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Abstract: Chilean geography is highly variable, not only from a climatic and hydrological point1

of view, but also a morphological one, showing unpredictable natural patterns with marked2

contrasts throughout the country, for which sometimes it is considered as a "crazy" geography.3

In this paper we have investigated this apparent disorganized character by exploring the fractal4

properties of fluvial networks extracted from basins distributed across the continental territory.5

Analytical and semi-empirical methods were applied, finding striking patterns of organization6

in the distributions of Horton parameters and the fractal dimension of the drainage networks.7

Fractal dimension reveals to be quite dependent on the drainage area of each unit, showing clear8

groupings by tectonic and climatological factors. Such dimension reveals to be an important9

geomorphic parameter, if not the only one able to capture the real morphology of a fluvial network.10

From our results and despite the diversity of landforms, hydrological, climatic and tectonic11

conditions, Chilean’s geography is perhaps not as crazy and disorganized as believed.12

Keywords: fluvial networks ; Chilean’s watersheds ; monofractal dimension ; morphometry ;13

structural control.14

1. Introduction15

Fractals are objects whose geometrical structure remains invariant regardless of16

the observation scale [1]. These objects can be found in different scientific areas such as17

medicine, physics, mathematics, geology, biology and particularly, in geomorphology18

where many natural systems can be described by using fractal concepts, for example the19

shape of relief, borderlines of lakes, coasts and rivers and particularly, the topology of20

streams networks [1–4]. In contrast to other classical metrics introduced for basins (see21

e.g. [5]), fractal dimension arises as a revolutionary geomorphic index able to capture22

the geometrical complexity of drainage patterns observed over the landscape. Such23

dimension can be interpreted as the topological dimension where such invariability24

remains [1,6]. To reach this state of knowledge, the collection and measuring of real25

networks in different environments is a fundamental task to explore the variability,26

coherence, and validity of such dimension.27

Benjamin Subercaseux wrote a popular book about Chile [7], describing the territory28

as a "crazy", and sometimes unpredictable, geography emphasising the significant29

variability of topographical, climate and even, folk characteristics observed along the30

continent. In this context, Chilean fluvial networks arise as an interesting example31

of application of estimation of the mono-fractal dimension of such systems. The aim32

of the present article is to explore this apparent "crazy" character applying a fractal33

geometrical analysis to estimate the fractal degree of stream networks extracted from34

different watersheds of the country at different observation levels. Particular emphasis35

was put on exploring the connections between this parameter and the tectonics and36

morphometric features of the relief.37
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Horton [8] pioneered on this topic introducing a quantitative description of streams38

developed in a fluvial network. Considering a hierarchical ordering of the streams,39

Horton defined the following set of ratios representing such development [9]:40

RB,ω =
Nω−1

Nω
RL,ω =

Lω

Lω−1
RA,ω =

Aω

Aω−1
(1)

where RA,ω, RB,ω and RL,ω denote the area, bifurcation and length ratios of the41

streams, respectively. The parameters Lω, Nω and Aω correspond to the length and42

number of drains of the sub-catchments of area Aω , where ω = 2, ..., Ω is the order of the43

streams, whose maximum value is Ω [9]. An striking observation from Horton is that44

for high enough dense networks, the parameter Rq,ω shows almost convergent values.45

Such observation can be interpreted, a priori, as an intimate connection between fractals46

and self-similar trees [10,11]. These convergent values can be well represented by the47

average of each ratio, let’s say Rq = 1
Ω ∑Ω

ω=1 Rq,ω, for q = A, B, L. The ratios RA, RB, RL48

can be considered characteristic parameters for a given fluvial network.49

Inspired on Hack’s law [12], Mandelbrot explored this connection showing that50

l ∝ Ad/2, where A is the area of catchment, d ≈ 1.1 the meandering fractal dimension51

and l the length of the mainstream, respectively. Based on this relation and assuming the52

constancy of the drainage density across the network, Feder [6] improved this definition53

proposing the relationship d = 2ln(RL)/ln(RB). Rosso et al. [13] extended this result54

suggesting the law d = max(1, 2ln(RL)/ln(RA), in agreement with the topological55

minimum path dimension deduced by Liu [14].56

1.1. Fractal dimension of a fluvial network57

One of the problems of previous formulations is the need of connecting them with58

the fractal dimension of the entire network. La Barbera and Rosso [2] derived a law59

for this situation, assuming that Horton parameters holds through the whole network60

across different scales:61

D1 =
ln(RB)

ln(RL)
i f RB > RL & D1 = 1 i f RB < RL (2)

