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Review

Were the first trace fossils really burrows or could they have
been made by sediment-displacive chemosymbiotic organisms?
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Abstract: This review asks some hard questions about what the enigmatic graphoglyptid trace fos-
sils are, documents some of their early fossil record from the Ediacaran-Cambrian transition and
explores the idea that they may not have been fossils at all. Most researchers have considered the
Graphoglyptida to have had a microbial-farming mode of life similar to that proposed for the fractal
Ediacaran Rangeomorpha. This begs the question “What are the Graphoglyptida if not the Rangeo-
morpha persevering” and if so then “What if...?”. This provocative idea has at its roots some fun-
damental questions about how to distinguish burrows sensu-stricto from the external molds of en-
dobenthic sediment displacive organisms.
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1. Introduction

The importance of the first colonization of the sedimentary realm by infaunal organ-
isms has been at the heart of discussions around the evolution of complex animal life and
the beginning of the Cambrian Explosion of animal life (Crimes & Anderson 1987; Mcllroy
& Logan 1999; Mcllroy & Brasier 2017; Buatois 2018). The base of the Cambrian period
(and end of the Ediacaran) is defined by the first occurrence of trace fossils belonging to
the Treptichnus pedum Assemblage Zone (Brasier et al. 1992; Geyer & Landing 2017) at a
point in rock in Fortune Head in Newfoundland, Canada approx. 540Ma). The precept
behind this decision was the recognition that burrowing is an easily preservable —funda-
mentally animalian—trait either in the form of fossil burrows or burrowing fabrics (e.g.
Crimes & Anderson 1987; Mcllroy 2004).

It has become increasingly clear in recent years that complex animals evolved well
before the base of the Cambrian. Indeed, recent studies consider two of the major Edia-
caran clades (the Arboreomorpha and Rangeomorpha) as members of total group Eumet-
azoa (Dunn et al. 2021). Evidence for the existence of Ediacaran animals includes: pre-
served cnidarian muscles (Haootia; Liu et al. 2014, 2015) and surface locomotion trails (Liu
et al. 2010) both from around 565Ma; the mollusk-like grazing trace (Kimberichnus;
Ivantsov 2009) c. 550Ma; serial impressions of placozoan-type feeding (Dickinsonia,
Epibaion; Ivantsov & Malakhovskaya 2002; Sperling & Vinther 2010) c. 550Ma; as well as
bilaterian burrows (Parry et al. 2017) and ?annelid trails close to the basal Cambrian (Chen
et al. 2018) both c. 542Ma. Debates around whether the Cambrian explosion of complex
animal life had a short or long Ediacaran fuse (Brasier 2000; Zhu et al. 2017) have thus
mostly converged on a consensus that there was a long Ediacaran pre-history to the Cam-
brian biotas. The issue of how and why complex animal life diverged so markedly during
the Ediacaran-Cambrian transition is still a source of debate (Brasier 1979; Runnegar 1982;
Seilacher 1997; Dzik 2005; Xiao & Laflamme 2009; Erwin & Tweedt 2012; Droser et al. 2017;
Wood & Erwin 2017; Wood et al. 2019).

Perhaps the most interesting questions around Ediacaran palaeobiology relate to first
and last occurrences of taxa (e.g. Narbonne & Gehling 2003; Liu et al. 2011; Liu et al. 2014;
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Matthews et al. 2020), but also the biotic transition from the Ediacaran into the Cambrian
(Droser et al. 2017). With almost all first order evolutionary innovations (e.g. biomineral-
ization, terrestrialization etc.) there is a period of time with equivocal evidence for the
event prior to its universally accepted advent. This is likely usually due to localized in-
novation that is difficult to characterize, followed by rapid radiation/dispersal (e.g. Budd
& Jensen 2017). The record of the end of the Ediacaran and the Cambrian explosion of
animal life include examples of Ediacaran survivors in Cambrian rocks (e.g. Swarpuntia
Jensen et al. 1998; Hagadorn & Waggoner 2000), and also evidence of putative Cambrian
type trace fossils below the recognized Ediacaran Cambrian boundary (Gehling et al. 2001;
Hogstrom et al. 2013; Jensen et al. 2019; Jensen et al. 2000). It is to this latter transition, from
the matground dominated Ediacaran to the macroscopically bioturbated Cambrian (Mcll-
roy & Logan 1999; Seilacher et al. 2005), that our attention is drawn herein.

