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Abstract: The video images captured at long range usually have low contrast floating objects of 

interest on a sea surface. A comparative experimental study of the statistical characteristics of re-

flections from floating objects and from the agitated sea surface showed the difference in the corre-

lation and spectral characteristics of these reflections. The functioning of the recently proposed mod-

ified matched subspace detector (MMSD) is based on the separation of the observed data spectrum 

on two subspaces: relatively low and relatively high frequencies. In the literature the MMSD per-

formance has been evaluated in generally and moreover using only a sea model (additive Gaussian 

background clutter). This paper extends the performance evaluating methodology for low contrast 

object detection and moreover using only the real sea dataset. This methodology assumes an object 

of low contrast if the mean and variance of the object and the surrounding background are the same. 

The paper assumes that the energy spectrum of the object and the sea are different. The paper in-

vestigates a scenario in which an artificially created model of a floating object with specified statis-

tical parameters is placed on the surface of a real sea image. The paper compares the efficiency of 

the classical Matched Subspace Detector (MSD) and MMSD for detecting low-contrast objects on 

the sea surface. The article analyzes the dependence of the detection probability at a fixed false alarm 

probability on the difference between the statistical means and variances of a floating object and the 

surrounding sea.  

Keywords: real sea surface, object detection, performance detection. 

 

1. Introduction 

We tackle the problem of multi-pixel floating objects detection in image sequences, 

which arises in search and track video systems [1-11].  In many instances, the objects are 

small and low contrast in a surrounding background environment. The known methods, 

such as clutter removing [1-3], subspace projection [21], entropy-based method [11], and 

multi-frame solve the detection in fluctuating background. The Modified Mean Subtrac-

tion Filter (MMSF) [3] improved the Mean Subtraction Filter (MSF) but only for a high 

signal-to-background ratio (SBR). Conventional low contrast target detection methods, 

such as median filter [3], least mean square filter [2,12], and morphology-based methods 

[10], are used to reduce only the background clutters. Application of such methods to 

problems of the target detection shows limited detection performance enhancement since 

these methods use fixed filters. 

 Detection algorithms based on statistical methods are widely used in remote sensing 

systems where channel noise and random intense background environment are present 

[13-24]. The well-known matched and matched subspace filters [15] are such algorithms. 
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Adaptive algorithms and algorithms that take into account the specific features of scenar-

ios were based on generalized likelihood ratio test (GLRT) and were considered in [15, 16, 

21-23]. A Modified Adaptive Subspace Detector (MASD) was proposed for detecting 

faintly discernible objects during image processing [17, 20-24].  

 In this paper, we focus on the detection of small low contrast fluctuating object de-

tection on the agitated sea surface in the presence of channel noise. Algorithms for detect-

ing objects on the surface of the sea should be slightly sensitive to sensor movement and 

water spray. The common drawbacks of the published papers are the assumption that the 

background and channel noise are almost Gaussian processes and the lack of a low con-

trast target model. To eliminate these shortcomings, this work uses images of real sea sur-

faces in various weather conditions and determines the contrast of a floating object as the 

difference between the statistical averages and the variances of the compared surfaces. In 

this work, the low contrast floating object has a statistical mean and variance almost equal 

to the sea surface. This paper investigates the dependence of the detection probability on 

the difference between the mean and variance of the floating object and the surrounding 

sea surface. For such a study, it is necessary to change the values of these differences. It is 

very difficult to experimentally obtain real images of floating objects with different mean 

values and variances. Therefore, this work uses a model of reflections from a floating ob-

ject, in which both average values and variances can be changed.   

This approach allows to change the difference between the statistical parameters of 

the object and the environment. The aim of this paper is to study the performance of two 

detectors (MSD and MMSD) in the case of low-contrast floating objects detecting. 

2. Floating object signal model 

In this paper, using the experimental data we investigate the relationship between 

two techniques of the detecting of a small low contrast floating objects on the sea surface 

in the image sequences: well known the MSD and recently proposed the MMSD [18]. Un-

like previous studies, this work uses real images of the sea surface on which a model of a 

floating object is placed. As well known, the creation of a model of an agitated sea surface 

causes significant difficulties.  