According to [2], Eq.2 leads to values in the range 1.5 < D1 < 2.0 (1.67 in average).62

The authors argued about the impossibility of reaching values close to 2, car fluvial63

networks show decreasing drainage densities for increasing contributing areas. Tarboton64

et al.[15] states that [2] assumes that mainstreams identify with topological objects of65

dimension 1. However, many real streams show meandering patterns where d ̸= 1.66

Tarboton et al. [15] proposed the following law to estimate the fractal dimension in this67

situation:68

D2 = d
ln(RB)

ln(RL)
(3)

Tarboton et al. argues that there exists large evidence showing that d ≈ 1.14, limiting69

Eq.3 to values in the range D2 < 2 ([3,15,16]) . This is coherent with observations made70

at larger scales where it is reasonable to assume that streams drain each point of the71

basin as pointed by [17]. In an interesting exchange, La Barbera and Rosso [18] refuted72

the conclusion of Tarboton proposing a modification of Eq.3 as follows:73

D3 = β
ln(RB)

ln(RL)
(4)

where β = 1
2−d . Also from a theoretical point of view, Liu [14] worked with infinite74

dense networks (Ω → ∞), at both meso and microscale. The author proposed five75

different dimensions associated to the structure of individual streams, one of them76

related to the fractal dimension of whole the network. Such dimension can be estimated77

from the next relationship:78
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D4 = 2
ln(RB)

ln(RA)
(5)

Figure 1. Localization of the 23 basins used in the present study. The tectonic segments
of Chilean territory, ordered from north to south, can be also observed.
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Although Eqs.2-5 shows to be a practical approach to describe the fractal dimension79

of stream networks, they requires a huge amount of geographic information to obtain80

the morphometric parameters. On the other side, there are several limitations of these81

methods that deserves to be considered. One of them is related with the self-similarity82

hypothesis. This assumption has been objectively refuted by Kirchner [19]), giving83

rise to another approaches based on self-affine attributes of networks [17,20–23]. This84

self-affine character naturally arises from the morphological anisotropy of the network85

and the combination of the different tectonic processes that constrains the diffusion of86

the streams over the time ([24]).87

2. Methodology88

2.1. Determination of the fractal dimension and geomorphic indexes89

In this study, the determination of the mono-fractal dimension of the networks90

was conducted by following two different approaches. The first method is based on91

Horton metrics and its invariance laws, allowing to estimate the fractal dimension92

according to Eqs.2-5 (see Section 1.1). The second method is more practical in our opinion,93

based on the application of a box-counting algorithm with the software Fractalyse. This94

empirical method does not requires the determination of Horton ratios and/or any95

other morphometric parameter of the basin. Fractalyse software was developed at96

THEMA Laboratory and it can be applied to determine fractal patterns in different kind97

of networks, urban and natural [25,26]. This software was fed with Landsat-5 satellite98

images obtained from NASA’s platform site. Every image was first analysed by using99

image processing tools in Matlab, from which the planar structure of the network can be100

extracted. Inspired on the concept of topological recovering of a surface, a given drainage101

pattern can be covered by a finite set of N(s) squared-box of side s. The parameter s can102

be reduced step by step, increasing the number of boxes covering the figure. According103

to Rodriguez-Iturbe and Rinaldo [27], the fractal dimension of the network arising from104

this method can be calculated from the next relationship:105

DF = lim
s→0

log(N(s))
log( 1

s )
(6)

In order to compare the morphological characteristics of each network, we have also106

estimated some geomorphic parameters typically used to describe the characteristics of107

drainage basins [5]. This is, the shape index F, the circularity index C and the elongation108

factor E, respectively:109

F =
A
L2 , C =

4πA
P2 , E =

2
√

A√
πL

(7)

where L is a characteristic length of the watershed (usually the longest distance of110

the basin) and P its perimeter. We also introduce the drainage density (ρ) of the network.111

This parameter is provided by GRASS-GIS and defined as follows:112

ρ =
Z
A

(8)

2.2. Definition of the region of interest113

In the present report we have analyzed 23 large-basins, located between the latitudes114

17◦30
′
S and 56◦30

′
S, covering a total area of 363, 354km2. The area of each network is115

larger than 10, 000km2 and they were delimited by following the guidelines proposed by116