2. Microbially dominated seafloors at the dawn of animal life

Matgrounds were common in late Proterozoic marine ecosystems, forming wherever
there was a sufficiently low rate of sedimentation to allow organic matter to settle onto
sediment surfaces. In the absence of surficial detritus-feeders and conveyor activity by
bioturbators, the development of matgrounds developed largely unchecked for the ma-
jority of the Proterozoic history of microbial life (Walter 1977). The microbial consortia
that made up Proterozoic and lowermost Palaeozoic matgrounds, the physical integrity
of matgrounds, and their shear strength remain effectively unknown. It is presumed that
in shallow water depositional settings there was a strong photosynthetic component and
that matgrounds were dominantly algal in nature (e.g. Gehling 1999), but in deep marine
settings the matgrounds likely also had a range of sulphur-oxidizing bacteria close to the
sediment-water interface (Mcllroy et al. 2005; Menon et al. 2017). Modern matgrounds are
loci of large amounts of microbial biomass and microbial DOM production (Prieto-Barajas
et al. 2018). In fine-grained sediments, the matground microbiota occludes pore throats
with filaments, resulting in porewater dysoxia or even anoxia very close to the sediment-
water interface (Lawrence et al. 1994). The fine-grained sediment below the (macro)fos-
siliferous Ediacaran matgrounds of Avalonia was most commonly pelagite or hemipela-
gite, probably with relatively high amounts of porewater (Brasier et al. 2013; Harazim et
al. 2013). The smothering of these matground surfaces by the growth of reclining organ-
isms or fallen erect organisms commonly caused the preservation of negative impressions
of even the delicate fronds of Ediacaran organisms (Mcllroy et al. 2009; Fig. 1a).

One of the most distinctive aspects of the earliest Ediacaran soft-bodied macrobiotas
is that—with few rare exceptions—they were immotile, and in many cases grew to very
large sizes on matgrounds (Narbonne & Gehling 2003; Liu et al. 2016; Taylor et al. 2021;
Fig. 1b). Being immotile on a porous organic-rich seafloor potentially results in serious
biogeochemical challenges in the form of hydrogen sulfide buildup below the body tissues
(Ortega et al. 2008; Dufour & Mcllroy 2017a, b). If hydrogen sulfide accumulates un-
checked next to the epithelium of an immotile recliner it would likely cause cell-death,
meaning that soft-bodied Ediacaran organisms must have been able to modify the organ-
ism-substrate interface in a manner that detoxified, or otherwise mitigated, sulfide toxicity
(Mcllroy et al. 2021). Other strategies that animals employ to allow growth on sulfidic
porewater substrates involve creation of an inert barrier between the sediment and the
organism such as the holdfasts of Crinoids (Seilacher & MacClintock 2005), the basipina-
cocytes of sponges (Dufour & Mcllroy 2017b), or the mucous burrow linings of burrowers
that make permanent dwellings (e.g. cerianthid anemones, Frey 1970; Bromley 1996). The
most common way for modern soft-bodied organisms to avoid sulfide toxicity is to either
move on a regular basis (e.g. the placozoan Trichoplax initiates movement in response to
sulfide concentrations (Loenarz et al. 2011) or to detoxify this hydrogen sulfide by pump-
ing oxygen to the sediment interface, causing oxidation of sulfide to thiosulphate (cf.
Dufour & Felbeck 2003; Dufour & Mcllroy 2017a; Fig. 1c). There are many common ecto-
and endo-symbioses between sulfur oxidizing bacteria and animals, particularly on high
surface area, oxygen-rich, epithelia such as gills (Dufour 2005; Dubilier et al. 2008).
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Figure 1. A) Long, narrow Ediacaran frond from Mistaken Point Ecological reserve, NL (scale bar in mm); B) Large reclining range-
omorph Ediacaran frond. aff. Bradgatia sp. from the MUN surface, Catalina Dome, NL; C) Diagrammatic reconstruction of a generic
reclining rangeomorph detailing the ways that it might have interacted with the substrate. The lower surface is irrigated with sea-
water by ciliary action and diffusion. The supply of oxygen to the lower surface is considered to have increased microbial produc-
tivity. The top row of images show possible feeding modes with green circles showing the distribution of chemolithoautotrophic
symbionts and arrows show diffusion of solutes. Furthest left is phagotrophy, next is ectosymbiosis, then endosymbiosis and furthest
right is endosymbiosis with a trophosome (requiring diffusion of sulfide/methane into a thin organism) POM = Particulate Organic
Matter. All of these methods of gaining nutrition would work for endobenthic graphoglyptids; D) reconstruction of the Ediacaran
seafloor of Mistaken Point Formation.