Therefore, we do not use the model of reflections from the sea surface in this work, 

replacing it with real images of the agitated sea surface under various (3 types) weather 

conditions. We use a generic model of reflections from a floating object [18]. This approach 

allows, firstly, to avoid possible errors due to the inaccuracy of the model of reflections 

from the sea and, secondly, by introducing a model of a floating object, to control the 

magnitude of the contrast of the floating object relative to the sea surface.  

This approach allows to set the selected for analysis contrast of the object in relation 

to the sea surface. Contrast is usually defined as the difference between the target average 

intensity and the average background intensity. What needs to be considered is that the 

definition of contrast given above only applies to local area of image instead of the entire 

image.  

In this paper, we expand the definition of contrast by introducing as a contrast pa-

rameter the difference between the variances of the object and the sea. The detection of a 

floating object under the condition of minimum contrast (the difference between the 

means and the difference between the variances of the object and the sea is close to zero) 

depends on the difference in the covariance matrices of reflections from the object and the 

sea (or from their energy spectra). Therefore, the detector must be sensitive to the differ-

ence between the covariance matrices of the object and the sea. This paper analyzes this 

sensitivity for two detectors.   

This section discusses a model of a floating object on a rough sea surface. First, the 

size of the rectangular sub-image (K×M) is selected, in which processing will be performed 

in order to detect a signal from a floating object into this sub-image. Then, the analyzed 

image is divided into a number of such non-overlapping sub-images. We assume that the 

sub-image (K×M) is significantly smaller than the dimensions of the floating object (N×L).  

The object signal is modeled as a two-dimensional matrix (N×L). 
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The floating object model is a matrix, each column of which is formed as a vector of 

different shapes. A linear model with a Vandermonde matrix is used to form each column.  

The work assumes the detection of a solid floating object. The work assumes the detection 

of a solid floating object. Therefore, the floating object model assumes a change in the 

maximum frequency of each column, but this frequency is always less than the maximum 

frequency of the signal reflected from the sea surface. The r-th column-vector of the object 

sub-image model is represented by:   

 

                      𝒔𝑟 = 𝐇𝜽𝑟                                       (1) 

 

where r=1, 2, …, L; H is the object mode matrix (Vandermonde matrix) with discrete com-

plex exponential elements: 

                       𝐇 = [
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⋮
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⋮
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where 𝑧𝑛
𝑖 = ℎ𝑖𝑛 =  

1

√𝑁
exp (

𝑗2𝜋𝑖𝑛

𝑁
) , the subscripts n and i denote the column and row num-

ber of the matrix H, respectively; i = 0,1, 2, …, N-1; n = 0, 1, 2, …, p; j=√(-1). The linear model 

(1) can be interpreted as a linear combination of columns (complex harmonics) of H, 

weighted by their respective coefficients (amplitudes) θr = [θ1r, θ2r, …, θpr]. The parameter 

θr is a priori unknown and in this paper is a sample from a random uniform distribution.     

Thus, the multipixel model of a floating object is represented by a matrix of size (N×L) 

consisting of L vectors sr.  

 

                        
 (a)  Mean=130             (b) Mean=100            (c) Mean=100 

     variance=90              variance=90            variance=350                

                            Figure 1. Object model examples of size 20×20, p=8. 

 

 

                       
  (a) Mean=130           (b) Mean=100               (c) Mean=100 

      variance=90          variance=90              variance=350                

Figure 2. Object model examples of size 20×20, p=3. 

 

                          Examples of object models with different mean values and variances using the 8 first  

                          Fourier harmonics are shown in Figure 1. For comparison of the object model with the  

                          same mean and variance values, but using the first 3 Fourier harmonics, are shown in 

                          Figure 2. 

 

3. Problem Statement and Detector Design 

The purpose of this section is a statistical description of the detection problem and 

the corresponding suboptimal algorithms synthesized by the method GLRT. The problem 

is to test the statistical hypothesis 𝐻0 against the alternative 𝐻1 and to select the one that 
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is most consistent with the prior models and the observations. We will consider two pos-

sible scenarios for detecting a floating object on the sea surface, using one frame and a 

sub-image (K×M), in which the detection is carried out.  