Direccion General de Aguas (DGA), a governmental agency focused on water resources117

management. Figure 1 shows the location of these units from north to south. From our118

point of view, this classification considers reasonably well the tectonic, geographic and119

climatic diversity of the country. The geographical analysis of every basin was conducted120

on the software GRASS-GIS. This software provides the Horton ratios RA, RB, RL, the121
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hierarchical order Ω, catchment and sub-catchments drainage areas A, the average slope122

im and the mean elevation (Hm) of each network. The order Ω was determined by123

following the criteria proposed by Strahler [28]. These parameters are presented in Table124

1.125

Table 1. Morphometric parameters of large-basins ordered from north to south and by tectonics
influence. (NPN: Nazca plate-north, NPFS: Nazca plate-flat slab,NPS: Nazca plate-south, AP:
Antarctic plate). Here A is the drainage area, im the mean slope, Hm the mean elevation of the
unit and Ω the maximum order of each network according to Strahler’s hierarchical ordering.
Drainage density and geomorphic indexes were also included. (The superscript ()∗ denotes the
basins chosen for analysis at sub-basin level).

Tectonics Basin A(km2) im(%) Hm(m) Ω F C E ρ(km−1)

NPN

Loa∗(LO) 51056 13 2401 9 1.88 0.40 0.27 1.86
Caracoles (QC) 32537 9 1947 10 0.84 0.43 0.33 2.15

Salado (SA) 16826 20 3086 9 0.28 0.33 0.19 1.55
Average 1.00 0.38 0.26 1.85

NPFS

Copiapo (CO) 18608 33 2707 8 0.49 0.34 0.24 1.16
Huasco (HU) 9759 43 2738 7 0.40 0.31 0.25 0.98
Elqui∗(EQ) 9484 46 2520 7 0.47 0.34 0.26 0.99
Limari (LI) 11650 37 1673 7 0.62 0.45 0.30 1.02

Choapa (CHO) 7815 39 1701 7 0.46 0.33 0.29 1.02
Aconcagua (AC) 7341 42 1847 7 0.37 0.37 0.24 1.20

Average 0.47 0.36 0.26 1.06

NPS

Maipo (MP) 14810 37 1664 8 0.49 0.38 0.25 1.28
Mataquito (MAT) 6219 31 1106 7 0.20 0.22 0.18 1.13

Rapel (RA) 14041 33 1166 8 0.44 0.39 0.27 1.21
Maule (MA) 14788 17 432 8 0.57 0.34 0.24 1.17

Itata (IT) 11457 19 581 8 0.40 0.34 0.27 1.17
Bio Bio (BB) 24223 24 805 8 0.28 0.30 0.22 1.06

Imperial (IM) 13443 15 397 7 0.44 0.42 0.24 1.09
Tolten (TO) 8100 22 555 7 0.39 0.35 0.20 1.15

Valdivia∗(VA) 11470 23 489 7 0.49 0.39 0.28 0.96
Bueno (BU) 13897 19 422 8 0.46 0.40 0.30 1.12

Palena (PAL) 11584 41 865 8 0.49 0.20 0.24 1.00
Aysen (AY) 12781 36 834 7 0.62 0.35 0.29 1.01

Average 0.44 0.34 0.25 1.11

AP
Baker∗(BA) 29326 31 891 8 0.88 0.37 0.23 1.06
Pascua (PA) 12141 31 943 8 0.54 0.31 0.20 1.06

Average 0.71 0.34 0.22 1.06

In order to explore the fractal properties of the basins at a finer scale, a sub-set of126

30 sub-basins were extracted from Loa, Elqui, Valdivia and Baker basins (ordered in127

north-south direction). The same analysis detailed before was applied to each of these128

units, in order to obtain the individual fractal structure and morphometric properties129

of their drainage networks. In this context, eight sub-basins were extracted from Loa130

network (LO1− LO8),seven sub-basins were extracted from Elqui network (EQ1− EQ8);131

from Valdivia network seven more (VA1−VA7) and finally, seven sub-basins from Baker132

network (BA1 − BA7). To the best of our knowledge, only [29] has conducted previous133

studies about morphometric properties of Chilean northern basins, although limited134

to a few units located between Pampa Colorada and Pampa Tamarugal. Instead, the135

analysis presented in this study takes is more extended along the territory. The main136

characteristics of these sub-networks can be observed in Table 2.137
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Table 2. Morphometric parameters of large basins, with A the drainage area, im the mean slope, Hm

the mean elevation of the unit and Ω the maximum order of the network according to Strahler’s
hierarchical ordering. Geomorphic indexes were also included and the drainage density, as well.

