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Abstract: Renovation, restoration, remodeling, refurbishment, and retrofitting of buildings often 
imply modifying the behavior of the structural system. Modification sometimes includes applying 
forces (i.e., concentrated loads) to beams that before were subjected to distributed loads only. For a 
reinforced concrete structure, the new condition causes a beam to bear a concentrated load with the 
crack pattern that was produced by the distributed loads that acted in the past. If the concentrated 
load is applied at or near the beam’s midspan, the new shear demand reaches the maximum around 
the midspan. But around the midspan, the cracks are vertical or quasi-vertical, and no inclined bar 
is present. So, the actual shear capacity around the midspan not only is low, but also can be sub-
stantially lower than the new demand. In order to bring the beam capacity up to the demand, fiber-
reinforced-polymer composites can be used. This paper presents a design method to increase the 
concentrated load-carrying capacity of reinforced concrete beams whose load distribution has to be 
changed from distributed to concentrated, and an analytical model to predict the concentrated load-
carrying capacity of a beam in the strengthened state. 

Keywords: : building remodeling; concentrated loads; FRP reinforcement; FRP strips; shear capac-
ity; vertical concrete cantilever 
 

1. Introduction 
There is a time of their service life at which any construction does not meet any longer 

the modern architectural demand. At that time, the construction may be subjected to ren-
ovation, restoration, remodeling, refurbishment or retrofitting, in order to meet the mod-
ern demand (apart from monumental buildings).  

Those activities may include placing new columns, walls, beams or trusses into the 
building. The new structural elements may be made supported by existing beams that 
before carried a structural floor or slab. Moreover, the new elements may be placed at, or 
near, the midspan of the existing beam. In doing so, a beam that was subjected to distrib-
uted loads will be subjected to a concentrated load applied around the midspan.  

If the beam is made of Reinforced Concrete (RC), the new loading condition is de-
manding even if the concentrated load does not exceed the resultant force of the previous 
distributed load. In fact, the loads that have acted on the beam since its construction 
caused concrete to crack and cracking is stabilized when the load distribution is changed. 
Ergo, the RC beam has to carry a concentrated load around the midspan with the crack 
pattern due to the distributed loads. That condition implies a weakness that often requires 
strengthening the beam. 

This paper is devoted to existing Reinforced Concrete (RC) beams whose applied 
load distribution is changed from distributed to concentrated and presents a design 
method to increase the concentrated load-carrying capacity, including the analytical 
model that predicts the increase. 
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2. Statement of the issue being addressed 
This paragraph is devoted to framing the topic this paper deals with and to present-

ing the study’s statement of purpose which all elements of the paper relate logically to. 

2.1. Starting knowledge 
A lot of research work has been accomplished since the end of the nineteenth century 

on the shear behavior of RC structures and outstanding papers are available in the litera-
ture. 

An essential advance in knowledge is the well-known analogy between the shear 
strength of a web-reinforced concrete beam and a flat truss, postulated by Ritter (1899) [1], 
disseminated by Mörsch in Europe (1902) [2-4], and introduced into the American litera-
ture by Withey (1907) [5]. 

Another significant advance in knowledge is the strut-and-tie modeling, which di-
vides a structure in B-regions (“B” standing for beam or Bernoulli) and D-regions (“D” 
standing for discontinuity or disturbed). The latter are in the vicinity of loads or geometric 
discontinuities, while the former are between the latter. Only the analysis and design of 
B-regions can proceed on a sectional basis for which plane sections remain plane while 
the analysis and design of D-regions must proceed on a regional basis. Some of the many 
references are [6-27]. 

Then, a lot of research activity has been devoted to studying the beam action and the 
arch action in the shear span. Some of the many references are [28-44]. 

2.2. Flat truss analogy: review 
The principal theoretical shear resisting system of a RC structure is an ideal parallel 

chord truss made of concrete and steel. The truss is composed of a top compression chord 
(the concrete from the neutral axis to the compression edge, together with the steel longi-
tudinal reinforcement included into that region), a bottom tension chord (the steel longi-
tudinal flexural reinforcement), vertical tension ties (closed steel stirrups that span from 
the top chord to the bottom chord, sometimes with the addition of bent-up longitudinal 
steel bars, and/or inclined steel bars), and 45° inclined compression struts (the concrete 
between the shear cracks). 

The joints of the members that compose the truss are assumed to be hinges. Accord-
ingly, that system is called ‘pin-joined truss’. The pin-joined truss is statically determinate 
and stable. Consequently, the axial force in the truss’s components can be calculated using 
the equilibrium only. 

The truss mechanism exists only after the formation of the shear cracks, which cause 
the diagonal tension stresses to disappear. 

2.3. Typical cracking pattern of existing RC beams 
This point reviews the cracking behavior of a simply-supported RC beam with web-

reinforcement, under uniform loading. The review includes some extensions to the dou-
bly-fixed RC beam [32, 37, 45-49]. 

A uniform load induces a two-dimensional state of stress in the beam. If the maxi-
mum principal stress exceeds the concrete tensile strength, it causes concrete to crack. 

At the midspan, the principal stresses are dictated by the bending moment only (this 
is also true for the doubly-fixed RC beam). Therefore, the principal stresses act on vertical 
planes and reach their maximum at the bottom of the cross-section. Thus, a crack at the 
midspan initiates at the bottom face of the beam and propagates upwards vertically, 
reaching the compression zone in the upper part of the cross-section (flexural crack). 

From the midspan to the supports the interaction between bending moment and 
shear force increases. However, cracks are still initiated by bending moment, unless the 
beam is particularly deep. Each of those cracks starts hence from the bottom face of the 
beam and propagates upwards. Nonetheless, the shear force is not nil. So, propagation is 
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driven by both bending and shear. Those cracks exhibit a deviation from verticality (flex-
ural-shear cracks). Deviation increases from around the midspan, where cracks are quasi-
vertical, to the supports, where crack inclination is approximately 45°. 

Around a support of a simply-supported RC beam, the principal stresses are dictated 
by the shear force. Thus, the principal stresses act on planes at 45° and reach their maxi-
mum at the centroid. A crack due to shear force initiates at the centroid and propagates at 
45°, reaching the bottom edge of the beam (shear crack).  

Ultimately, the crack pattern of a simply-supported RC beam exhibits vertical cracks 
at the midspan, quasi-vertical cracks around the midspan, and progressively more 
splayed cracks toward the supports. 

At and near the supports of a doubly-fixed RC beam there is some interaction be-
tween shear and bending. As a result, cracks can be either vertical (flexural cracks that 
initiate at the top edge) or at 45° (shear cracks).  

There is however much less chance of cracks that initiate at the centroid of the cross-
section (shear cracks) appearing around the supports, whatever the restraints. 

2.4. Typical steel reinforcement around the midspan 
The intended structural use of the vast majority of the beams is to bear uniformly 

distributed loads. Accordingly, the steel reinforcement around the midspan of the vast 
majority of the RC beams consists of longitudinal bars (at the top and bottom of the cross-
section) and relatively widely spaced stirrups. Neither bent-up longitudinal bars nor in-
clined tension ties are present around midspan, since the distributed loads imply that the 
shear force is low around midspan. 

This paper deals with existing RC beams that were designed to bear uniform loads. 
Around the midspan of the beams that are dealt with herein, hence, the steel reinforce-
ment has the above-described pattern. 

 

2.5. Shear capacity of the beam around the midspan 
The pin-joined truss analogy does not allow the inclination of the concrete struts to 

be chosen but requires that each strut consists in the concrete between two consecutive 
cracks, while it cannot intersect a crack. Namely, the inclination of the concrete struts has 
to be that of the cracks. If a concrete crack intersected a crack, in fact, it could not close the 
crack it intersects, which would imply that the concrete strut does not transmit any com-
pression force, which in turn would imply that the truss is unstable. 

Ergo, the pin-joined truss analogy is valid only around the supports, not at midspan. 
Nevertheless, around the supports the shear force is maximum while around midspan is 
minimum. So, the pin-joined truss analogy allows the shear capacity of RC structure to be 
calculated and guaranteed where it can dictate the load-carrying capacity of the beam. 

Given that a strut has to coincide with the concrete between two consecutive cracks, 
away from the beam’s support the classical pin-joined truss analogy (whose concrete 
struts are at 45°) has to be replaced by a pin-joined truss whose concrete struts have incli-
nation that progressively decreases from a support towards the midspan. 

Around the midspan of such a pin-joined truss, however, a concrete strut and the 
steel stirrup following one after the other have not only the same inclination (vertical) but 
also the same position. Thus, the segment of pin-joined truss with vertical concrete struts 
and web reinforcement is unstable.  