The earliest examples of Ediacaran fossils include the epibenthic Rangeomorpha,
some of which had fractal-like lower surfaces and lived reclined on the seafloor (Hawco
et al. 2020; Mcllroy et al. 2020, 2021; Fig. 1d). Some rangeomorphs actively displaced sed-
iment during growth such that they grew slightly below the ambient sediment-water in-
terface (Droser et al. 2014) and as such were likely adapted to exploit sedimentary bioge-
ochemical gradients, especially the very large reclining organisms (e.g. Bradgatia (see Liu
et al. 2016) and Gigarimaneta (Taylor et al. 2021)). Fractal-like morphologies in reclining
organisms are most consistent with sedimentary nutrient exploitation via symbioses with
lithoautotrophic bacteria, based around the metabolism of methane, hydrogen, and hy-
drogen sulfide in particular. In these symbioses, the rangeomorph probably provided
oxygen to and gained nutriment from the symbionts that it hosted. It is most likely in
these simple organisms that there was a mixture of symbiosis and phagocytosis on the
lower surface of the organism, in the microbial productivity hotspot generated by the lo-
calized enhanced near-organism oxic zone (Dufour & Mcllroy 2017a; Fig. 1c).

Due to the low rate of diffusion of oxygen into the sediment porewater systems that
underlay the ubiquitous Ediacaran seafloor matgrounds, the redox profile of Ediacaran
sediments is likely to have been significantly condensed (Aller 1978, 1982, 1984, 1994;
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Mcllroy & Logan 1999). As a result, very little of the particulate and dissolved organic
matter in such sub-mat settings will have been subject to aerobic respiration (the greatest
energy yield per unit of organic carbon metabolized, e.g. White 1983; Konhauser 2007),
leading to a predominance of sulfate reduction and methanogenesis. However, should a
reclining organism grow atop an established matground and pump oxygenated seawater
to its lower surface, this would stimulate productivity of chemolithoautotrophic bacteria
such as sulfur oxidizers (which could utilize reductants diffusing from the sub-mat sedi-
ment profile, e.g. HS-, NH4 *, Fe (II); Blackburn & Blackburn 1993) as well as metha-
notrophs (e.g. Petersen & Dubilier 2009). Such stimulation of microbial productivity is
likely to have constituted the basis for simple ectosymbiosis/phagotrophic nutrition for
reclining macro-organisms (Mcllroy et al. 2020).