Basin Sub-basin A(km2) im(%) Hm(m) Ω F C E ρ(km−1)

Lo
a

LO1 120 6.17 974 9 0.24 0.23 0.56 1.21
LO2 122 4.50 980 9 0.19 0.26 0.49 1.29
LO3 7551 7.51 1985 9 0.36 0.25 0.68 2.21
LO4 8017 8.70 3800 9 0.26 0.19 0.57 1.70
LO5 311 4.89 1181 9 0.33 0.26 0.65 1.81
LO6 616 8.30 1663 9 0.24 0.29 0.55 2.88
LO7 469 5.57 1489 9 0.17 0.25 0.47 2.83
LO8 3208 5.49 2170 9 0.37 0.21 0.69 2.51

Average 0.27 0.24 0.58 2.05

El
qu

i

EQ1 1073 15.80 1027 7 0.32 0.23 0.64 1.05
EQ2 737 18.81 1634 7 0.36 0.28 0.67 1.02
EQ3 4086 25.48 3527 7 0.29 0.18 0.60 0.91
EQ4 563 18.57 1052 7 0.26 0.20 0.58 0.97
EQ5 261 22.16 1666 7 0.20 0.20 0.51 1.03
EQ6 131 20.93 1368 7 0.21 0.29 0.52 1.23
EQ7 51 21.42 1481 7 0.37 0.32 0.69 1.59
EQ8 1515 27.15 3202 7 0.28 0.28 0.60 0.97

Average 0.29 0.25 0.60 1.10

V
al

di
vi

a

VA1 3367 8.31 215 7 0.15 0.18 0.43 1.09
VA2 1486 13.76 630 7 0.19 0.22 0.50 1.10
VA3 1386 18.81 997 7 0.37 0.16 0.68 0.99
VA4 316 10.94 220 7 0.20 0.20 0.50 1.03
VA5 615 9.29 200 7 0.28 0.23 0.60 1.01
VA6 107 6.61 207 7 0.21 0.32 0.51 1.14
VA7 960 11.76 447 7 0.29 0.23 0.61 0.11

Average 0.24 0.22 0.55 0.92

Ba
ke

r

BA1 1896 20.33 874 8 0.14 0.19 0.43 0.96
BA2 3197 17.66 934 8 0.15 0.16 0.44 1.06
BA3 394 27.62 1282 8 0.22 0.21 0.53 0.87
BA4 306 14.68 898 8 0.09 0.28 0.34 1.00
BA5 4785 8.32 870 8 0.40 0.31 0.72 1.16
BA6 386 19.61 1061 8 0.30 0.25 0.62 0.91
BA7 1499 18.82 1126 8 0.19 0.18 0.49 1.12

Average 0.22 0.23 0.51 1.01

3. Results138

3.1. About the Drainage Patterns139

Figure 2 shows the drainage patterns obtained in large-basins. The geometry of140

these units respond to the action of both, the slope and landscape’s organization. Such141

organisation traduces on three main morphostructural bands: the Cordillera de los Andes,142

the Central Depression and the Cordillera de la Costa. These bands contribute to shape143

the drainage patterns observed on every network, where the dendritic pattern is the144

dominant feature of the networks in the country as observed in Figure 2 and Appendix145

A, showing a clear east-west runoff direction. This pattern is generated on relatively146

homogeneous lithological substrates with similar resistance properties to hydrodynamic147

erosion and where the tributaries connect at acute angles (< 90◦). Looking with more148

detail, drainage patterns taking grid or rectangular shapes can be also observed, a clear149

sign of structural control on streams diffusion. Moreover, the runoff regime of the150

networks occurs in the east-west direction and the largest units develops over the three151

morphostructural bands. On the other hand, the characteristics of the drainage patterns152

of sub-basins can be observed in Appendix A.153
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Figure 2. Fluvial networks of large basins obtained from GRASS-GIS, ordered from north to
south. Units were sorted by tectonic plate influence and every image is in its proportional areal
dimensions (scale 1:50,000).
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Fault macro-systems also help to delimit these morphostructural bands. The At-154

acama Fault Zone in the north and Liquiñe - Ofqui Fault Zone in the south (the most155

important fault systems in Chile), separate the coastal and andean units from the central156

depression [30,31]. The mountainous units are constituted by different types of rocks,157

this is, volcanic, volcanoclastic, intrusive and sedimentary rocks [32]. A different sce-158

nario takes place in the central depression where sedimentary rocks has been deposited159

by fluvial, glacial, alluvial and volcanic processes, developing from east to west. These160

deposits have contributed to their filling and plainform appearance.161

Then, to characterize the geometry of drainage basins just looking at their patterns162