Ultimately, neither the classical pin-joined truss analogy nor the modified pin-joined 
truss justifies any shear capacity of the beam’s segment where cracks are vertical. How-
ever, the pin-joined truss analogy loses its validity only where the shear demand of a dis-
tributed load is low, so this deficiency can be ignored for the vast majority of the RC 
beams. 
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Neither the fact that the pin-joined truss analogy does not hold true, nor the absence 
of web reinforcement automatically entails that a RC beam fails [14-16, 21, 24,25, 32, 35, 
37, 41, 54]. It depends on which internal action will initiate cracking. 

Around the midspan and in the case of RC beams without web reinforcement, if 
cracking is initiated by the shear force, the crack propagates inclined along the entire 
height, up to severing the beam. Ergo, a shear crack causes failure. So, the beam cannot 
bear the load that has cracked the concrete. If cracking is initiated by the bending moment, 
the crack propagates either vertically or inclined along the section, up to stabilization (as 
long as the amount of tension reinforcement is adequate). Ergo, flexural cracks and flex-
ural-shear cracks allow a stabilized crack pattern to be reached. So, the beam can bear the 
load that has cracked the concrete. 

The shear resistant mechanisms of a RC beam with flexural cracks and without web 
reinforcement are the beam action and the arch action [6-27].  

The arch action consists in an ideal concrete arch, given by the internal compression. 
The shear capacity derives from the inclination of the internal compression, which is sub-
stantial at the support but negligible around the midspan. So, the arch action provides the 
segment around the midspan with marginal shear capacity. 

The beam action triggers when the cracks divide the tension zone into blocks, each 
of which consists in the concrete between two consecutive cracks. A block is referred to as 
‘concrete cantilever’, since it acts as a cantilever with the base at the compression zone of 
the concrete and the free end in the concrete cover, and with the bond force variation 
applied at the free end. 

The beam action mechanism can transfer the transverse shear force in the uncracked 
cross-sections and the bond force variation between two consecutive cracks. 

In every RC beam, the transverse shear force of a shear cracked or flexural-shear 
cracked section is resisted by means of tangential stresses acting on the uncracked con-
crete of the cracked cross-section, boosted by dowel action and aggregate interlock. Thus, 
the shear force is equilibrated by shear stresses in the concrete, on the crack mouths, and 
in the longitudinal tension reinforcement, plus the vertical force in the stirrup if the beam 
has the web reinforcement.  

In a beam without web reinforcement failure occurs in a brittle mode, since it is dic-
tated by concrete tensile strength. At failure, thus, the transverse relative displacements 
between the crack faces are small. Therefore, dowel action and aggregate interlock boost 
no more than moderately the shear transfer across the uncracked concrete zone of a 
cracked cross-section. 

In every RC beam, the bond force variation between two consecutive shear cracks or 
flexural-shear cracks is resisted by means of the strength of the concrete cantilever, 
boosted by dowel action and aggregate interlock. 

Even in a beam without web reinforcement, failure of the concrete cantilever occurs 
in a relatively ductile mode, because it is governed by bending. If the tensile strength of 
the concrete cover and the flexural stiffness of the longitudinal reinforcement are substan-
tial, the dowel force transferred across the cracks by the flexural reinforcement can be 
significant. Moreover, if the width of the two faces of a crack is no more than moderate, 
the shear stresses transferred across the crack by means of interlocking is large.  

Of course, the contributions of dowel action and aggregate interlock are much greater 
for beams with web reinforcement, which provides the cover with extra tensile strength 
and keeps the cracks sufficiently closed. Nevertheless, for beams without web reinforce-
ment those contributions can be significant too. 

Unfortunately, the contributions of dowel action and aggregate interlock are minor 
in the case of flexural cracks, i.e., around the midspan. The reason is that the more vertical 
a crack and a concrete cantilever, the less the transverse relative displacements between 
the crack faces, for a given bending displacement of the cantilever. 
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Where the cracks are vertical, thus, the transverse relative displacements of the faces 
of a crack are slight and consequently the contributions of dowel action and aggregate 
interlock is negligible. 

Ultimately, the shear force due to a concentrated load applied in a zone of the beam 
with vertical cracks (around the midspan) is maximum, while the shear strength is pro-
vided only by the uncracked concrete and consequently is small. 

2.6. Gap statement and research problem 
According to the conclusion of paragraph 2.5, changing the load distribution of a RC 

beam often require strengthening the beam in order to increase the shear strength. 
Increasing the shear strength of a segment of a RC beam with vertical cracks requires 

referring to a model different than the pin-joined truss (neither the classical analogy nor 
the truss with struts whose inclination varies can simulate that shear behavior). Moreover, 
neither the dowel action nor the aggregate interlock provides a significant contribution.  

Ultimately, the model that can be borrowed from literature and codes do not allow 
the concentrated load-carrying capacity to be modeled and predicted. That is the gap in 
knowledge that this paper aims to fill. 

2.7. Study’s statement of purpose and basic reference beam 
The focus of the present research activity was to define a method for increasing the 

concentrated load-carrying capacity of RC beams, including an analytical model that pre-
dicts the capacity in the strengthened state. 

The RC beams considered here are existing. That is, the beams are cracked and crack-
ing is stabilized, and they do not have any reinforcement purposely designed for resisting 
concentrated loads around the midspan, which are the typical conditions.  

The content and the results of this paper, including the analytical model, apply to 
any RC beam. However, a reference structure saves the potential readers to invest too 
much effort in understanding the paper and, on the other hand, does not imply losing 
generality. 

The basic reference structure is the beam diagrammed in Fig. 1. The adopted refer-
ence structure schematizes the beams of buildings and bridges. 

The cross-section of the reference beam is constant, and the restraints are symmetric. The refer-
ence beam has tee cross-section (T-beam). Hence, the model includes directly the prismatic simply-
supported (Fig. 1) and doubly-fixed beams. Nevertheless, the model can be easily extended to non-
prismatic beams and non-symmetric restraints (fixed-roller beam). 
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Figure 1. RC beam with vertical cracks around the midspan, which are spread along the length  at 
spacing . The upper diagram shows the loading condition that acted in the past and that cracked 
the beam, i.e., a distributed load. The lower diagram shows the new loading condition, i.e., a con-
centrated load P applied at a point K (which the figure places at the midspan, but that can be any-
where along L. Its position is defined by ). The shadowed concrete cantilever (or the symmetric 
one) dictates the failure of the RC beam under the concentrated load P. The figure also shows the 
span L, the depth t of the concrete cover, the crack depth , and the effective crack depth ’. 

3. Shear strengthening of RC beams 
Shear strengthening of RC beams poses serious concerns with traditional techniques 

[59-63]. An innovation of the nineties of the past century was externally bonded Fiber  - Re-
inforced Polymer (FRP) systems [64-66]. 

FRP systems for strengthening RC structures are an alternative to traditional 
strengthening techniques such as steel plate bonding, section enlargement, and external 
post-tensioning [67-69]. 

FRP systems use FRP composite materials, in the form of strips or sheets, as supple-
mental externally-bonded reinforcement. FRP systems offer advantages over traditional 
strengthening techniques: they are lightweight, easy to install, very thin, noncorroding, 
and relatively economical.  

The configuration that reproduces the stirrups would consist of strips or sheets to-
tally wrapped to the concrete section. But the tee cross-section (T-beam) or the floor (slab) 
prevents a closed reinforcement to be placed, because it would require breaking the flange 
or the floor (slab), which is particularly invasive and expensive. Actually, wrapping the 
entire cross-section with the FRP jacket is much less convenient than inserting new bars 
into the concrete, totally embedded from the top face to the bottom face of the beam, with 
the inclination that is wanted (vertical or at 45°). 

Thus, the typical shear strengthening configuration is the U-shaped reinforcement 
with the ends at the bottom of the floor (slab) or of the flange. Accordingly, shear strength-
ening of RC beams with FRP reinforcement is typically obtained by bonding either a con-
tinuous sheet with vertical fibers or spaced vertical strips onto the web (lateral sides) of 
the beam. 

However, U-shaped reinforcement cannot act as the tension member of the pin-
joined truss, since the external reinforcement does not reach the compression zone (the 
top chord) or is not sufficiently anchored to the compression zone. Namely, U-shaped 
reinforcement does not give rise to the vertical tension ties. 
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The topic needs in-depth analysis to frame the problem of beam’s shear strengthen-
ing (this paragraph) and midspan’s shear strengthening (next paragraph) for beams with-
out web reinforcement. 