3. The slow death of the Ediacaran-type matground biotope

From their acme in the Proterozoic, matgrounds like stromatolites slowly declined,
becoming increasingly marginalized in the lowermost Paleozoic (Walter & Heys 1985).
Paleozoic matground facies became increasingly associated with environments that were
somewhat hostile to burrowing animals such as low TOC mud-belts in front of deltas
(Harazim et al. 2013; Harazim & Mcllroy 2015), whereas in the lowermost Cambrian mat-
grounds were common in normal marine settings such as the lower shoreface (Mcllroy &
Logan 1999). Evidence for matground facies in siliciclastic settings is commonly in the
form of Microbially Induced Sedimentary Structures (MISS) such as lineated bedding
planes of Arumberia, wrinkled surfaces such as Kinneya and elephant-skin textures (Mcll-
roy & Walter 1997; Pfliiger 1999; Mcllroy et al. 2005; Noffke 2000; Noffke et al. 2002;
McMabhon et al. 2021). These same textures commonly recur after mass extinction events
until biotic recovery re-establishes ecosystem services in the benthic realm, including the
all-important ecosystem engineering burrowing endobenthos (e.g. Sheehan & Harris
2004; Herringshaw et al. 2010; Herringshaw & Mcllroy 2013; Mata & Bottjer 2009; Feng
2021).

The stresses on the matground biotope that dominated hiatal marine seafloors of the
Proterozoic largely result from the effects of bioturbation, which seemingly started in the
Ediacaran with the evolution of bilaterian burrowers (Parry et al. 2017) along with the
grazing activity of metazoans (e.g. Ivantsov 2009; Seilacher & Hagadorn 2010; Chen et al.
2018). This matground stress likely escalated with the evolution of larger bulk-sediment
deposit feeders around the base of Cambrian Stage 2 (Herringshaw et al. 2017), becoming
better established as bioturbators increasingly sought out surficial and buried organic rich
substrates through the lower Palaeozoic (Fig. 2a Bell Island). Modern levels of bioturba-
tion and distribution would likely have developed very quickly.
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Figure 2. A) Microbial matground surface with wrinkled texture and abundant sediment mining trace fossils from the Ordovician of
Bell Island, NL. Field of view c. 30cm; B) typical ichnofabric from the lower Fortunian of Fortune Head showing abundant curved,
spiralling and branching pyritized burrows; C) bedding plane view of Lamonte trevallis burrows (Lt) and pyritized graphoglyptid
burrows with T junction arrowed (field of view 15cm).

The presence of shallow burrows co-existing with elements of the soft bodied Edia-
caran biota, while not entirely unexpected, does need to be considered with an open mind
to alternative hypotheses. The morphologies of late Ediacaran burrows are commonly
simple and narrow (Fig 2b). The most abundant trace in this period is the simple tubular
burrow Lamonte trevallis (Meyer et al. 2014; Fig. 2c), which is interpreted as a member of
an ichnoguild of under-mat miners (Seilacher 1999). Other regularly serial or branched
burrows are commonly attributed to the treptichnid genera Treptichnus and Streptichnus
(Jensen & Runnegar 2005; Hogstrom et al. 2013; Jensen et al. 2020). The importance of
identifying Treptichnus alongside elements of the Ediacaran biota stems from the fact that
the Treptichnus pedum (originally Phycodes pedum Seilacher 1966) ichnoassemblage zone is
diagnostic of the base of the Cambrian, thereby creating an apparent stratigraphic conun-
drum, though in the present author’s opinion, none of the purported Ediacaran Treptich-
nus closely resemble T. pedum. Which begs the question, to me at least, if they are not
Treptichnus s.s. then what are they?

