max volume 

entropy search. The knowledge gradient is also available in its multi-fidelity version. BoTorch allows novel approaches 

that do not admit analytic solutions, including batch acquisition functions and multi-output models with multiple 

correlated outcomes. In particular BoTorch utilizes Monte-Carlo methods in the computation of acquisition functions, 

lifting the restrictive assumptions about the underlying model. It also supports the optimization of acquisition functions 

over any kind of posterior distribution, as long as it can be sampled from. BoTorch supports batch versions of EI and 

UCB: in batch BO, 𝑞 design points are selected for parallel evaluation. BoTorch supports also black-box constraints using 

variants of the expected improvement in which the improvement of the objective is weighted by the probability of 

feasibility (Letham et al., 2019). BoTorch supports the computation of the Pareto front and of the Expected hypervolume 

improvement (EHVI) as acquisition function computing its gradients by auto-differentiation. 

3 Data and software resources 

3.1 Data resources 

Hanoi is a benchmark used in the literature whose associated graph consists in 32 nodes and 34 edges. 
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Figure 4. The graph of Abbiategrasso network. 

Abbiategrasso (Figure 4) refers to a pressure management zone in Milan (namely, Abbiategrasso) with an associated 

graph consisting of 1213 nodes and 1391 edges, analyzed in the European project Icewater (Candelieri et al., 2015). 

 

Figure 5. The graph of BCM (Bresso Cormano Cusano-Milanino) network. 

The case study used for learning the pressure control rules is a WDN in the larger- Milano, Italy, which supplies water to 

three municipalities: Bresso (around 20000 inhabitants), Cormano (around 26000 inhabitants) and Cusano-Milanino 

(around 19000 inhabitants). The network consists of 7418 pipes, 8493 junctions, 14 reservoirs, 1381 valves, 9 pumping 

stations with 14 pumps overall. Piezometric level of the WDN ranges in 136 to 174 meters (average: 148 meter). A 

schematic representation of the WDN is reported in Figure 5. 

3.2 Software resources 

In order to implement the BO framework proposed for solving the pump scheduling optimization problem, the R package 

named “mlrMBO” has been adopted: it is a flexible and comprehensive toolbox for model-based optimization (MBO). 

This toolbox has been designed for both single- and multi-objective optimization with mixed continuous, categorical and 

conditional decision variables, and infill criteria and infill optimizers are easily exchangeable. 

BoTorch is a library for Bayesian Optimization built on top of PyTorch and is part of the PyTorch ecosystem. BoTorch 

is supported by an extensive documentation. BoTorch is best used in tandem with Ax, Facebook's open-source adaptive 

experimentation platform, which provides an easy-to-use interface for defining, managing, and running sequential 

experiments. BoTorch provides a modular and easily extensible interface for composing Bayesian optimization 

primitives, including probabilistic models, acquisition functions, and optimizers. BoTorch organizes the computations in 

batches of size q. BoTorch provides first-class support for state-of-the art probabilistic models in GPyTorch, a library for 

efficient and scalable GPs implemented in PyTorch 

As hydraulic simulation software we have used WINTR, a recent Python-based open-source based on EPANET 2.0, the 

most widely adopted hydraulic simulation software for pressurized WDNs. 
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4 Pump scheduling optimization 

Two approaches are possible in optimal pump management: explicit and implicit control. The first assumes that decision 

variables are pump statuses/speeds to be set up at prefixed time, and it is usually also known as Pump Scheduling 

Optimization (PSO). Thus, the problem is to efficiently search among all the possible schedules (i.e., configurations of 

the decision variables) to optimize the objective function – typically minimization of the energy-related costs – while 

satisfying hydraulic feasibility. A plethora of methods have been proposed such as mathematical programming, meta-

heuristics, evolutionary and nature-inspired algorithms. However, explicit control typically implies many decision 

variables for real-world water distribution networks, increasing with the number of pumps and the number of time 

intervals for actuating the control. The resulting high dimensionality of the search space consequently im-plies to evaluate 

a huge number of possible solutions (i.e., schedules), each one requiring performing a hydraulic simulation run. 