The variation of bending moment along a RC beam implies two internal forces, 
namely: (1) the transverse shear force across a cracked cross-section (across the concrete 
compression zone and crack), which is denoted by V, (2) and the bond force variation 
between two consecutive cracks (increase in tension force along the longitudinal reinforce-
ment), which is denoted by Ts .  

In the case of RC beams without web reinforcement (no stirrups), those forces are 
resisted by (1) the uncracked concrete of the cracked cross-section, i.e., the concrete com-
pression zone, (2) and the strength of the cantilever, i.e., of its built-in transverse section. 
According to paragraph 2, the first of those two resisting systems is kind of boosted by 
dowel action and aggregate interlock, while the second one is substantially boosted by 
dowel action and aggregate interlock. 

(1) The shear strength of the uncracked concrete is dictated by concrete tensile 
strength. When the maximum principal stress reaches concrete tensile strength, the sec-
tion reaches the maximum (ultimate) V that it can bear. A greater V causes the cracked 
cross-section to fail and the RC beam to collapse by oblique severing of the cracked cross-
section. 

(2) A cantilever fails by the bending mode, since the shear failure mode is almost 
always stronger although a cantilever is not slender. Failure occurs at the built-in trans-
verse section of the concrete cantilever. The flexural strength of the cantilever is dictated 
by concrete tensile strength. When the maximum flexural stress (the maximum stress act-
ing on planes transverse to the cantilever axis) reaches concrete tensile strength, the built-
in horizontal section reaches the ultimate Ts that it can bear. Namely, a greater 
Ts causes the cantilever to fail and the beam to collapse by horizontal sliding of the lower 
part with respect to the compression upper part. 

The maximum V and Ts that the RC beam can bear are hence the ultimate values of 
the internal shear actions. The lowest of those two ultimate values is the shear strength of 
the RC beam and dictates the ultimate shear load. 

Generally speaking, hence, increasing the shear capacity of a RC beam requires in-
creasing the maximum V that uncracked concrete can bear, and/or the maximum Ts that 
cantilevers can bear. 

An increase in the maximum V that a cracked cross-section can bear is obtainable 
only by wrapping the external reinforcement around the entire cross-section, which is an 
inconvenient technique, as previously observed. Actually, no U-shaped reinforcement al-
lows the maximum tolerable V to be increased, since the uncracked concrete (compression 
zone) lies entirely, or almost entirely, in the flange, while the external reinforcement is 
bonded only on the web (the ends of the reinforcement usually are at the bottom of the 
flange). 

Ultimately, no external reinforcement allows the maximum transverse shear force V 
that a cracked cross-section can bear to be increased, neither around the midspan nor at 
the ends. 

Nevertheless, in the vast majority of the RC beams, shear strength is dictated by the 
bond force variation Ts and not by the transverse shear V. 

U-shaped reinforcement can increase the maximum bond force variation Ts that a 
cantilever can bear, since the fibers cross the cracks forming an angle different than zero. 

Ultimately, the typical shear strengthening externally bonded FRP reinforcements – 
sheets with vertical fibers or vertical strips bonded on the web – allow, in general, the 
maximum bond force variation Ts that can be carried by a cantilever to be increased, and, 
in turn, the shear strength of the beam to be increased. 
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4. Shear strengthening of RC beams around the midspan 
The conclusion of the previous paragraph holds true if the cracks (the cantilever) and 

the fibers form an angle different than zero. However, typical U-shaped reinforcements 
form an angle equal to zero around the midspan, since there both the fibers and the cracks 
are vertical. Therefore, U-shaped reinforcement does not provide any increase in shear 
strength around the midspan, as a steel stirrup doesn’t and for the same reason (Fig. 2-a).  

More specifically, cracks and cantilever are vertical around the midspan. So, the only 
contribution of a steel stirrup would be to act as two longitudinal bars. This behavior 
would allow the built-in end section of the cantilever to attain the plastic hinge condition. 
However, the full plastic moment is lower than the cracking moment, given that the area 
of a stirrup is very small compared to the area of the concrete that it is embedded into. 
Thus, the stirrup only increases the cracking moment. However, this contribution is mar-
ginal. The same consideration can be translated to FRP with vertical fibers. 
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Figure 2. Concrete cantilever that dictates the capacity of the RC beam. Left: beam without side-
bonded FRP reinforcement. Right: beam with side-bonded FRP reinforcement, whose fibers are at 
 45 ° (the sign of the angle depends on which of the two sides of the web the fibers are bonded to). 

Ultimately, no typical U-shaped reinforcements – neither sheets with vertical fibers 
nor vertical strips – allow the maximum bond force variation Ts tolerable by a vertical 
cantilever to be increased.  

The pictures depicted above has proven that, in order to increase the maximum force 
variation Ts that a vertical cantilever can bear, the reinforcement has to provide the con-
crete cantilever with an oblique force. Ergo, the FRP web reinforcement has to be oblique.  

Analysis shows that the best fiber inclination is 45°, since that angle optimizes the 
behavior of the external reinforcement and makes the bond application process easy. 

A series of FRP strips at 45° would not produce the intended effect, unless the spacing 
is unrealistically close, because a diagonal strip could pass near the tip of the crack, which 
would imply nil lever arm of the applied force. Thus, in order to strength in shear the 
beam region with vertical cracks, continuous sheets with fibers at 45° must be used. More 
precisely, the fibers have to be at + 45° with respect to the beam axis on the left side of the 
web, and at – 45° on the right side (Fig. 3). A positive angle is clockwise and vice versa.  

Reinforcement should be applied onto both the lateral faces of the beam, because only 
onto one face would imply an asymmetric section. 
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Figure 3. Externally-bonded FRP reinforcement that strengthens the RC beam subjected to a con-
centrated load: FRP sheets composed of unidirectional fibers at an angle of + 45° with the beam’s 
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axis where the shear force is positive, and at – 45° where the shear force is negative. At the cross-
section where the concentrated load is applied to (section k), the sheets overlap each other for the 
length  > 20.707Leff . The anchorage length (bond length) of an FRP sheet at the bottom face of the 

cross-section is ’ > 20.707Leff . At the bottom face, a sheet overlaps the sheet attached onto the 

other lateral face of the concrete section (unless the web is particularly wide). The figure also shows 
the anchorage length Lf of a generic fiber. 

If the application point of the concentrated load is not fixed but can vary its position, 
the sheet has to be bi-directional. Namely, a sheet with fibers at + 45° and – 45° overlap-
ping each other, on each side of the web. 

The sheet applied onto one lateral side cannot be turned up and bonded onto the 
other lateral side of the beam, because the fibers cannot be continuous at the lower face of 
the concrete section. The reason is that fiber continuity would imply an angle of + 45° at a 
lateral face and an erroneous angle of – 45° at the opposite lateral face (Fig. 3). In doing 
so, in fact, the U-shaped configuration would be effective at a lateral face but ineffective 
at the other lateral face.  

Ultimately, two different FRP sheets must be bonded onto the two lateral faces of the 
RC beam. 

Vertical cracks are due to the bending moment. Accordingly, the maximum width of 
a crack is at the bottom of the concrete section. Therefore, the fibers at the bottom are 
subjected to the maximum elongation, which requires them to be adequately anchored. 
Therefore, each FRP sheet has to be adequately anchored at the lower face of the concrete 
section. Unless the web is particularly wide, hence, the two side-bonded reinforcements 
overlap each other onto the lower face of the concrete section, and sometimes the sheet is 
turned up onto the opposite lateral face in order to reach the adequate bond length (Fig. 
3). 

The method that is herein proposed to increase the concentrated load-carrying ca-
pacity of RC beams whose load distribution has to be changed from distributed to con-
centrated is that described above which is also represented in Fig. 3. 

The following paragraphs are devoted to presenting the analytical model that allows 
the concentrated load-carrying capacity of RC beams to be predicted. 

5. Mechanical assumptions of the analytical model 
The analytical model to predict the shear strength of the beam strengthened in the 

way described in the previous section relates to the reference structure that has been in-
troduced in paragraph 2.7. 

As shown by Fig. 1, which represents the reference structure, the RC beam is sub-
jected to a concentrated load P, whose value may change but whose application point g is 
fixed. Point g is located in a part  of the RC beam with vertical cracks. The beam is also 
subjected to a uniformly distributed load q. 

According to paragraph 4, the beam is strengthened with side-bonded FRP sheets 
made of textile fabrics with fibers at + 45° from the left support up to point g, and at – 45° 
from the right support to point g (Fig. 3).  

The side-bonded FRP reinforcement is composed of N of layers. Hereinafter, a textile 
fabric bonded onto a lateral face surface consists of one layer. Thus, the RC beam is 
strengthened by N/2 layers at one lateral face and N/2 layers at the other lateral face of the 
web (as previously specified, the N/2 layers overlap each other onto the lower face). For 
example, a single-layer reinforcement bonded onto both the lateral faces calls for N = 2.  