The first scenario assumes that there is no information about the size of the floating 

object. Therefore, it is generally assumed that the detection sub-image can be larger than 

the size of the object (K>N, M>L). Then, under hypothesis 𝐻1, the received signal consists 

of the sum of the signals reflected from the object, the sea and the channel noise. The first 

scenario can be described as follows: 

 

{  
𝐻0: 𝒙𝑚 = 𝒄𝑚 + 𝒏𝑚;           
𝐻1: 𝒙𝑚 = 𝒔𝑟 + 𝒄𝑚 + 𝒏𝑚;

𝑚 ∈ [1, 𝑀], 𝑟 ∈ [1, 𝐿],                            (3) 

 

The hypothesis 𝐻0 assumes that the received signal vector is the sum of the signal 

reflected from the sea surface 𝒄𝑚 = [𝑐1𝑚  𝑐2𝑚 ⋯ 𝑐𝐾𝑚]𝑇  and the additive channel noise 

𝒏𝑚 = [𝑛1𝑚  𝑛2𝑚 ⋯ 𝑛𝐾𝑚]𝑇 . Under an alternative hypothesis, the received signal consists of 

signals reflected from the object 𝒔𝑟 = [𝑠1𝑟  𝑠2𝑟 ⋯ 𝑠𝑁𝐿]𝑇, the sea 𝒄𝑚 and additive normal 

noise 𝒏𝑚. The article [19] synthesizes the detection algorithm for this scenario. For sim-

plicity, it is assumed that the signal reflected from the sea surface can be represented as a 

normal random uncorrelated process 𝒄𝑚~𝑁(0, 𝜎𝑐
2𝑰)  and channel noise 𝒏𝑙~𝑁(0, 𝜎𝑛

2𝑰) , 

where 𝜎𝑐
2 > 𝜎𝑛

2. This algorithm was obtained at unknown object size and known spectral  

frequency range of the reflected signal. To describe the detection algorithm, the article [19] 

used the orthogonal projection matrix 𝑷 = 𝐇(𝐇𝐻𝐇)−1𝐇𝐻. 

The resulting algorithm practically coincides with the well-known MSD algorithm: 

    

                 𝑇𝑀𝑆𝐷  = ∑ 𝒙𝑚
𝑇𝑀

𝑚=1 𝑷𝒙𝑚

𝐻1

≥
<
𝐻0

𝜂,                              (4) 

 

where η is a threshold that determines the probability of a false alarm. 

The second scenario assumes that the object is larger than the sub-image so that there 

is always one sub-image that is completely covered by the object. In this case, we can 

assume that N = K and L = M.  

The null statistical hypothesis corresponds to the case of observing the sea surface 

without an object, and the alternative hypothesis corresponds to the case of the presence 

of an object on the sea surface. In this case we can represent two statistical hypotheses 𝐻0 

and 𝐻1:  

 

{ 
𝐻0: 𝒙𝑚 = 𝒄𝑚 + 𝒏𝑚

𝐻1: 𝒙𝑚 = 𝒔𝑚 + 𝒏𝑚,
    𝑚 ∈ [1, 𝑀]                                       (5)       

 

It is known that the Wandermonde matrix H consists of columns orthogonal to each other. 

The paper assumes that columns from 1 to p describe reflections from an floating object, 

and columns from p + 1 to K describe an orthogonal subspace 〈𝐇⊥〉, in which the energy 

of signals reflected from the sea surface is present and there is no signal from the object. 

This assumption is consistent with the experimental results of studying the spectral com-

position of reflections from the sea and from the object. To describe the detection algo-

rithm, the article [19] used the orthogonal projection matrix 𝑷⊥= I-P onto the orthogonal 

subspace 〈𝐇⊥〉, where I is identity matrix (K×K). 