On the contrary, implicit control aims at controlling pump status/speeds depending on some control rules related, for 

instance, to pressure into the network: pump is activated if pressure (at specific locations) is lower than a minimum 

threshold, or it is deactivated if pressure exceeds a maximum threshold, otherwise, status/speed of the pump is not 

modified. These thresholds become the decision variables of the optimal implicit control problem. Compared to explicit 

control, implicit control approaches allow to significantly reduce the number of decision variables, at the cost of making 

more complex the search space, due to the introduction of further constraints and conditions among decision variables 

(e.g., the pressure value implying to switching a pump off cannot be lower than the pressure value implying to switching 

the same pump on). 

4.1 Pump Scheduling Optimization through Bayesian Optimization 

The reference paper is (Candelieri et al., 2018) which proposes a BO approach for the PSO problem by also comparing 

two different probabilistic surrogate models to approximate the black-box objective function, that are a Gaussian Process 

(GP) regression and a Random Forest (RF). 

The approach considers a simulation-optimization setting, where a simulation run of the software hydraulic model of the 

WDN, given a certain pump schedule, provides the associated value of the objective function (i.e., energy cost to be 

minimized) or its not-computability, meaning that some hydraulic constraints has been violated leading to the 

impossibility to compute the objective function associated to a hydraulic feasible schedule. More precisely, hydraulic 

feasibility refers to “basic” computational constraints (e.g., the impossibility to have a negative pressure at some location, 

lack of convergence in the simulation, impossibility to satisfy water demand, etc.) as well as operational constraints which 

can be set by the user, such as specific min-max operating ranges for pressure at each node. Finally, feasibility also 

depends on the specific simulated scenario, such as the water demand patterns the user associates to each node according 

to historical data. 

Although “penalizing” infeasible (aka not-computable) schedule proved to be a sufficiently workaround (Candelieri et 

al., 2018), successively the estimation of the unknown feasibility region has been successively addressed in (Tsai et al., 

2018) in the case of PSO, and in (Candelieri, 2021) in the case of a generic problem with a potentially not-computable 

black-box objective function. 

EPANET 2.0 is the most well-known and largely adopted open-source software for simulating WDN. More recently, 

WNTR has been proposed: it is coded in Python and provides a larger set of functionalities than EPANET, especially for 

structural and resilience analysis of a WDN. 

4.2 Learning optimal control rules as a black-box optimization problem 

Implicit control has been less explored and when combined with BO it can successfully unlock data efficiency in learning 

optimal control strategies, as empirically proved in (Candelieri et al., 2021). 

The search space for the implicit control has a lower dimensionality than in the explicit case. For instance, if one has to 

control n pumps, by deciding to simply switch them on/off on an hourly basis over H hours, the entire search space for 

finding an optimal explicit control (i.e., optimal pump schedule) consists of 2nH possible pump schedules, within a H-

dimensional space. In contrast, the search space associated to implicit control, for instance consisting of min-max ranges 

on pumps’ pressures, has just 2n dimensions. On the other hand, the structure of the associated search space is typically 

more complex, due to the constraints/conditions among values of the decision variables. 

In implicit control, the pumps are controlled depending on pressure at some locations, usually their associated pressures. 

For the sake of simplicity, one can consider the easiest case, where the control rule associated to a pump is based on two 
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different thresholds, τ1 and τ2, all day long, respectively the lowest threshold implying to switch the pump on and the 

highest threshold implying to switch the pump off: 

IF (p<τ1 AND S=OFF) THEN S  ON 

ELSE  

IF (p>τ2 AND S=ON) THEN S  OFF 

where p is the current pressure value at the pump and S is the status of the pump (i.e., ON/OFF). 

Figure 6 shows an example of this simple control rule for a single pump. 

 

Figure 6. A schematic representation of and implicit pump control strategy based on min-max thresholds (red dotted lines) on the 

pressure value (in blue). 

Thus, τ1 and τ2 are the decision variables to be optimized in the implicit control case, with the aim to minimize the 

associated energy cost while constrained to the satisfaction of the water demand. 