The thickness of each layer is denoted by tF 
. More specifically, tF is the fictitious 

thickness of the reinforcement that, multiplied by the actual strain of the fibers and by the 
fictitious elastic modulus of the reinforcement, gives the force in the reinforcement per 
unit of width. 
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The model predicts the resisting shear Vud (the ultimate shear force) and the maxi-

mum concentrated load Pud that the RC beam can bear without triggering the shear failure 

mode (concentrated load-carrying capacity, apart from bending behavior). 
Modeling adopts the following nomenclature (Fig. 1): L = span of the beam; Mmax = 

maximum bending moment in the beam, due to q and Pud ;(whereas the role played by q 

in producing Mmax is negligible); L = distance of the section with Mmax from the sup-

port that provides the beam with the maximum vertical reaction (for a point load at the 

midspan:  = 0.5); ’ = crack depth;  = crack spacing; t = distance between the concrete 
extreme tension fiber (edge) and the center of the longitudinal bars (concrete cover), d = 

effective height;  = ’ – t, which is referred to as effective crack depth. 
Since the load distribution applied to the beam is changed from distributed to con-

centrated, Pud is the main load (it is produced by dead and live loads), while q is a minor 

load. Around the midspan, thus, the shear force due to q is negligible with respect to the 
shear force due to Pud . Accordingly: 

  PV udud
 1                                                   (1) 

Moreover, the bending moment due to q can be neglected in comparison with the 
bending moment due to Pud . Accordingly: 

  PLVLM ududmax
  1                                       (2) 

Eq. (2) does not imply losing generality, since, in the minor cases where the distrib-
uted load q is significant, it can be modified so as to include the bending moment due to 
q. 

Research about cracks patterns of RC beams [32, 36, 49, 55, 70, 71] supports the fol-
lowing two further assumptions (Fig. 1). 

  =      ’ – t          (3)                                         d.  670           (4) 

The combination of assumptions (3) and (4) gives: 

51.

d

                (5) 

The last assumption that is made is that each face of a crack is plane and remains 
plane also when the crack is tied by the FRP reinforcement. Accordingly, the crack profile 
is triangular. This is a realistic assumption as well, since the axial stiffness of the FRP re-
inforcement is not high, given that the thickness tF of each layer is slight. 

6. Mathematical model 
This section describes the mathematical development of the model, i.e. the analytical 

equations. 

6.1. Force in the FRP reinforcement neglecting bond-slip 
The side-bonded FRP reinforcement ties (bridges) the cracks. So, opening of a crack 

implies stretching the FRP (Fig. 4), which produces a force in the FRP reinforcement. That 
force, which is denoted by F, has direction at 45°. 

The strain in the FRP is induced by the crack opening. Therefore, the strain profile of 
the FRP at a crack is equal to the crack opening profile. By virtue of the mechanical as-
sumptions, the FRP strain profile at a cracked section is triangular, and the strains range 
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from the maximum at the bottom (where the crack exhibits the maximum opening) to zero 
at the neutral axis (where the crack has the apex). The maximum strain, i.e., the  at the 
bottom of the crack, is denoted by 

F
max  (Fig. 4). 

 

F
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’ 
 


'

maxF
 


Fd

 
 

Figure 4. Concrete cantilever that fails (the midspan of the beam is on the right of the figure). On 
the left: strain profile in the FRP reinforcement at the two cracked sections that define the lateral 
sides of the concrete cantilever. The strain is linear starting from zero at the neutral axis up to Fd

 

at the left crack and up to  
Fdmax-F

'  at the right crack. The FRP reinforcement bonded onto 

the concrete cover (which is shadowed) does not transmit any stress. On the right: forces transferred 
from the flexural steel reinforcement (longitudinal bars) and from the side-bonded FRP reinforce-
ment (the fibers are at 45°) to the concrete cantilever. The latter forces consist in a resisting contri-
bution that makes the effects of the former forces less. 

The force F is produced by the triangular area of the above-described strain profile. 
The calculus of F makes two provisional assumptions, which will be removed in the fol-
lowing. The first is that there is no bond-slip between the FRP reinforcement and the con-
crete (not even at the bottom face, where stresses are maximum, which implies that the 
bottom anchorage length of the FRP reinforcement is adequate). As it is well-known, 
‘bond-slip’ is an oxymoronic term which means the relative movement of the reinforce-
ment with respect to the surface it is attached onto or embedded into.  

The second assumption is that the FRP reinforcement coats the entire crack depth. 
Under those assumptions, F turns out to be: 

  Nt
tE

N
tE 'F 









2
F
max

F
max

FFFF

2
                   (6) 

whose symbols have been defined in section 5. 
Due to the two assumptions that have been made, F provided by (6) is the upper 

bound of the force. The real value of that force is lower due to some slip between the side-
bonded reinforcement and the concrete lateral it is attached onto (Fig. 5). Thus, Eq. (6) will 
be refined in the following, so as to calculate the actual value of the force. 

 

crack 

’  

upper edge of the   
FRP sheet 

neutral  
axis 

0.707L
eff

 

L 

eff
 compression  

zone 

’ 

Ld 
Ld  

Figure 5. Fraction  of ’ that represents the effective height of the side-bonded FRP sheet, while the 
remaining part of ’ is the anchorage length. The shadowed length Ld + Ld is the length of a fiber 

that crack opening causes to debond. 
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6.2. End-debonding of the fibers 
Each fiber of the FRP reinforcement spans diagonally across the lateral side of the 

beam’s web (Fig. 3), from the upper edge (bottom of the flange) to the lower edge (bottom 
face of the beam).  

Each fiber of the FRP reinforcement crosses a crack (infrequently two cracks). Each 
fiber is hence anchored at the two sides of a crack, at a certain distance from the crack. The 
force has to be supplied to the crack, in order to stich it. So, the bond-slip to account for is 
that from an end of the fiber to the crack that the fiber has to tie (to bridge). The bond-slip 
depends on the anchorage length of a fiber. 

Since the role played by the fiber in the reinforcing system is to tie the crack, the 
anchorage length of a fiber is the distances between the end of the fiber and its intersection 
with the crack.  

The two anchorages of a fiber at the two sides of the crack in general have different 
anchorage length. The lesser of those two anchorage lengths, which is denoted by LF , is 

binding for the end-debonding. So, the model accounts for LF . 

The greater LF the greater the strain that a fiber can reach, up to a limit called ‘effec-

tive anchorage length’ and denoted by Leff . For LF  Leff , the stain of the fiber cannot 

increase anymore with respect to the ultimate limit strain, which is called ‘full end-
debonding strain’ and is denoted by Fd . The value of Leff and Fd can be borrowed from 

the literature, in particular by codes [66]: 

[mm]470 2

f

tE
L

ctd
eff

.
tot-FF


      (7)     

2

4

350

t

ff ctdcd

.

tot-FFE 




 
Fd

    (8) 

in which EF is the elastic modulus of the FRP composites, tF-tot is the total thickness 

of the FRP reinforcement bonded onto a lateral face, fctd is the design value of the concrete 

cylinder tensile strength, and fcd is the design value of the cylinder compressive strength 

of concrete. 
Eqs. (7) and (8) do not incorporate EF and tF-tot individually, but their product. While 

EF and tF-tot are difficult to be defined and measured individually (actually, they are ideal 

quantities), their product is the axial stiffness of the FRP reinforcement, which is clearly 
defined and easy to be measured. 

Eqs. (7) and (8) have been written in the form that is adequate for the collapse analy-
sis, since the strength material values plugged into are those used for the ultimate limit 
states. 

 

6.3. Maximum force that the FRP reinforcement can transmit to the beam 

The greater LF the greater the strain that a fiber can reach, up to a limit which is called 

‘effective anchorage length’ and is denoted by Leff . For LF  Leff , the stain of the fiber 

cannot increase anymore with respect to the ultimate limit strain, which is called ‘full end-
debonding strain’ and is denoted by Fd . 

Consequently, Eq. (6) would represent the force reached by the side-bonded rein-
forcement at a crack if and only if (7) and (8) were satisfied, i.e., if and only if each fiber 
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guaranteed LF  Leff and 
F
max   Fd . In other words, Eq. (6) is realistic only if the top 

and bottom edges of the side-bonded FRP reinforcement are anchored for a length 
L

F
 greater than Leff . Obviously, the requirement L

F
  Leff is more important at the bottom 

edge, where the strain is maximum, and consequently the stress is maximum as well 
(moreover, it has the maximum lever arm).  

