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Abstract: The Householder transformation, allowing a rewrite of probabilities into expectations
of dichotomic observables, is generalized in terms of its spectral decomposition. Dichotomy is
modulated by allowing more than one negative eigenvalues, or by abandoning it altogether, yielding
generalized operator valued arguments for contextuality. We also discuss a form of state-dependent
contextuality by variation of the functional relations of the operators; in particular, by additivity.
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1. From probabilities to expectations

A standard way to adapt classical probabilities p ∈ [0, 1] to expectations E ∈ [−a, a]
of two-valued—indeed, {−a, a}–valued, observables is in terms of affine transformations
Ea(p) = a(2p− 1), amounting to a doubling of the probability and a shift by minus one,
times a. (Often the physical units in terms of which observables are measured are chosen to
be such that a = 1.) This can be motivated by the linearity of classical probabilities which
can be defined as the convex polytope of “extreme cases” or truth assignments, symbolized
by two-valued measures v ∈ {0, 1}.

It is an interesting property of quantum mechanics that the dimensionality n ∈ N of
the associated Hilbert space Cn is determined by the finest resolution of its contexts or
“maximal observables”: a context contains an exhaustive (aka maximal or complete) set of
mutually exclusive elementary observables. Each one of these elementary observables is
identifiable by an elementary proposition, which in turn is formalizable by a one dimen-
sional orthogonal projection operator F that is both self-adjoint as well as idempotent; that
is, F = F† and F2 = F, respectively. Thereby, n = 2 associated with dichotomic observables
just represents a bound from below for nontrivial predictions. But there are no preferred
Leibnizian “dyadic” schemes, such as bases, to represent and encode vectors or pure states
in n-dimensional Hilbert spaces: neither the dimensionality suggesting an n–ary encoding
nor the scalar product (nor completeness) yields any such preference; albeit arbitrary rota-
tions (unitary transformations) in n dimensions can be obtained (and parmetrized [1]) by
the serial composition of rotations (unitary transformations) in two-dimensional subspaces
of Cn.

It, therefore, is not too far-fetched to ask what could be the generalizations of the
aforementioned affine transformations in arbitrary dimensions. in particular, the quantum
mechanical counterparts of classical expectations. These can be given in terms of the
so-called Householder transformations (e.g., Ref. [2]) as follows.

Let |x〉 ∈ Cn be a nonzero vector and Fx = (〈x|x〉)−1|x〉〈x| the respective orthogonal
projection operator. The Householder transformation Ux is defined by

Ux = 1− 2Fx = 1− 2(〈x|x〉)−1|x〉〈x|. (1)

If |x〉 is a unit vector, then Ux = 1− 2|x〉〈x|.
The following properties can be asserted by direct proofs:

(i) Ux is Hermitian; that is, Ux = U†
x;
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(ii) Ux is unitary; that is,

UxU†
x = U†

xUx = UxUx

=
(

1− 2(〈x|x〉)−1|x〉〈x|
)(

1− 2(〈x|x〉)−1|x〉〈x|
)

= 1− 4(〈x|x〉)−1|x〉〈x|+ 4(〈x|x〉)−1|x〉〈x| = 1.

(2)

(iii) Hence Ux is involutory: U−1
x = Ux.

(iv) The eigensystem of Ux has two eigenvalues ±1:

−1: For the eigenvector |x〉 of Ux, with Ux|x〉 =
(
1− 2(〈x|x〉)−1|x〉〈x|

)
|x〉 = |x〉 −

2|x〉 = −|x〉 the associated eigenvalue is −1.
+1: The remaining n− 1 mutually orthogonal eigenvectors span the n− 1 dimen-

sional subspace orthogonal to |x〉. Every vector in that subspace has eigenvalue
+1. (For n > 2 the spectrum is degenerate.)

Stated differently: for all vectors orthogonal to |x〉 the Householder transformation Ux
acts as identity; and for |x〉 the Householder transformation Ux acts as a reflection on
the one-dimensional subspace spanned by |x〉.

(v) Since the determinant of a matrix is the product of its eigenvalues, the determinant of
a Householder transformation is −1.