 

 

The MMSD [19] is: 

 

         TMMSD=∑ [
𝒙𝑚

𝑇 𝒙𝑚

𝐾𝜎0
2 − 𝑏 ∙ 𝑙𝑛

𝒙𝑚
𝑇 𝑷⊥𝒙𝑚

𝐾𝜎0
2 ]𝑀

𝑚=1  

𝐻1

≥
<
𝐻0

𝜂1,                        (6) 
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where 𝜎0
2 = 𝜎𝑐

2 + 𝜎𝑛
2 is the background plus noise variance of the pixel, b is sensitive fac-

tor, 𝜂1 is the threshold.  

 

                         4. Comparative performance assessment  

In this section, it is assessed the performance of the MMSD and MSD in terms of 

detection probability (Pd) at a fixed false alarm probability Pfa=10-3. The paper considers 

the case of a low-contrast object on the sea surface. A low-contrast object is understood as 

an object whose statistical mean and variance are close to the corresponding values of 

reflections from the sea surface. The paper uses real videos of the sea surface under vari-

ous weather conditions. 4 different videos were selected, which are presented in Figure 3.  

In Figures. 3a, 3b, 3c show images of sea surfaces with real low-contrast floating ob-

jects, and in Fig. 3d shows a real sea surface with a low-contrast model of a floating object. 

All the following figures show the curves averaged over these four sea surface types. It is 

known that the MSD calculates the power of the input signal in a bandwidth where the 

reflected energy from the object is significant. The signal power depends on the statistical 

mean and variance of the signal. Therefore, the MSD cannot detect signals in the back-

ground noise if the signal and noise power are the same in a given bandwidth.    

MMSD, unlike MSD, is also sensitive to power in the orthogonal subspace, in which 

signals from the sea and channel noise are present at the null hypothesis, or only channel 

noise is present at the alternative hypothesis. 

 Figure 3 shows the various surfaces of an agitated sea with a poorly visible real ob-

jects. In these images, the differences between means and variances of the object signal 

and sea signal do not exceed 10%.  

This study required the presence of floating objects with different intensities of re-

flections (both statistical averages and variances). Therefore, a technique was used to place 

an artificially created model of a floating object on a real image of the sea. The statistical 

mean and variance of the model were changed programmatically. 

Typical averaged spectra of reflections from a typical unobtrusive floating object and 

a typical agitated sea surface are shown in Fig. 4 (a, b). The width of the spectrum of re-

flections from a floating object is less than 10 Hz (0-10), and from the rough sea surface it 

reaches 25 Hz (0-25). Using these experimental data, the parameter p is selected in the 

detection algorithms. 

To obtain the detection characteristics, a site was selected on the sea surface at a dis-

tance of about 200 m from the camera, which made a video for 5 minutes. Each frame is 

divided into windows (10x10), which cover the entire surface of each frame. Each window 

is processed in order to detect a floating object in it. The processing results for each win-

dow are compared with the set threshold. If the threshold is exceeded, a decision is made 

on the presence of a floating object inside the analyzed window. The dimensions of the 

floating object significantly exceed the size of the window where processing and detection 

are carried out (10x10), the average power of the floating object reflections and the stand-

ard deviation changed during the experiments. Additive channel noise with a given in-

tensity has been added to all images. To implement the detection, we first selected the 

window of the sea image without an object, in which the detections were carried out in 

order to establish a threshold providing a false alarm probability of 0.001. In the selected 

sub-image, the detection process was implemented 10000 times in 10000 frames. The out-

put values of the detectors (10000 numbers) were analyzed and ordered in ascending or-

der. 
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         (a)                         (b) 

 

     
          (c)                         (d) 

Figure 3. Images of the different sea surfaces with real floating low-contrast objects 

                             a), b), c) and with a low-contrast floating object model d). 

 

 

 

 
             (a)                   (b) 

Figure 4. Average spectrum of reflections from a real floating low contrast object a)  

                              and from real agitated sea surface b). 

 

In this paper, the problem of detecting a low-contrast floating object was solved. For 

this, the statistical means and variances of the object model were changed in the course of 

the experiments, and the dependence of the detection probability on the difference be-

tween the average object and the sea was analyzed for different values of the difference 

between the variances of the object and the sea. The ratio of the channel noise power to 

the sea power also changed.   
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                       (a) 

 
                         (b) 

Figure 5. MSD detection probability vs difference between object mean and sea mean, 

NBR=0.004 (a), NBR=0.3 (b), p=3 for different coefficient v=OP/BP. 