The requirement L
F
  Leff at the bottom edge of the cross-section is obtained by bond-

ing each FRP sheet (that on one lateral side and that on the opposite lateral side) onto the 
bottom face of the concrete section and, apart the case of wide web, by turning it up and 
bonding it onto the opposite face as well. 

The requirement L
F
  Leff at the top edge of the side-bonded FRP reinforcement can-

not be obtained, since the flange (or the floor/slab) prevents the sheet from being pro-
longed beyond the crack apex for a length equal to the anchorage (and sometimes even 
from reaching the apex). 

The anchorage length of the fiber is Leff 
, as previously shown. However, the anchor-

age length of the FRP sheet is 0.707•Leff 
, due to the 45° angle of the fibers. The side-

bonded reinforcement coats thus the entire crack only if: 
’ – 0.707•Leff  ’                                            (9) 

where ’ is the length of the concrete lateral face which the sheet is bonded onto (Figs. 
3, 5). 

If ’ – 0.707•Leff < ’, at and near the crack apex the FRP sheet has an anchorage that 

does not allow the fibers to reach the full end-debonding strain. In that case, the crack is 
not completely tied by the side-bonded FRP reinforcement.  

In that case, F is not produced by a triangular stress profile but by the area of the 
trapezoid inscribed into that triangle. The value of F is hence lower than that provided by 
Eq. (6). 

The value of ’ depends on the depth of the flange (or of the floor/slab), i.e., on the 
depth of the web (Figs. 3, 5). The effective depth of the side-bonded FRP reinforcement is 

hence:  = ’ – 0.707•LF .  

The analytical model refers to  = ’ and account for the actual value of  by using a 
reduction factor , which can be expressed in an analytical form. However, the analytical 
expression of  is really cumbersome. All the more,  has a secondary weight on the re-
sults. With all of that considered, this research work has included carrying out a paramet-
ric analysis that has provided approximate values of . Those values are shown in Tab. 1. 
The values of  of Tab. 1 permit the real value of  to be replacement by an approximated 
value. It is to note that Tab. 1 assumes  = 1 for  / ’ > 0.80, which is not preservative but 
however introduces a negligible error. 
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Table 1. Approximate values of  to use in lieu of the analytical exact values. The approximate 

values of  are expressed as a function of the  / ’ ratio. 

/’ > 0.80 0.80 > /’ > 0.65 0.65 > /’ > 0.50 0.50 > /’ > 0.35 0.35 > /’ > 0.20 
 = 1  = 0.87  = 0.77  = 0.65  = 0. 45 

Design should guarantee  / ’  0.20. Namely, ratios of  / ’ lower than 0.20 should 
be avoided, because would imply that only a minor part of the FRP reinforcement is well-
bonded.  

Eq (6) can hence be replaced by: 

   








Nt
tE

N
tE 'F

22
F
max

F
max

FFFF        (10) 

Bonding the FRP reinforcement onto the cracked concrete surface poses another 
problem, which needs solution. A crack entails a discontinuity in the strain field of the 
concrete. So, around a crack the reinforcement detaches. Let Ld denote the length of the 

FRP reinforcement that has detached at each side of a crack (Fig. 5). 
The FRP reinforcement can transfer the complete stress across a crack only by the 

fibers that are attached onto the concrete for a length greater than Ld 
. On the contrary, the 

fibers with anchorage length lower than Ld cannot be completely stretched. The introduc-

tion of the detachment around the crack into Eq. (10) transform that equation into (Figs. 4 
and 5): 

  





NLt
tE

d.F 7070
2

F
max

FF                                     (11) 

Observation shows that 20 < Id < 80 mm [66]. On the realistic assumption that 0.70Id 

= t, Eq. (11) turns into 






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F
maxF

max

3330
2

NdtEN
tE

.F
FF

FF                 (12) 

Let FFd denote the ultimate force in the side-bonded FRP reinforcement. Failure of 

the strengthened beam occurs by the end-debonding. Thus, FFd is given by the following 

expression: 

NdtEdN
tE

F .Fd



 


FF

FF
3330

2 Fd

Fd                        (13) 

According to the assumption, the side-bonded FRP reinforcement elongates in pro-
portion to the crack width. Consequently, Fd and FFd occurs at the crack that transmits 

the maximum bending moment. 
The distance of the force F from the neutral axis is 2/3 and the distance of F from 

the steel reinforcement is /3. 

6.4. Internal actions in the concrete cantilever 

The longitudinal bond force variation Ts induces the bending moment Ts at the 
built-in end of the vertical concrete cantilever (Figs. 4 and 6). The global behavior of the 
beam is linear-elastic (plasticity would entail displacements that would cause the FRP re-
inforcement to fail). So, at failure, the lever arm of the internal couple is 0.89d (i.e., the 
distance between the center of the tension longitudinal steel and the center of the 
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compression stresses). Once the internal lever arm is fixed, the sole equilibrium furnishes 
the relation between Ts and the shear action V: 

d
V

TVTd ss 





0.89
0.89                                         (13) 

The strain of the concrete is very small at a crack. So, it can be neglected. That being 
the case, the elongation of the FRP reinforcement between the crack faces (mouths) is pro-
portional to the crack width.  

The force F in the side-bonded FRP reinforcement varies along the span. At a given 
abscissa, F is in proportion to the width of the crack that it ties. In turn, the widths of the 
cracks are in proportion to the bending moment along the span. Ergo, along the span F 
varies in the same way as the force Ts in the longitudinal steel reinforcement (the internal 
lever arm is constant). 

The above sequence of implications leads to the conclusion that F and Ts reach their 
maximum at the midspan, and that those forces decreases when the distance from the 
midspan increases. It follows that the variation of F at the two sides of the concrete canti-
lever induces a bending moment in the built-in end of the concrete cantilever that has the 
same sign of the bending moment induced by the variation of Ts . This fact would seem to 
invalidate the proposed strengthening technique. 

Nevertheless, the two force Ts at the two sides of the concrete cantilever (one at a 
crack and at other at the consecutive crack) are coaxial. Namely, the lever arm between 
them is zero. On the contrary, the two forces F at the two sides of the cantilever are in-
clined, so the lever arm between them is different than zero. Let  denote the lever arm 
between the two forces F. (Fig. 6). 
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Figure 6. Forces applied to the concrete cantilever, internal actions, and maximum stress. The steel 
longitudinal bars and the side-bonded FRP reinforcement induce the internal actions Me , Ne , and 

Ve at the built-in end of the concrete cantilever. At debonding, Me and Ne induce the maximum 

tension stress max , which is shown in the figure, including the point where that stress occurs (shad-
owed circle). 

By virtue of , the two forces F induce a bending moment whose sign is opposite to 
the sign of the bending moment induced by the variation of Ts , and also by the variation 
of the modulus of F. 

As a result, the side-bonded FRP reinforcement decreases the tension stresses in the 
concrete cantilever due to the flexural steel reinforcement. 

Ultimately, the forces that increase the strength of the concrete cantilever are FFd at 

the lateral side of the cantilever that is closer to the midspan and F ’ at the lateral side more 
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distant to the midspan. According to the above, F ’ < FFd (F’ will be defined in the follow-

ing). Moreover, their inclination is + 45° (Figs. 2 and 4).  

The forces FFd and F ’ induce internal actions in the concrete cantilever. At the built-

in end, which is the section of the cantilever that dictates failure, the internal actions due 
to the FRP reinforcement are the tension axial force Ne 

, the transverse shear force Te (i.e., 
transverse to the cantilever axis), and bending moment Me given by the following expres-
sions (Fig. 6).  

Ne = 




  FF '

Fd2

22

     (14)                         Te = 




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22

       (15) 
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  FFFF ''

FdFd 4

2

3

2 22                                  (16) 

It is to highlight that the forces of Eqs. (14) and (15) and the moment of Eq. (16) are 
resisting internal actions – namely, those internal actions make the internal actions in the 
concrete cantilever less.  

Ultimately, the internal actions in the concrete cantilever are those due to the longi-
tudinal bond force variation Ts (shear force and bending moment) minus (in vectorial 
terms) those due to the FRP reinforcement (axial force, shear force and bending moment). 
Accordingly, the internal actions of Eqs. (14-16) allow the beam to carry grater concen-
trated loads around the midspan. 

6.5. Mode of failure of the RC beam with side-bonded FRP reinforcement 
Debonding of the FRP reinforcement is very brittle. When FRP reinforcement is used 

to strengthen in shear RC beams around the ends (at the beam’s supports, where the shear 
demand due to distributed loads is maximum), debonding occurs before that dowel action 
and aggregate interlock have given substantial contributions. As a result, the actual in-
crease in shear strength of the beam provided by the FRP reinforcement is moderate and 
sometimes is zero. 