(vi) If C = {|e1〉, |e2〉, . . . , |en〉} is an orthonormal basis formalizing a context, then the
succession of the respective Householder transformations renders negative unity; that
is,

Ue1Ue2 · · ·Uen = (1− 2|e1〉〈e1|)(1− 2|e2〉〈e2|) · · · (1− 2|en〉〈en|)
= 1− 2 (|e1〉〈e1|+ |e2〉〈e2|+ · · ·+ |en〉〈en|)︸ ︷︷ ︸

1

= −1. (3)

For the sake of an example, let |z〉 =
(
1, 1
)ᵀ, so that the corresponding Householder

transformation can be written in matrix form as

Uz = 1− 2(〈z|z〉)−1|z〉〈z| ≡
(

1 0
0 1

)
− 2(2)−1

(
1 1
1 1

)
= −

(
0 1
1 0

)
.

Take |x〉 =
(
2, 1
)ᵀ, so that |y〉 = −

(
1, 2
)ᵀ: this “reflected” vector |y〉 and the original

vector |x〉 have the same length or norm. The component of |y〉 along |z〉 is reversed,
whereas its component orthogonal to |z〉 remains the same. This situation is depicted in
Figure 1.

Because of (iii), if |x〉 6= |y〉 are two vectors in Rn with identical length or norm
‖x‖ = ‖y‖ then there exists a remarkable “symmetry delivered by” a Householder trans-
formation Uz such that Uz|x〉 = |y〉 and UzUz|x〉 = Uz|y〉 = |x〉. For this to hold the
vector |z〉 needs to be a vector equal to |x〉 − |y〉:

(
1− 2(〈z|z〉)−1|z〉〈z|

)
|x〉 = |y〉 and

|x〉 =
(
1− 2(〈z|z〉)−1|z〉〈z|

)
|y〉, resulting in (〈z|z〉)−1|z〉〈z|(|x〉 − |y〉) = |x〉 − |y〉, and

thus |z〉 = |x〉 − |y〉. (For |x〉 = |y〉 identify with |z〉 a vector orthogonal to |x〉 = |y〉.) This
is not true for Cn, as for instance, there exists no |z〉 which would render Uz|x〉 = i|x〉 for
nonzero |x〉, and an additional unitary transformation is required.

This gives rise to the orthonormalizion of a set of k linear independent nonzero vectors
S = {|s1〉, |s2〉, . . . , |sk〉} in Rn by taking some orthonormal basis C = {e1, e2, . . . , en} ≡
{|e1〉, |e2〉, . . . , |en〉}, choosing k vectors thereof—say, the first k vectors of the standard
Cartesian coordinate system—and identifying |si〉 with |xi〉, and (the extra factor ‖si‖
serves to make the vector of equal length or norm) |yi〉 with ‖si‖|ei〉, thereby constructing
a Householder transformation followed by normalization (through division by ‖si‖) Uzi

of |si〉
Uzi7→ |ei〉 with respective |zi〉 = |si〉 − ‖si‖|ei〉. This kind of orthonormalization may

yield a span “outside” of the subspace spanned by the “original” vectors.
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Figure 1. Depiction of the Householder transformation Uz with |z〉 =
(

1, 1
)ᵀ

acting on a vector

|x〉 =
(

2, 1
)ᵀ

. The resulting “reflected” vector |y〉 = Uz|x〉 and the original vector |x〉 have the

same length or norm. Its component along |z〉 is reversed, whereas its component orthogonal to |z〉
remains the same.

Cabello has used the Householder transformation to argue for what he calls state-
independent quantum contextuality [3,4]. Thereby all 216 possible classical value assign-
ments of the elementary propositions a1, · · · , a16 ∈ {−1, 1} depicted in Figure 2, grouped
into the nine contexts C1, . . . , C9 are enumerated, multiplied in each one of the nine contexts,
and these products are added together—that is, every of the 216 valuations yield a number,
an integer between −9 and 9.

As it turns out 9216 value assignments are rendering the number −7, and none
rendering −8 or −9. But these classical value assignments are not admissible [5] in the
sense of (iv)—an ad hoc assumption—as there does not exist a classical (non-contextual) two-
valued {0, 1}-state on these 18 observables in 9 contexts which would allow a translation
into a {−1, 1}-value assignment such that every context contains exactly one element that
is assigned the value “−1” and all other elements of that context are assigned the value
“+1”. For the sake of anedotal demonstration (no proof), Figure 2 contains an “illegal”
value assignment that renders the maximal value 7 of the sum of the products of all value
assignments within the nine contexts.

Indeed, relative to admissibility, state-independent quantum contextuality is a corol-
lary of the Kochen-Specker theorem for configurations without any two-valued states.
Because in this case no (homomorphic) translation E from admissible two-valued {0, 1}-
states p into two-valued {−1, 1}-observables E with, for instance, affine E(p) = 2p− 1,
exist.