4. The early putative burrowers of the Ediacaran-Cambrian Transition

It is a seldom appreciated precept of ichnological (trace-fossil) studies that burrows
do not generally betray the taxonomic affinities of the burrowing organism (Baucon et al.
2012), nor do they always represent a single life activity in most cases (e.g. Bromley 1996).
A simple vertical burrow in a sand, for example, works just as well as a den for a predator
or mucous net feeder as it does for a head-down deposit feeder (e.g. Herringshaw & Mcll-
roy 2013). While most biologists would accept that as a truism, many palaeo-ichnologists
are surprisingly content with making broad-brush assumptions of behaviour based on
burrow morphology (Mcllroy 2008).
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The majority of the earliest fossil burrows do not show good evidence for deposit
feeding activity, but rather are passively sediment-filled, diagenetic mineral-filled, or col-
lapsed (refs; Herringshaw et al. 2017). In the type section for the Ediacaran-Cambrian
boundary in southeastern Newfoundland, Canada, the open, passive filled burrows Trep-
tichnus and Gyrolithes, dominate the ichnology of the Fortunian-aged Treptichnus pedum
assemblage ichnozone (Crimes & Anderson 1985; Mcllroy & Logan 1999; Herringshaw et
al. 2017; Laing et al. 2018; Fig. 3). In the Fortunian stage of the lower Cambrian there are
also abundant surface traces including arthropod burrows and surficial grazers/bulldoz-
ers (Crimes & Anderson 1985; Narbonne et al. 1987), but it is not until slightly higher in
the lower Cambrian (Cambrian Stage 2) that there is unequivocal evidence of bulk sedi-
ment deposit feeding activity (Herringshaw et al. 2017; Mcllroy & Brasier 2017).

Figure 3. Tubular open “burrows” from the Fortunian of Fortune Head NL showing spiralling morphologies of: A) Gyrolithes gyratus;
and B) G. scintillus with pyrite rich silty sandstone fill. C) shows the bedding plane view of a monopodially branching Treptichnus
pedum in which the pyritic fill has weathered away showing the mold of the burrow, the space that would have been occupied in life.
Whether these structures were burrows sensu stricto or casts of the exterior of spiralling or branching organisms remains to be de-
termined.

The ichnogenus Treptichnus (sensu stricto) was created for fossilized burrows (Miller
1889) and has subsequently been applied to a range of marine trace fossils from deep ma-
rine turbidite successions throughout the Phanerozoic, as well as shallow marine trace
fossils of the Palaeozoic and burrows of modern insect larvae (Muniz-Guinea ef al. 2014).
The generic diagnoses of the similarly branching burrows of Trichophycus and Phycodes
include the formation of spreite by serial bulk sediment deposit feeding and direct evi-
dence of movement in the form of bioglyphs; fecal pellets are known from Cambrian Stage
2 (Jensen 1997; Orlowski & Zylitiska 1996; Fig. 4). Both Trichophycus and Phycodes have
Treptichnus-like biserial and uniserial branching, which is almost certainly an example of
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convergent behavioural evolution for effective sediment exploration and exploitation us-
ing sympodial/feather stitch branching (Babcock et al. 2014; Mcllroy & Brasier 2017; Bu-
atois 2018).

Figure 4. Segments of Trichophycus ispp. from the lower Cambrian Arumbera Sandstone of central
Australia showing the stacked spreite (A) and scratch marks (B) that distinguish the genus from
Treptichnus. Field of view A is 3cm, B is 6cm.

While the ichnotaxonomic minutiae have been explored in detail, the question that
seems not to have been asked is: what evidence do we have for the behaviour represented
by the lowermost Cambrian marine treptichnids? We know that organisms have been
able to exploit sub-seafloor settings by sediment displacive growth since the Ediacaran
(Droser et al. 2014), so the question remains “Do we even know if the earliest endogenic
structures were trace fossils sensu stricto and not just external molds of the first sediment
displacive endobenthos?” I would posit that we do not.

If we are to open ourselves to the possibility of sediment displacive growth (sensu
Droser et al. 2014) persisting beyond the Ediacaran, then there are a wide range of lower
Cambrian burrow-like structures that are always passively filled with sediment or col-
lapse (i.e. not backfilled by the trace maker) that could be reinvestigated. In this case ra-
ther than being burrows we could think of them as external molds.

Note that this is not the same as the approach to Treptichnus pedum by Dzik (2005)
who conflated biotaxa and ichnotaxa (creating a priapulid genus Manycodes), even though
the two do not complete under the ICZN. Manycodes has not been accepted as being syn-
onymous with Treptichnus, though the Scalidophora are considered a likely trace-makers
of Treptichnus- and Trichophycus-like burrows both modern and ancient (Kesidis et al.
2019).