According to paragraph 2.5, dowel action and aggregate interlock are marginal 
around midspan (in fact, those effects are ignored herein). This reveals that externally-
bonded FRP reinforcement is always a viable technique to strengthen in shear RC beams 
around the midspan (while, often, this technique does not produce the intended effects 
when is used to strengthen in shear RC beams around the ends). 

The possible failure modes of a RC beam with side-bonded FRP reinforcement whose 
configuration is that described in Section 4 are i. cracking of the concrete cantilever ii. and 
debonding of the side-bonded FRP reinforcement. i. Cracking of the concrete cantilever is 
dictated by concrete flexural strength, which implies displaying some plastic behavior. ii. 
Debonding of the FRP reinforcement is dictated by concrete tensile strength (by mode II 
of fracture mechanics), which is totally brittle. Ergo, failure occurs by ii. debonding of the 
FRP reinforcement.  

Failure triggers because the side-bonded FRP reinforcement stops providing the con-

crete cantilever with the forces FFd and F ’, which entails turning the resisting internal 

actions of Eqs. (14-16) into zero (or however into marginal values), which, in turn, causes 
the cantilever to fail. In fact, without the FRP reinforcement, the cantilever cannot resist 
the bending moment induced by the steel reinforcement at its built-in end. Once the can-
tilever fails, the whole beam fails. 

To sum up: 1- Capacity of carrying a concentrated load applied around the midspan 
is dictated by debonding of the FRP reinforcement, since the cantilever, although not slen-
der, has mainly bending behavior and it can also exhibit some plasticity. 2- FRP debonding 
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occurs when the maximum strain in the FRP, i.e., 
F
max , reaches the debonding strain, 

i.e., Fd . 3- The vertical concrete cantilever whose lateral side towards the midspan is a 

face of the crack where the FRP reinforcement exhibits 
F
max  = Fd, loses the forces ex-

changed with the side FRP reinforcement (because the FRP reinforcement is not any 
longer bonded to the concrete). 4- Without the resisting forces transferred by the side FRP 
reinforcement to the concrete, the cantilever cannot equilibrate the bending moment pro-
duced by the variation of longitudinal force in the steel bars, i.e., the moment induced by 
Ts at the built-in end. So, the cantilever fails, and then the beam collapses. 5- At FRP 
debonding, the bending moment produced by Ts is resisted by two bending moments 
acting at the built-in section – namely, (a) the resisting bending moment provided by the 
forces in the side-bonded FRP reinforcement, (b) and the resisting bending moment pro-
duced by the stresses acting onto the built-in horizontal section of the cantilever. 

(a) The resisting bending moment provided by the forces in the side-bonded FRP 

reinforcement derives from FFd and F ’ and their lever arm. The former force is already 

known, i.e., is given by Eq. (13), while the latter force is calculated in the following. 
(b) The resisting bending moment produced by the stresses acting onto the built-in 

horizontal section of the cantilever requires knowing the behavior of the concrete cantile-
ver at FRP reinforcement debonding. 

Theoretical analyses carried out within this research demonstrates that at FRP 
debonding the maximum tension strain in the concrete cantilever is beyond the elastic 
limit, although always lower than the cracking tensile strain. Accordingly, the stress dis-
tribution is elasto-plastic. 

Modeling assumes that stresses acting onto the built-in section at FRP debonding 
have a bi-triangular profile, with maximum equal to the design value of the concrete cyl-
inder tensile strength fctd . That assumption is simultaneously realistic and conservative, 

because the bending moment given by the stresses that are ignored is small and increases 
the strength. 

6.6. Maximum tension stress in the concrete cantilever induced by the loads 
Let CM denote the maximum tension stress in the concrete cantilever. The stress CM 

occurs at one edge of the built-in end of the cantilever (the edge more distant from the 
midspan). It is induced by the bending moment (horizontal component of the internal 
action multiplied by the lever arm) and the axial force (vertical component of the internal 
action) in the concrete cantilever due to steel and FRP reinforcement (Fig. 6). On the con-
trary, the shear force in the cantilever (horizontal component of the internal action) does 
not provide any contribution to the normal stresses. 

The bi-triangular profile, which implies a linear-elastic behavior of the concrete can-
tilever, entails that CM is equal to: 
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where W is the section modulus of the built-in end of the concrete cantilever. 
Plugging Eq. (13) into Eq. (17) leads to: 
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On substituting Eq. (4) for  and , Eq. (18) becomes: 
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Rearranging terms, Eq. (19) can be expressed in the following form: 
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6.7. Gradient of the force in the side-bonded FRP reinforcement 
The maximum strain in the FRP reinforcement varies at the same rate as the bending 

moment M. Therefore, the concrete cantilever that dictates the shear strength of the RC 
beam has one lateral side at the section with the maximum bending moment in the beam 
Mmax due to q and Pud , whereas only the latter is accounted for, while the former is ne-

glected. If the concentrated load is at the midspan, as it is in the reference structure, the 
concrete cantilever that dictates the shear strength of the RC beam has one lateral side at 
the midspan. That lateral side is hence subjected to the moment Mmax , which causes the 
side-bonded FRP reinforcement to reach the debonding strain Fd . 

The lateral side of that concrete cantilever more distant from the midspan is subjected 
to the moment M’, which derives from the variation of M between two consecutive cracks. 
The moment M’ causes the FRP reinforcement to reach a tension strain that is denoted by 


max-F

' . 

The first modeling assumption allows the following relationship to be established: 

M ’ = Mmax – Vud . 

Given that Mmax , M’, and Fd are known, the strain 
max-F

' can be derived from a 

proportion. 
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'
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                                      (21) 

Modeling assumptions allow Eq. (21) to be written in the following form: 
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Using again the modeling assumptions, Eq. (22) can be written in the following form: 
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The force F ’ in the side-bonded FRP reinforcement at the side of the concrete canti-
lever more distant from the midspan derives from the triangular area of the strain profile 
whose maximum is 

max-F
' : 
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6.8. Shear strength of the RC beam in the strengthened state 
According to paragraph 6.5, at failure the maximum tension stress in the concrete 

cantilever CM is equal to the concrete tensile strength fctd . Plugging fctd into Eq. (20): 
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Eq. (25) may be solved for Vud . In so doing, the ultimate shear is found: 
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Eq. (26) may be expressed in the following form: 
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Modeling assumption represented by Eqs. (3-5) allow the section modulus W to be 
expressed as a function of the geometric parameters, which means that W is known. On 

substituting  into the formula of the section modulus W, it turns out to be: W = 0.074bd 

2
. 

On substituting W into Eq. (27): 
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Eq. (27) can be rewritten as: 
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The terms given by the round brackets (one with the sign plus and two with the sign 
minus) can be obtained plugging Eqs. (13) and (24) into each round bracket. In so doing, 
the first round bracket, that with the minus sign, turns out to be: 
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Eq. (30) can be simplified into: 
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In the same fashion, the second round bracket, that with the minus sign, can be ex-
pressed as: 
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Eq. (32) can be simplified into: 
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Plugging Eqs. (31) and (33) into (29): 
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Eq. (34) allows the ultimate design resisting shear Vud to be finally worked out: 
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Eq. (35) permits the maximum concentrated load that the beam can carry to be de-
rived. The final formula that predicts the concentrated load-carrying capacity of a RC 
beams Pud is: 




1

V
P

ud

ud

                                                                        (36) 

where Vud is given by Eq. (35). 

Ultimately, Eqs. (35) and (36) constitute the model that allows the RC beams strength-
ened in the fashion described in Section 4 to be analyzed and checked against concentrated 
loads. In fact, the two-equations model provides the concentrated load-carrying capacity 
to compare to the demand. 

7. Experimental verification of the model 
The model is based on some assumptions, which, on one hand, are realistic, but on 

the other hand, suggest checking the predictive capacity of the model. Check was accom-
plished comparing the theoretical predictions to experimental results obtained from la-
boratory tests on four RC beams (Fig. 7). 
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Figure 7. Experimental verification of the analytical model performed by means of four specimens. 
Each RC beam was subjected to a two-points load, which produced vertical cracks around the mid-
span. Then, two beams were strengthened in the fashion described in Section 4, while two beams 
were left unreinforced. Finally, a point-load test was performed on each beam up to failure. 

The beam had the same geometry, the same reinforcement and were made of the 
same concrete; in brief, they were identical. The height of the cross-section was 200 mm, 
and the width was 600 mm. Each specimen was simply-supported over a span of 3900 
mm. 