Also in this case, the possibility to generate infeasible (aka not-computable) control strategies was taken into account, 

leading to a simulation-optimization problem having a black-box objective function and subject to unknown constraints. 

Computational results on a real-life WDN also showed that implicit control strategies learned through the proposed BO 

approach were not only optimal and efficient in terms on number of simulation runs required to identify them, but also 

“hydraulically” robust with respect to perturbations in the water demand. 

One further step has been taken in the paper “Active learning of pressure control rules of water distribution networks” 

EGU’21 in which it is shown that an accurate approximation of the outputs of the hydraulic simulation, like EPANET, 

can be obtained training a deep neural network on SCADA data. whose effectiveness and feasibility have been tested on 

a real-life mid-scale WDN. 

The main result is that the hydraulic simulation model can be “replaced” by a Deep Neural Network (DNN): the 

knowledge hidden in the data can be leveraged into a low cost source using SCADA data to train a DNN to predict the 

relevant outputs (i.e., energy and hydraulic feasibility) avoiding costs for the design, development, validation and 

execution of a “virtual twin” of the real-world water distribution network. 

Another result is that thresholds-based rules for implicit control can be learned through an active learning approaches 

well-suited for the implicit control setting: the lower dimensionality of the search space, compared to explicit control, 

substantially improves computational efficiency. 

5 Optimal sensor placement 

5.1 The basic model 

We consider a graph 𝐺 = (𝑉, 𝐸) We assume a set of possible locations for placing p sensors, that is 𝐿 ⊆ 𝑉. Thus, a sensor 

placement (SP) is a subset of sensor locations, with the subset’s size less or equal to 𝑝 depending on the available budget. 

An SP is represented by a binary vector 𝑠 ∈ {0,1}|𝐿| whose components are 𝑠𝑖 = 1 if a sensor is located at node 𝑖, 𝑠𝑖 = 0 

otherwise. Thus, an SP is given by the nonzero components of 𝑠. 

For a WDN the vertices in 𝑉 represent junctions, tanks, reservoirs or consumption points, and edges in 𝐸 represent pipes, 

pumps, and valves. 
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 Let 𝐴 ⊆ 𝑉 denote the set of contamination events 𝑎 ∈ 𝐴 which must be detected by a sensor placement 𝑠, and 𝑑𝑎𝑖  is the 

detection time of a sensor placed in node I for a contamination event in node a.  

A probability distribution is placed over possible contamination events associated to the nodes. In the computations we 

assume – as usual in the literature – a uniform distribution, but in general discrete distributions are also possible. In this 

paper we consider as objective functions the detection time and its standard deviation. 

We consider a general model of sensor placement,  

𝑃 =

{
  
 

  
 min 𝑓1(𝑠) = ∑𝛼𝑎 ∑ 𝑑𝑎𝑖𝑥𝑎𝑖

𝑖=1,..,|𝐿|𝑎∈𝐴

𝑠. 𝑡.

∑ 𝑠𝑖
𝑖=1,..,|𝐿|

≤ 𝑝

𝑠𝑖 ∈ {0,1}

(9) 

• 𝛼𝑎 is the probability for the contaminant to enter the network at node 𝑎. 

• 𝑥𝑎𝑖 = 1 if 𝑠𝑖 = 1, where 𝑖 is the first sensor detecting the contaminant injected at node 𝑎; 0 otherwise. 

In our study we assume that all the events have the same chance of happening, that is αa = 1 |A|⁄ , therefore f1(s) is:  

𝑓1(𝑠) =
1

|𝐴|
∑ �̂�𝑎
𝑎∈𝐴

(10) 

where �̂�𝑎 = ∑ 𝑑𝑎𝑖𝑥𝑎𝑖𝑖=1,..,|𝐿|  is the MDT of event 𝑎. 