In the relaxed case admissibility can be violated—in particular, by an ad hoc breach
of exclusivity, thereby allowing more than one value assignment “1” per context—while
at the same time maintaining noncontextuality (at the intertwining observables). State-
independent quantum contextuality can only be counterfactually postulated if and only if
the quantum Householder transformation-based predictions—equal to the (modulus of)
the number of contexts involved—are not realizable by classical noncontextual, admissible
or inadmissible value assignments. Therefore, the sum of all products of observables
within all contexts should not reach its algebraic maximal obtainable value. (As noted
earlier this maximal obtainable value is just the number of contexts involved.) That implies
that it should not be possible to require the number of noncontextual value assignments
“−1” within each given context to be odd. As a result strictly bi-connected (indeed even-
number connected) Kochen-Specker configurations involving an odd number of contexts
always exhibit state-independent quantum contextuality. The proof is similar to the in-
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direct parity proof of the Kochen-Specker theorem for the configuration introduced by
Cabello, Estebaranz-García-Alcaine [6]: for a proof by contradiction suppose the products
of observables within all contexts are multiplied. On the one hand, since by assumption,
there are odd contexts, each contributing a factor −1, this number—the odd product of
products—should be −1. But on the other hand, by bi- or even-connectivity, the product of
products contains only squares or even multiples of factors, which return +1—a complete
contradiction.

Figure 2 contains an instance of classical inadmissible value assignment that cannot
reach the algebraic maximal sum, as would be required by the quantum Householder
transformation prediction. Further methods to obtain such configurations based on parity
proofs are discussed by Waegell, Aravind, Megill, and Pavičić [7–9]. The Greenberger-
Horne-Zeilinger operator theorem is based on a similar argument [10,11].

For all other multi-context configurations allowing two-valued states—even with a
nonseparable or unital set of two-valued states—the translation from {0, 1}-states into
two-valued {−1, 1}-observables there is no state-independent quantum contextuality. For
other operator-valued assignments see, for instance, references [4,12].

I shall leave open the question of how convincing and applicable to counterfactual ar-
guments such inadmissible value assignments—even in their operator-valued translations—
might be. At the moment, I am inclined to understand such situations and configurations
rather in terms of the Kochen-Specker theorem [13], or quantitatively about the associated
chromatic number; that is, in terms of how many colors are needed to separate elements in
the respective contexts [14].

A quantum realization of the Cabello, Estebaranz-García-Alcaine [3,6] configuration
is a faithful orthogonal representation [15–17] that includes 18 unit vectors or associated
one-dimensional orthogonal projection operators Fi = |ai〉〈ai|, with 1 ≤ i ≤ 18 as vector
labels of the hypergraph depicted in Figure 2; whereby adjacency of hypergraph vertices is
translated into orthogonality of the vectors serving as their labels.

As we have learned in (vi), Equation (3), within each one of the nine contexts the
products of these elementary observables is −1. Adding together all nine products of the
nine contexts yields the sum−1 for all quantum value assignments. This is in contradiction
to the classical predictions which never yield −8 or −9. (Of course, this argument requires
counterfactual existence of all quantum observables Fi = |ai〉〈ai|, even as only a single one
context (from nine contexts C1, . . . , C9) is operationally accessible.

2. Generalized operator-valued arguments for mixed states

From now on we shall assume that states are prepared (preselected) to be in a “max-
imal” mixture ρ = 1

n 1n, where n stands for the dimension of the Hilbert space. That
is, we abandon state-independence for “maximal ignorance” or “maximally scrambled
(pure)states”. This cannot be performed from a pure state by merely unitary, one-to-
one, means. One has to allow many-to-one processes such as (partial) tracing over con-
stituents of a multipartite state. The advantage of such states is that the expectation value
of an operator A reduces to the weighted sum over its eigenvalues λ1, . . . , λn; that is,
〈A〉ρ = Tr(Aρ) = 1

n Tr(A1n) =
1
n (λ1 + . . . + λn).

Then from a purely algebraic point of view, Householder transformations can be
characterized in terms of commutativity [18, §79, 84]: the two observables associated with
a pure state and the corresponding expectation values are just functional variations of one
and the same maximal operator [19, Satz 8] (see also [13, Section 4]). For an illustration
consider two operators P and E whose respective eigensystems include identical projection
operators but different eigenvalues.