The beams had the minimum amount of longitudinal steel reinforcement necessary 
to make the cage and cast the concrete. Moreover, the beams had stirrups with a particu-
larly large diameter. More specifically, the reinforcement consisted of 4 longitudinal steel 
bars with diameters of 5 mm and steel stirrups with diameter of 16 mm at the spacing of 
130 mm. 

The amount of longitudinal reinforcement necessary to prevent the beam from bend-
ing failure was given by longitudinal FRP strips bonded onto the entire lower face of the 
beam. The effective height d coincided therefore with the height of the concrete section, 
i.e., d = 200 mm. 

Such a longitudinal reinforcement implied that dowel action effect was almost zero. 
As previously explained, the dowel action is however small where cracks are vertical. 
Nonetheless, that is a modeling assumption (the model disregards the dowel action). In 
so doing, thus, the experimental results also allowed that assumption to be verified. 

Two RC beams were tested without side-bonded reinforcement, and the other two 
RC beams were tested with the side-bonded reinforcement described in section 4. The 
side-bonded reinforcement consisted of three layers of textile fabric per lateral face of the 
beam (i.e., N = 6). 

The side-bonded reinforcement used for the tests consisted of cementitious matrix 
reinforced with continuous fibers (FRCM reinforcement). The FRCM reinforcement was 
preferred to the FRP reinforcement since debonding of FRCM consists of fibers that slip 
with respect to the matrix they are embedded into, while debonding of FRP consists of the 
rupture of a layer of concrete cover. That being the case, debonding of FRCM is better 
controllable in a laboratory test than debonding of FRP reinforcement. In particular, 
FRCM reinforcement allowed the debonding strain to be accurately measured, while FRP 
reinforcement would not have made it possible. Moreover, debonding strain of FRCM 
reinforcement could be accurately predicted in advance. 

In detail, the value of the FRCM debonding strain Fd that had been predicted before 

executing the tests was in the range 2.75 – 2.85 ‰ , and the average value of the debonding 
strains measured in the two tests of the two FRCM reinforced beams resulted to be 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 January 2022                   doi:10.20944/preprints202201.0041.v1

https://doi.org/10.20944/preprints202201.0041.v1


 22 of 30 
 

 

2.801 ‰ . Moreover, as expected, the two experimental debonding strain results were 
quite similar to one another. 

The mechanical characteristics of the FRP reinforcement as standalone component 

were: tF = 0.177 mm and EF = 244000 N/mm2.  

The side-bonded FRP reinforcement was anchored onto the top and bottom faces of 
the beam, so the side-bonded FRP reinforcement guaranteed LF  Leff both at the top and 

the bottom of each sheet. Accordingly,  = 1. 
The concrete compressive and tensile strength measured by cylinder tests resulted to 

be 41.6 N/mm2 and 4.2 N/mm2, respectively. 
Each beam was first subjected to two concentrated loads, each one applied 975 mm 

apart the midspan. Those symmetric forces produced vertical cracks for about 1950 mm 
around the midspan. Then, those two concentrated loads were taken away and the beam 
was strengthened in the fashion described in Section 4. Lastly, a concentrated load was 
applied at the midspan of each beam and was increased up to failure (Fig. 7). 

The concentrated loads (forces) applied in the initial two-points load procedure and 
the final one-point load test used two prestressing tendons (high tensile steel cables) and 
two actuators – namely, one vertical prestressing tendon and actuator per side of each 
beam – to develop two constant vertical forces in the two-points load procedure and an 
increasing vertical force in the one-point load test (Fig. 7).  

Ultimately, the two-points load was only the procedure to obtain RC beams with 
vertical cracks. So, the one-point load experiment tested four RC beams with vertical 
cracks around the midspan up to collapse. Two beams were tested without FRP reinforce-
ment and two beams with side-bonded FRP reinforcement. 

Failure of the two beams without the side-bonded FRCM reinforcement was trig-
gered by the concrete cantilever at the midspam, which reached the tension crack at its 
built-in end.  

Failure of the two beams with side-bonded FRCM reinforcement was triggered by 
debonding of the fibers at the midspan. 

The concentrated loads that caused the two beams without FRCM side-bonded rein-
forcement to fail were 158.04 kN and 163.70 kN.  

Setting to zero the terms of Eq. (35) that reproduce the contribution given by the side-
bonded FRCM reinforcement, that equation provides Vud = 74.592 kN. Since  = 0.5, Eq. 
(36) gives Pud = 149.184 kN.  

The maximum difference between the two experimental failure loads and the theo-
retical failure load is 8.9 % , which is marginal. Thus, the tests confirm that the stirrups are 
ineffective when cracks are vertical and that dowel action provides the beam with negli-
gible strength contribution, which entails that the first term of the proposed analytical 
model is adequate.  

It is to note that the diameter of the stirrups was large. Despite this, the stirrups do 
not provide the part of the beam around the midspan with any shear contribution. 

The concentrated loads (forces) that caused the two beams with FRCM side-bonded 
reinforcement to fail were 240.40 kN and 235.18 kN. 

Plugging Fd = 2.8 ‰ into Eq. (35), that equation provides Vud = 108.377 N. Since 

 = 0.5, Eq. (36) yields Pud = 216.754 kN.  

The maximum difference between the two experimental failure loads and the pre-
dicted failure load is less than 11.0 % , which is largely acceptable in order to validate the 
analytical model. 

It can be concluded that the experimental results confirm reliability and accuracy of 
the analytical model (Fig. 7). 

8. Two exemplificative applications of the model: theoretical predictions 
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The analytical model was applied to two theoretical cases. Each case study consisted 
of a RC beam with vertical cracks around the midspan, subjected to a concentrated load P 
at the midspan ( = 0.5). The geometric and mechanical characteristics of the case studies 
are shown in Tab. 2.  

The ultimate values Pud  of P obtained for the two case studies allow some consider-
ations to be made (Section 9). 

Each beam is simply-supported over a span of 5500 mm and has rectangular cross 
section (Tab. 2). Moreover, each beam is strengthened with a side-bonded FRP reinforce-
ment attached onto both the side surfaces for the entire span (Tab. 2). The side-bonded 
reinforcement is made of textile fiber at  45°, according to the sign of the shear. The upper 
edge of a sheet reaches the bottom face of the floor/slab. 

Table 2. Geometric and mechanical characteristics of the two case studies. Symbols used for the 
rectangular sections: overall depth H, width b, effective depth d, and concrete cover t. Symbol used 
for the floor/slab thickness: s. Symbols used for the FRP reinforcement: elastic modulus EF , thick-

ness of each layer of reinforcement tF , and total number of layers N. Symbols used for the concrete: 

cylinder compressive strength fcd and cylinder tensile strength fctd . 

H mm 
b   

mm 
d   

mm 
t    

mm 
s   

mm 
tF  

mm 
N 
/ fcd N/mm2 

fctd 

N/mm2 

EF  

N/mm2 
450 150 410 40 200 0.177 3 + 3 13.2 1.14 244000 
700 200 650 50 240 0.222 2 + 2 11.0 1.01 390000 

8.1. First case study 
On assumptions (3) and (4), the cracks exhibit the following pattern: 

 =  = (2/3)410  =  273 mm                                                     (37) 

The concrete cover is 40 mm (Tab. 2). So, crack depth is equal to ’ = 273 + 40 = 313 
mm. Spacing-to-depth ratio of cracks results hence to be 0.87. 

The total thickness of the FRP reinforcement attached onto each side surface is tF-

tot = 30.177 = 0.531 mm. The effective anchorage length turns out to be: 

mm158
141

5310244000
470 2 




.

.
.Leff

                               (38) 

To obtain LF  Leff , each sheet has to be anchored onto the whole bottom side of the 

beam (b = 150 mm) and then has to be bend onto the other side of the concrete section for 
no less than 8 mm. 

The most efficient arrangement of the side-bonded FRP reinforcement needs   ’ 
i.e., ’ – 0.707Leff  313 mm. The sheet height ’ should consequently satisfy the follow-

ing relationship: ’  313 + 0.707158  ’  425 mm. Unfortunately, the floor/slab thick-
ness bounds the height of the sheet to: ’ = 450 – 200 = 250 mm < 425 mm. Given that the 

height of the lateral face of the concrete section is 250 mm, the condition   ’ is therefore 
not obtainable. 