 

 

In Figures 5 the characteristics of the MSD are given. In Figures 5a and 5b the de-

pendences of the detection probability on the difference between the average object and 

the sea are given for different ratios of the channel noise power to the power of reflections 

from the sea NBR (noise-to-background ratio) and different coefficient v=OP/BP (object 

power-to-background power).  

Analysis of the curves shows that the detection quality of the MSD is highly depend-

ent on the difference between the average signals reflected from the object and from the 

sea. At the same time, a significant increase in the channel noise power insignificantly 

worsens the detection quality. An increase in the difference between the dispersions of 

reflections from the object and from the sea increases the detection quality significantly. 

However, the MSD does not provide high detection quality with a small difference be-

tween the average reflections from the object and from the sea. 
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                      (a) 

 
                        (b) 

Figure 6. MMSD detection probability vs difference between object mean and sea mean, 

NBR=0.05 (a) and NBR=0.3 (b), p=3 for different coefficient v=OP/BP, b=2.3 

 

 In Figures 6 and 7 the characteristics of the MMSD are given. Comparison of the 

graphs in Figs 6a and 6b shows that the quality of the MMSD strongly depends on the 

channel noise power. With an increase in the channel noise power, the probability of de-

tecting MMSD deteriorates. 

 However, with a small ratio of the channel noise power to the power of reflections 

from the sea, the MMSD is able to detect a low-contrast object even with a zero difference 

between the average signals reflected from the object and from the sea. 

As with the MSD, an increase in the difference between the dispersions of the reflec-

tions from the object and from the sea increases the detection quality. 

Comparison of the graphs in Figure 7a shows that the quality of the MMSD strongly 

depends on the sensitivity coefficient b, which determines the contribution of the second 

term in the MMSD algorithm. Figure 7b suggests that with an increase in the sensitivity 

coefficient, the dependence of the detection quality on the power of the channel noise in-

creases. From the given graphs it follows that to detect low-contrast floating objects, it is 

advisable to use the MMSD algorithm, which has a high detection quality even with equal 

values of the mean and dispersion of signals reflected from the object and from the sea.  
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                        (a) 

   
                         (b) 

Figure 7. MMSD detection probability vs difference between object mean and sea mean, 

NBR=0.05, p=3, v=1, for different coefficient b (a), and b=2, p=3, v=1, for different coeffi-

cient NBR (b). 

 

 To explain this, attention should be paid to the second term in the MMSD, which 

increases with an increase in the difference between the power of the signals reflected 

from the sea and the channel noise. This algorithm assumes that the MMSD detector is 

able to estimate the power of noise or power of reflections from the sea in the frequency 

range, in which there is no signal reflected from the object. This is valid for floating solid 

objects. In Figure 4 shows the plots of the Fourier spectra modules characteristic of reflec-

tions from floating solid objects and from agitated sea. 

 

                         5. Conclusions 

1. The experiments carried out show that, provided that reflections from a floating 

object and from the sea surface have the same statistical averages and variances, the use 

of classical detection algorithms does not allow obtaining high detection quality.  

2. The algorithm for detecting low-contrast objects should be sensitive to the shape 

of the amplitude spectrum of the received signal. 

3. MMSD allows realizing high-quality detection of a low-contrast floating solid ob-

ject, because sensitive to spectrum energy in different frequency ranges. 

 

4. To use MMSD, information is required on the width of the spectrum of signals 

reflected from a floating object.  
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5. This work is based on experimental data obtained for various scenarios of the sea 

surface. 

 

The paper experimentally shows the high efficiency of the considered method for 

recognizing low-contrast objects (anomalies) surrounded by a random background in the 

presence of channel noise. Recognition of low-contrast objects (anomalies) located on a 

surface with random parameters can be used in various technologies, for example, for the 

automated recognition of anomalies in medical images. In the current situation around 

the world, research in the analysis of medical images is the most promising and work is 

currently underway to use the method of the statistical hypothesis testing method as one 

of the possible methods for recognizing low-contrast anomalies on medical images. 
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