To be more precise, according to the spectral theorem, let C = {e1, e2, . . . , en} ≡
{|e1〉, |e2〉, . . . , |en〉}with n ≥ 2 be an orthormal basis suitable for a spectral decomposition
of P and E, and let Fi = |e1〉〈e1| be the associated one-dimensional orthogonal projection
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Figure 2. Orthogonality diagram (hypergraph) of a configuration of observables without any two-
valued state, used in a parity proof of the Kochen-Specker theorem presented by Cabello, Estebaranz-
García-Alcaine [6]. One (from 9216) underlaid value assignments represents squares as “+1” and
circles as “-1”. A quantum realization is, for example, in terms of 18 orthogonal projection operators
associated with the one dimensional subspaces spanned by the vectors from the origin (0, 0, 0, 0)ᵀ

to |a1〉 =
(

0, 0, 1,−1
)ᵀ

, |a2〉 =
(

1,−1, 0, 0
)ᵀ

, |a3〉 =
(

1, 1,−1,−1
)ᵀ

, |a4〉 =
(

1, 1, 1, 1
)ᵀ

, |a5〉 =(
1,−1, 1,−1

)ᵀ
, |a6〉 =

(
1, 0,−1, 0

)ᵀ
, |a7〉 =

(
0, 1, 0,−1

)ᵀ
, |a8〉 =

(
1, 0, 1, 0

)ᵀ
, |a9〉 =

(
1, 1,−1, 1

)ᵀ
,

|a10〉 =
(
−1, 1, 1, 1

)ᵀ
, |a11〉 =

(
1, 1, 1,−1

)ᵀ
, |a12〉 =

(
1, 0, 0, 1

)ᵀ
, |a13〉 =

(
0, 1,−1, 0

)ᵀ
, |a14〉 =(

0, 1, 1, 0
)ᵀ

, |a15〉 =
(

0, 0, 0, 1
)ᵀ

, |a16〉 =
(

1, 0, 0, 0
)ᵀ

, |a17〉 =
(

0, 1, 0, 0
)ᵀ

, |a18〉 =
(

0, 0, 1, 1
)ᵀ

,
respectively.
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operators that are mutually orthogonal. Then the spectral sums of P and E can be uniformly
written as

P =
n

∑
i=1

λiFi = (+1) · F1 + (0) ·
(

n

∑
i=2

Fi

)
︸ ︷︷ ︸

F{2,...,n}

= F1,

E =
n

∑
i=1

µiFi = (−1) · F1 + (1) ·
(

n

∑
i=2

Fi

)
︸ ︷︷ ︸

F{2,...,n}

= −F1 + F{2,...,n}.

(4)

From this perspective of the spectral decompositions, a transition from P and E is nothing
more than a mapping of the eigenvalues in the spectral sums of (4):

{λ1, λ2, . . . , λn} =
{

1, 0, . . . , 0︸ ︷︷ ︸
n−1 times

}
7→ {µ1, µ2, . . . , µn} =

{
− 1, 1, . . . , 1︸ ︷︷ ︸

n−1 times

}
.

(5)

From this spectral point of view a generalization to mutually disjoint eigenvalues,
, for instance, different primes p1, . . . , pn, suggests itself; such that, in the orthonormal
basis aka context, C = {e1, e2, . . . , en} ≡ {|e1〉, |e2〉, . . . , |en〉} corresponding to mutually
perpendicular orthogonal operators F1, . . . , Fn, the operator associated with the maximal
observable has just diagonal entries

M =
n

∑
i

piFi = diag
(

p1, . . . , pn
)
. (6)

This generalization has the advantage that, because all eigenvalues are prime, all combina-
tions, and in particular, its product Π = p1 · · · pn, has a unique prime decomposition. This
translates into a unique decomposition into eigenvalues.

The eigenvalues in the spectral sum to the chromatic number of the sphere [20–22] as
well as of hypergraphs [14,23]. From the strategy to get noncontextual classical colorings
of orthogonality hypergraphs derived from quantum observables, any such graph whose
chromatic number n is equal to the dimension n of the associated Hilbert space, there
cannot be established any state-independent quantum contextuality: because in this case
there exist classical noncontextual observables whose n colors can be one-to-one mapped
(relabelled) into the observable values p1, . . . , pn.