5. What are the Graphoglyptida if not the Rangeomorpha persevering?

One of the remarkable things about the “trace fossil” record of the shallow marine
matground-rich facies of the lowermost Cambrian is that there are numerous narrow, ge-
ometric graphoglyptids (sensu Fuchs 1895; Seilacher 1977). Graphoglyptids are primarily
known from deep marine depositional settings (Seilacher 1962; Miller 1991; Uchman 2004;
though see Fiirsich et al. 2007; Olivero et al. 2010) from the Ordovician onwards and having
a major radiation in the Cretaceous (Uchman 2004), perhaps coincident with the expan-
sion of deciduous trees. The affinities of the Graphoglyptida are contentious, and even
though some examples are known from modern seafloors, no trace-maker has yet been
identified (Rona et al. 2009).

Recent work has divided the Graphoglyptida into three topological groups (Fan et al.
2018): 1) “line graphoglyptids” (mostly meanders and spirals) which are common in the
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Fortunian lower Cambrian worldwide (Fig. 5a, b); 2) “tree-form (mainly sympodially-
branching) graphoglyptids” (including Treptichnus; Uchman et al. 1998) which are locally
common in lower shoreface settings (Fig. 5¢, d); and 3) “net-type graphoglyptids” that are
generally rare except in tempestite and prodelta turbidite deposits (e.g. Crimes & Ander-
son 1985; Mcllroy et al. 1997; Mcllroy & Brasier 2017; Fig. 5e, f).
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Figure 5. Graphoglyptid morphologies: A, B are line graphoglyptids (A Helminthoida though note the branching from the Cambrian
Arumbera Sandstone Australia; B is Helicolithus from the latest Ediacaran of Tanafjord, Norway); C-D are branching graphoglyptids.
(B is Belorhaphe from the late Ediacaran of Tanafjord, Norway, D is cf. Paleomeandron from the Cambrian Arumbera Sandstone); E-F
are net graphoglyptids (E is Squamodictyon from the Arumbera Sandstone, Australia and F is Paleodictyon also from the Arumbera
Sandstone).

Most authors have considered the mode of life of the graphoglyptid-making organ-
isms to include a combination of: 1) intensive [near]surficial bulk-sediment detritus feed-
ing in meanders and spirals (Seilacher 1977; Fan et al. 2018); and 2) the creation of open
sub-surface branching burrows and networks that were maintained for the purpose of
“farming” microbes on the burrow wall (Seilacher 1977).

5.1. The early Vermiform/Line Graphoglyptids

In the Cambrian, hiatal matground facies prior to the onset of deep deposit feeding
activity is likely to have been associated with surficially-concentrated nutrients similar to
the distribution of food on the deep basin floors exploited by modern systematic (mean-
dering/spiraling) deposit feeders (e.g. Ekdale 1980). The similar trace fossil assemblage is
perhaps to be expected.

That the surficial matground biotope was host to some of the earliest Ediacaran en-
dogenic structures (e.g. Lamonte trevallis) is to be expected (Gingras et al. 2011). The ability
of the organisms to penetrate matground textures is a most surprising and fundamental
innovation, potentially opening up the sub-matground porewater systems to a second
phase of microbial oxidation of buried organic matter. Since backfill is yet to be demon-
strated in this under-mat-miner guild, it should also be considered that the open tubular
structures with their high surface area to volume ratio might have been suitable for cilial
bioirrigation by a very simple immotile animal living in the sediment. Such a mode of life
would be particularly effective if the Lamonte-making organism had symbionts as did
some of the rangeomorphs.

Other similar, open, unbranched features described as burrows are common in the
latest Ediacaran and lower Cambrian. Several distinctive spiraled/sinuous taxa of uni-
form diameter without backfill are known from within meters of the Ediacaran-Cambrian
boundary, including the vertically spiraled Gyrolithes scintillus and G. gyrates (Fig. 3) and
horizontally spiraled Helicolithus (Banks 1970; Herringshaw et al. 2017; Mcllroy & Brasier
2017; Laing et al. 2018; Fig. 5a), Streptichnus (Jensen & Runnegar 2005), and some ?Trep-
tichnus (Jensen et al. 2020). All of these taxa are considered to have been maintained such
that they were constantly open to seawater and are commonly partly pyritized. That the
burrows are commonly pyritized is suggestive of the presence of sulfur oxidizing bacteria
that would be predicted by the ciliary irrigating mode of life of the symbiotic/phagocytotic
Rangeomorpha proposed by Dufour & Mcllroy (2017a).