𝑓1 is the average over the contamination events of the detection time for each event. For each event 𝑎 and sensor placement 

𝑠 the Minimum Detection Time is defined as 𝑀𝐷𝑇𝑎  = min
𝑖: 𝑠𝑖=1

𝑑𝑎𝑖 .  

with �̂�𝑎 the minimum time step at which concentration reaches or exceeds a given threshold 𝜏 for the event 𝑎. 

As a measure of risk, we consider 𝑓2 as the standard deviation of the sample average approximation of 𝑓1. 

𝑓2(𝑠) = 𝑆𝑇𝐷𝑓1(𝑠) = √
1

|𝐴|
∑(�̂�𝑎 − 𝑓1(𝑠))

2

𝑎∈𝐴

(11) 

5.2 Multi-Objective Bayesian Optimization for sensor placement 

Two Bayesian optimization algorithms A1 and A2 have been used in this paper for optimal sensor placement. 

 A1 is mono-surrogate based on Chebyshev scalarization of the objectives of 𝑓(1) and 𝑓(2). a GP of the aggregate function 

and the Expected Improvement (EI) as acquisition function. 

A2 is multi-surrogate based on GP models of the single objectives and the Expected Hypervolume Improvement as 

acquisition function).  

The authors have implemented them using software components from BoTorch. Both organize the computations in 

batches of size q=5.  

The “helper” function creates the outcomes required for the scalarized objective and applies the scalarization and the 

constraints. 

The helper function initializes A1 and A2 and returns the batch (𝑥1, 𝑥2, … , 𝑥𝑞) along with the observed values. In A1 each 

candidate is optimized in a sequential greedy fashion using a different random scalarization. 

The BO loop for a batch of size q iterates the following steps: 

• Given a surrogate choose a batch of 𝑞 points.  

• Observe 𝑓(𝑥) for each 𝑥. 

• Update the surrogate model. 

A1 can also be extended to the constrained case by weighting the EI by the probability of feasibility.  
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In A2 a list of acquisition functions are created each with different scalarization weights. This list generates one candidate 

for each acquisition and conditions the next candidate (and acquisition) on the previously selected candidates. 

5.3 Computational results 

The plot below (Figure 7) shows for Net 1 (left) and the Hanoi network (right) the difference of the hypervolume between 

the feasible true Pareto front and hypervolume of the observed Pareto front for algorithms A1 and A2. 

 

Figure 7. Difference in hypervolume between the optimal Pareto front and the Pareto front approximated by qParEgo (blue) and 

qEHVI (red) over the iteration. 

It is apparent that A2 relative performance improves with the size of the problem. 

An effective way to visualize the optimization process is to represent the observations by a color associated the iteration 

count of A1 and A2: it is apparent from Figure 8 that A2 (right plot) is much quicker than A1 (left plot) to identify the 

Pareto front. 

 

Figure 8. Hanoi network. True Pareto front in red. Lighter colours denote later iterations. 

6 Conclusions 

The main conclusion is that Bayesian Optimization offers a comprehensive framework for the solution of a wide range 

of problems both for the design and operation of water distribution networks and other environmental domains. The 

evaluation of the objective functions are largely based on the simulation of the underlying system in different contexts 

and can result in computationally expensive black-box problems. The probabilistic surrogate model enables a 

quantification of predictive uncertainty which is fed into an acquisition function which drives the selection of the next 

evaluation point. It is shown how this feature can be exploited in multi-objective problem incorporating in the acquisition 

function the concept of hypervolume improvement. Evolutionary algos are often used for these problems, also in the 

multi-objective case, but they are not nearly as sample efficient as BO, albeit their performance can be improved 

incorporating a surrogate model. The sample efficiency is BO is particularly important when the data and computational 

resources are severely constrained by the high computational cost of simulation experiments encompassing several 

different scenarios or Monte Carlo simulation. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 January 2022                   doi:10.20944/preprints202201.0047.v1

https://doi.org/10.20944/preprints202201.0047.v1


12 

 

BO libraries, as exemplified in the paper, allow a quick development of a first prototype requiring a negligible amount of 

coding and allowing both the data scientist and the domain expert to choose those components (in particular probabilistic 

models and acquisition functions) more befitting the target application and the available resources. 
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