Another possibility is a choice of the eigenvalues −1,−1, 1, 1 or any permutation
thereof, yielding a quantum prediction of the sum of the products equal to 9 · (−1 · −1 · 1 ·
1) = 9, which is just the negative of Cabello’s prediction [3].

3. Generalized operations

Other methods to derive state-dependent quantum contextuality involving “maxi-
mally mixed states” use different operations than multiplication. The most elementary
such operation is summation among all eigenvalues within a given maximal observable or
context. The resulting violations can be tested in a similar (counterfactual) manner as for
the sums of products.

For the sake of an example, we can again use a Kochen-Specker type configuration
introduced by Cabello, Estebaranz-García-Alcaine [6] and depicted in Figure 2. If instead
of multiplying the eigenvalues within any such context (yielding −1 · 1 · 1 · 1 = −1) these
eigenvalues are added, we obtain the context sum −1 + 1 + 1 + 1 = 2. (This renders an
expectation of the context sum divided by four; that is, 1

2 .) The associated function between
operators within a given context Cj, 1 ≤ j ≤ 9, is addition:

g(FCj ,1, FCj ,2, FCj ,3, FCj ,4) = −FCj ,1 + FCj ,2 + FCj ,3 + FCj ,4 = SCj (7)
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As there are nine contexts Cj, 1 ≤ j ≤ 9, the sum over all context sums is 2 · 9 = 18,
which is not divisible by four. The respective expectation, given a preselected state ρ = 1

414
is

〈
9

∑
j=1

SCj〉ρ =
9

∑
j=1
〈SCj〉ρ =

9

∑
j=1

Tr
(
SCj ρ

)
=

1
4

9

∑
j=1

Tr
(
SCj14

)
=

9

∑
j=1

1
2
=

9
2

. (8)

A classical computation produces only multiples of four: Since the 18 observables
a1, . . . , a18 are bi-connected—that is, every such observable occurs in exactly two contexts—
the sum total of all dichotomic observables is

2(a1 + · · ·+ a18) = n, with a1, . . . , a18 ∈ {−1, 1}, n ∈ Z, (9)

so that −36 ≤ n ≤ 36. Suppose there are k potitive observables ai, and 18− k negative
observables aj. Therefore, all cases are permutations of the following configuration:

a1 + · · ·+ ak︸ ︷︷ ︸
k positive ai=1

+ ak+1 + · · ·+ a18︸ ︷︷ ︸
18−k negative aj=−1

= k− (18− k) = 2(k− 9) =
n
2

, (10)

with k ∈ N, so that
0 ≤ k = 9 +

n
4
≤ 18, and n = −36 + 4k. (11)

This results in n arithmetically progressing from −36 in steps of 4, that is

k ∈ {0, 1, . . . , 18}, with respective n ∈ {−36,−32, . . . , 0, . . . , 32, 36}. (12)

In particular, as 18 is not divisible by 4, no sum total of 18 can be classically realized by the
configuration of Cabello, Estebaranz-García-Alcaine [6]. Classical expectations from the
assumption of equidistribution of the occurrences are obtained by dividing these cases by
four.

Indeed, a combinatorial argument shows that there are

#(n(k)) = #(−36 + 4k) =
(

18
k

)
=

(
18

18− k

)
=

10
k!(18− k)!

(13)

configurations yielding n = −36+ 4k, so that the number of occurrences are #(±0) = 48620,
#(±4) = 43758, #(±8) = 31824, #(±12) = 18564, #(±16) = 8568, #(±20) = 3060,
#(±24) = 816, #(±28) = 153, #(±32) = 18, #(±36) = 1. This classical prediction is in
contrast with the quantum prediction 18 which always occurs.

4. Summary

We have discussed Householder transformations as a means to translate arguments
involving probabilities into expectations of dichotomic observables. Thereby we have used
the spectral decomposition of Householder transformation; more explicitly, we have al-
lowed eigenvalues not restricted to one minus one, and all the others plus one. For instance,
dichotomy can be modulated by allowing more than one negative eigenvalues. This yields
generalized operator-valued arguments for contextuality. We have also discussed new
forms of state-dependent contextuality by variation of the functional manipulation and
relation of the operators. In particular, we have considered additivity.

As with original forms of expectation or operator based arguments such as Greenberger-
Horne-Zeilinger [10,11] or Householder-based state-independent contextuality [3] those
arguments use complementary and thus counterfactual observables. Additionally, additiv-
ity arguments use violations of admissibility [5], in particular, exclusivity and completeness.
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