Previous work has noted the potential for bacterial farming in Gyrolithes (Laing et al.
2018), presumably via bioirrigation (Herringshaw et al. 2010), but did not consider a range-
omorph-like chemosymbiotic mode of life. The bacterial farming mode of life seems to
rely on some form of burrow wall grazing for which there is to date no convincing evi-
dence. Younger occurrences of Gyrolithes are commonly attributed to conventional dwell-
ing or deposit feeding burrows of bilaterian taxa from various “worms”, arthropods and
even vertebrates (e.g. Laing et al. 2018). Modern Helicolithus-like burrows are known to be
formed in sulfidic marine sediments by the deposit feeding enteropneust Saccoglossus
(Gingras et al. 2010).

If the paradigm for a rangeomorph-like symbiotic lifestyle (Mcllroy ef al. 2021) can
be extended to unbranched, high surface area-volume ratio burrows without evidence of
burrowing action/feeding, then the atypical nature of the earliest trace-fossil biotas and
their overlap with the Ediacaran biotas might be explainable.

5.2. The Tree-like Graphoglyptids of the E-C boundary

Recognition of the tree-like graphoglyptids in bedding plane expression is commonly
facilitated by the presence of sharp, commonly high angle branches —even 90° branching.
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That in itself is unremarkable (e.g. Frey & Bromley 1985), but to have 90° branching with-
out corner rounding (see Treptichnus in Baucon ef al. 2014, their fig. 6) is unusual/unknown
in burrows that are constantly patrolled by the trace-maker. A large number of trace fos-
sils fall into this category; many of them are very beautiful, consisting of high angle
branching in complex shapes, often forming meanders and almost never self-crossing.
Most Phanerozoic examples of the tree-like graphoglyptids have very long chains of self-
similar elements in a single meandering burrow (e.g. Uchman 2004). Cambrian examples
attributed to the same ichnotaxa tend to be short and slightly atypically irregular (Mcllroy
& Brasier 2017; Fig. 5¢, d).

In the farming model for graphoglyptid palaeobiology (Seilacher 1977), the endoben-
thic organism is inferred to have either actively or passively irrigated the burrow, thereby
providing a large surface area supplied with oxygenated seawater upon which a microbi-
ota could be cultured.

The most common tree-like, branching open burrow in the Cambrian is Treptichnus
pedum, which may have alternated between biserial and uniserial sympodial branching.
The feather-stitch biserial branching produces effectively straight burrows, with terminal
openings at the end of each blind ended branch (Fig. 6a). The length of branches and their
angle can vary considerably, affecting spacing between branching (Fig. 6b). The same bur-
rows can curve by undergoing uniserial sympodial branching (Fig. 6c) while avoiding
self-crossing, perhaps in response of physico-chemical seafloor gradients.

Figure 6. A-D Treptichnus pedum showing a range of branching types. All preserved as open burrow fills from the Fortunian of
Tanafjord, Norway. D shows both uniserial and biserial monopodial branching. E is a small portion of aff. Bradgatia showing Trep-
tichnus like branching. F Treptichnus lublinensis showing meandering habit and very rangeomorph-like branching. Scale bars 1ecm