So, each sheet is attached onto the entire height of the lateral face, to provide the side-
bonded FRP reinforcement with the greatest possible value of ’. It follows that: 
 = 250 – 0.707158 = 138 mm. So, the crack depth surpasses the side-bonded FRP 
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reinforcement for 175 mm. This condition is accounted for by the coefficient . The ratio 

 / ’ is therefore equal to 0.44. For  / ’ = 0.44, Tab. 1 gives  = 0.65. 
The end-debonding strain is provided by Eq. (7): 
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                                (39) 

The ultimate shear force is derived from Eq. (35): 
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from which  

N46382.936006.610376.35521.0  41527.610376.3 Vud
     (41) 

The concentrated load-carrying capacity is derived from Eq. (36), plugging Eq. (42) 
and  = 0.5: Pud  =  92765.8 N  92.8 kN 

The ratio between the fraction of strength due to the concrete cantilever and that due 
to the FRP reinforcement weighs the real role played by the side-bonded FRP reinforce-
ment in strengthening this RC beams: 

53
1

290
636006
310376

.
.

.

.
                                                               (42) 

That ratio confirms that the FRP reinforcement plays the major role in providing the 
beam with concentrated load-carrying capacity. 

Without side-bonded FRP reinforcement, Pud would have been only 24.9 kN. It is to 

specify that Pud without side-bonded FRP reinforcement was derived using a concrete 

flexural strength to concrete tensile strength ratio equal to 1.20. 
Ultimately, the concentrated load-carrying capacity Pud with side-bonded FRP rein-

forcement is 3.7 times greater than without external reinforcement. In other words, the 
side-bonded FRP reinforcement has provided an increase in Pud of approximately 450 %.  

This case study confirms that the proposed method is a viable strengthening tech-
nique for the cases it is devoted to. 

8.2. Second case study 
Assumptions (3) and (4) allow the following condition to be establish: 

 = (2/3)650  =  433 mm                                                                 (43) 

According to Tab. 2, the concrete cover is 50 mm. The crack depth is therefore ’ = 433 
+ 50 = 483 mm and the spacing-to-depth-ratio of the cracks is 0.90. 

Eq. (6) gives: 

mm195
011

22202390000
470 2 




.

.
.Leff

                           (44) 
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The floor/slab thickness imposes the limit ’ = 700 – 240 = 460 mm to the reinforce-

ment. On substituting the above value of ’ and Leff of Eq. (44) in the relevant expression, 

the effective depth of the side-bonded FRP reinforcement results to be:  = 460 – 0.707195 
= 322 mm.  

The adopted side-bonded FRP reinforcement configuration implies that the crack is 

uncoated for 160 mm, i.e.,  / ’ = 0.67. This condition is accounted for by the coefficient  

of Tab. 1. For  / ’ = 0.67, Tab. 1 gives  = 0.87. 
Eq. (7) gives: 

0.0015

22202390000

011011

350

2

4








.

..

.
Fd

                              (45) 

The ultimate shear force Vud is derived from Eq. (35): 

55000.5

650
0.8740.2223900000.00150.280

6500.8740.2223900000.00150.3141.016502000.148

2












Vud      (46) 

from which  

N93959.874527.419432.419903.1  94430.619432.4 Vud
     (47) 

The concentrated load-carrying capacity is derived from Eq. (36), plugging Eq. (42) 
and  = 0.5: Pud  =  187919.7 N  187.9 kN 

The ratio between the fraction of strength due to the concrete cantilever and that due 
to the FRP reinforcement weighs the real role played by the side-bonded FRP reinforce-
ment in strengthening this RC beams: 

83
1260

474527
419432

.
.

.

.
                                                               (48) 

That ratio confirms that the FRP reinforcement plays the major role in providing the 
beam with concentrated load-carrying capacity. 

Without side-bonded FRP reinforcement, Pud would have been only 46.6 kN. Again, 

Pud without side-bonded FRP reinforcement was derived using a ratio between the flex-

ural strength and the tensile strength of concrete equal to 1.20. 
Ultimately, the concentrated load-carrying capacity Pud with side-bonded FRP rein-

forcement is 4.0 times greater than without external reinforcement. In other words, the 
side-bonded FRP reinforcement has provided an increase in Pud of approximately 400 %.  

This case study confirms that the proposed method is a viable strengthening tech-
nique for the cases it is devoted to. 

9. Interpretation of the results and discussions  
The case studies of the preceding section, which are emblematic for beams of build-

ing, road, rail or waterway structures, show that side-bonded FRP reinforcement with 
fibers at  45° can drastically increase the concentrated load-carrying capacity of a RC 
beam. 

The side-bonded FRP reinforcement prevents dowel action and aggregate interlock 
from reaching an appreciable level, and the concrete cantilever from exhibiting substantial 
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plasticity. Nevertheless, the strength contributions of dowel action and aggregate inter-
lock that are missed are irrelevant, since around the midspan concrete cracks and concrete 
cantilevers are vertical. Moreover, the concrete cantilever reaches however the concrete 
tensile strength (limit-elastic bi-triangular stress profile), whose resultant bending mo-
ment is only slightly lower than the resultant bending moment of the plastic stresses dis-
tribution at cracking of the cantilever (bi-triangular stress profile with maximum stress 
equal to the concrete flexural strength). 

On one hand, the large increase in concentrated load-carrying capacity is due to the 
fact that the shear-carrying capacity around the midspan is small, and so is the concen-
trated load-carrying capacity, which implies a small denominator in the ratio that ex-
presses the increase in load-carrying capacity. 

On the other hand, however, the FRP reinforcement allows the concentrated load-
carrying capacity to be largely increased, while it allows all the other structural capacity 
to be increased no more than moderately. Namely, FRP reinforcement can increase the 
distributed load-carrying capacity, the bending-carrying capacity, the shear-carrying ca-
pacity at the ends, the axial-carrying capacity of a column, the dissipation capacity etc., no 
more than moderately. 

The sensitivity analysis shows that increasing the debonding strain of the side-
bonded FRP reinforcement would allow the concentrated load-carrying capacity to in-
crease in proportion. This relationship between debonding strain and capacity is however 
typical for any FRP reinforcement. 

On one hand, the debonding strain can be increased by anchoring the FRP reinforce-
ment with stud shear connectors [69] or by making the resin penetrate the concrete for a 
greater depth. The former technique can be performed by piercing the concrete under the 
guidance of a magnetometer survey (pacometer) which indicates the portion of concrete 
without steel, which can be drilled. The latter technique can be performed by applying the 
FRP reinforcement with a vacuum technique [69]. 

However, the ratio of the capacity after the strengthening and the capacity before 
should be not too high for any FRP reinforcement, since high ratio can be unreliable. 

The model shows that the relationship between Vud and d is not far from linear. That 

result may drive the design of the reinforcement. 

10. Conclusions: review of the implications of what presented 
The conventional shear capacity models of RC beams have been used for more than 

a century with satisfactory results, which proves their reliability. Those models have how-
ever been used mainly for new RC beams, while their use for existing RC beams started 
only few decades ago, i.e., less than the service life of the buildings they were used for. 
Moreover, the cases that the shear capacity models were applied to consisted of beams 
that had to carry loads higher than the original ones.  

On the contrary, shear capacity models of RC beams have not been tested on beams 
whose load distribution has been changed from distributed to concentrated. This paper 
has proven that in those cases the conventional shear capacity models of RC beams fail. 
Not only do models fail, but also conventional strengthening techniques fail, including 
the most common one – namely, externally bonded FRP reinforcement. 

In order to fill those gaps, the paper has presented a strengthening technique together 
with the predictive analytical model. The strengthening technique consist of side-bonded 
FRP reinforcement with fibers at 45°. The model consists of an analytical formulation that 
predicts the concentrated load-carrying capacity of the RC beams in the strengthened 
state. 

The assumptions that the model is based on relate to crack spacing and crack depth. 
Those assumptions are in accordance with real observation, so they are realistic. Nonethe-
less, the expansion of the predicted shear capacity Vud in a Taylor series about the 
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assumed conditions (i.e.,  = d / 1.5 and  = ) proves that the error would be moderate 
even if  and  were substantially far from the assumed values.  

The last significant modeling assumption is that, at debonding failure, stresses acting 
onto the built-in end of the concrete cantilever have a triangular distribution both in ten-
sion and compression, and that the maximum stress of the distribution is equal to concrete 
tensile strength. Research activity has proven that, at debonding failure, the stress distri-
bution is elasto-plastic, which means that the assumed stress profile is both realistic and 
conservative. 

No further substantial assumptions were made. The proposed model provides hence 
reliable predictions, which has been also proven by comparing theoretical predictions to 
experimental results.  

The case studies have proven that FRP reinforcement can increase the concentrated 
load-carrying capacity of a RC beam substantially, i.e., up to four or five times, which is a 
result that FRP reinforcement cannot guarantee when used to increase other types of ca-
pacities of RC structures. 
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