except D, which is 5em.
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The epibenthic rangeomorph Bradgatia undergoes similar branching in search of nu-
trients (Fig. 6d) and likely had an oxygen-capturing upper surface and a ciliated lower
surface providing fresh supplies of seawater to its episymbionts. The other species of
Treptichnus that is only known from the lower Cambrian is the very shallow tier rangeo-
morph-like Treptichnus lublinensis, which would not look out of place in some of the iconic
deep marine Ediacaran biotas (Mcllroy et al. 2021; Fig. 6e). Additionally, zig-zagged open
burrows attributed to Belorhaphe sp. (Fig. 5¢) from the latest Ediacaran of Norway (Mcllroy
& Brasier 2017) are much like Treptichus except for the branching position and small size.
This not to say that the treptichnids and forms like Belorhaphe were indeed rangeomorphs
per-se, just that they may have had a rather rangeomorph-like mode of life and growth
(albeit endobenthically rather than epibenthically) and were not necessarily deposit feed-
ers as is commonly stated but may have had a sediment-displacive mode of life. As we
strive to understand these purported trace fossils, we need to bear in mind the possibility
that they could be external molds rather than burrows.

5.3. The Net-like Graphoglyptida

The net-like Graphoglyptida are some of the most complex burrow systems in marine
depositional settings. If they were to be created by burrowing, their excavation would
require complex “programming” (Seilacher 1977) to evolve at or before the Ediacaran-
Cambrian boundary since the net-like graphoglyptids are known from the latest Edia-
caran (described as Multina or Olenichnus; Fedonkin 1985; Parry et al. 2017; Mcllroy & Bra-
sier 2017; Fig. 7).

Figure 7. Net-type graphoglyptids from the Ediacaran (A) Multina and Fortunian (B) Paleodictyon of Tanafjord. Some of the suppos-
edly most complicated marine trace fossils amidst the earliest record of endobenthic activity. Scale bar 1cm.

Modern soft-sediment cores have occasionally recovered shallow-tier polygonal xen-
ophyophore-like protistan organisms (Swinbanks 1982) comparable to partial Pal-
aeodictyon. At the same time, however, it is possible for simple organisms such as nema-
todes and foraminifera to make multi-tiered network burrows comparable to Multina sp.
(Severin et al. 1982; Balinski et al. 2013). Some of the network-like morphology of Multina
and Olenichnus have sharp (unrounded) angles at the branching points of the Grapho-
glyptida. That lack of corner rounding is common to all Palaeodictyon and, for this author
at least, is very suggestive of branched growth evincing preservation of external molds of
an organism rather than being a constantly patrolled burrow. Corner rounding is common
in all long trace makers, e.g. worms and some arthropods. Some authors have argued that
sharp corners could be maintained in networks if burrowed by a trace-maker that is about
as long as the burrow is wide (Fan et al. 2018).

6. Conclusion or “What if....?”

The ideas outlined above constitute testable hypotheses that admittedly ask very dif-
ficult questions of the rock specimens we have to work with, but should not be discarded
in preference for conventional interpretations without careful consideration.
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The questions around the demise of the Ediacaran biotas and the diversification of
animals in the lower Cambrian are first order palaeontological questions. Whether the
graphoglyptids function as microbe farms that were patrolled, irrigated and browsed
upon by a short-bodied active burrower; or whether they are the external molds of a sim-
ple pre-placozoan-grade rangeomorph-like organism that grew in or through the sedi-
ment is also key.

If we could know unequivocally what the enigmatic open burrow-like structures in
the lowermost Cambrian are, we might become a step closer to understanding either the
persistence or otherwise of the chemosymbiotic Rangeomorpha, or better appreciate the
palaeobiology of the earliest burrows. Either way, it is considered here that they might
make a poor choice for delineating the base of the Phanerozoic. The abundant traces of
arthropods might be preferable for their lack of ambiguity if nothing else.

The fossil record of the dawn of animal life is full of hints and contradictory evidence,
provincialism and incomplete datasets. The questions around the affinities of the Edia-
caran biota and the appropriate choice of marker for the Ediacaran boundary are still far
from resolved. There is much yet to do, and the hypotheses generated by asking the awk-
ward question ‘What if...?” are more likely to provide novel answers than not asking.

Acknowledgments: Apologies to Marvel Comics for the bastardization of the wonderful line “What
is grief if not love persevering” from WandaVision. It was made for palaeontology/evolution.
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