and drainage density is not enough, justifying the use of new parameters taking into163

account this variability. Loa, Caracoles and Salado basins in the north plate show high164

drainage densities, this is, ρ = 1.86, 2.15, 1.55km−1, respectively. The index F is quite165

variable too, falling in the range 0.28 ≤ F ≤ 1.88. The average slopes of these units also166

falls in the range 9% ≤ im ≤ 20%, which are particularly high. The northern networks167

develop mainly over the Central Depression in a hyper-arid climate context and under168

the tectonic influence of the northern zone of the Nazca plate. Their drainage patterns169

are essentially dendritic (from LO to SA in Figure 2) although, in the Salado basin (SA)170

the influence of the Central Depression begins to disappear. Here, part of the basin171

develops on mountainous sectors and rectangular patterns are also locally observed.172

The basins located between the Copiapo and Aconcagua rivers (CO to AC in Figure173

2) are quite similar both in their network patterns and their drainage density. They174

develop mainly on the mountainous reliefs where the Central Depression has started175

to disappear and to fall into the influence area of the flat subduction of the Nazca Plate176

(Nazca Flat Slab). For these units, the networks clearly organize around a main stream177

and the drainage pattern is once again dendritic, especially in that regions of the Central178

Depression. However, there is a clear trend to adopt lattice patterns in the mountains179

regions of the Cordillera de los Andes and the Cordillera de la Costa. There, the smaller180

streams connect to the higher ones at almost 90°. These characteristics traduce in quite181

homogeneous drainage densities fluctuating in the range 0.98 ≤ ρ ≤ 1.20km−1 and182

0.37 ≤ F ≤ 0.62. The mean slopes for these units are particularly high with values in the183

range 33% ≤ im ≤ 46%.184

Basins between the regions of Maipo and Aysen (MP to AY in Figure 2) locates185

to the south of Nazca Plate. They develop in a Mediterranean climate with marked186

seasonality and under a rainfall regime. In this region, the drainage pattern and density187

shows a clear the influence of the aforementioned morphostructural units. This influence188

traduces in north-south strip’s arrangement. In almost all the cases, a dendritic drainage189

pattern is observed again over the Central Depression and also over mountain regions.190

Lattice and rectangular patterns can be also observed with tributaries bifurcating rather191

at almost right angles. It is interesting to note that in the Itata basin (IT), a parallel192

pattern develops very well in the Central Depression. This case corresponds to a large193

fluvio-alluvial fan associated with the Laja river sub-basin, formed from successive dam194

breaks of volcanic materials from the Quaternary. Here the shape index falls in the range195

0.20 ≤ F ≤ 0.62 and ρ ≈ 1.0, showing a maximum of 1.28 in the extreme north of this196

plate (for MP) and 0.96 in the south of this plate (for VA).197

In Austral and Patagonian regions, Palena and Aysen basins (BA and PA in Figure198

2) are under the tectonic influence of the Antarctic plate, developing over the Cordillera199

de Los Andes. A common drainage pattern here is the parallel and trellis one, where200

acute contact angles between tributary streams are practically nonexistent. For this201

reason, the structural control of these networks is mainly related to an intense faulting202

of the crust and the aggressive erosive process existent from the Quaternary glaciations.203

The temperate climate of this region provides abundant rainfall conditions throughout204

the year. These characteristics strongly influence the runoff regime of rivers, many of205

them torrential with high flow rates. For these networks the mean slope im ≈ 31% (very206

high) and the drainage densities are also particularly high, showing values in the range207
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1.87 ≤ ρ ≤ 2.49. The morphological parameters of each network are summarized in208

Table 2.209

Thus, in average the shape index (F) is very different between large-networks,210

although this is not the case of C and E, both of them showing no significant variation211

from one network to another. However, dramatic differences arise for these parameters212

at sub-basin level. In this case, F is not only more homogeneous, but its values strongly213

decreases in the range 0.22 ≤ F ≤ 0.29. Similar values are observed respect to C.214

However, the parameter E shows a significant increase falling into the range 0.51 ≤ E ≤215

0.60. All of these indexes shows a dramatic departure from the values reported in Table216

1. A similar conclusion can be deduced with respect to ρ. Despite the similar order of217

the watersheds (Ω), the differences between Tables 1-2 are non-negligible.218

3.2. About the Distribution of Horton Ratios219

Figure 3a-3c shows the frequency distributions of Horton ratios for all the fluvial220

networks (23 large-networks and 30 sub-networks). A first look at each distribution221

shows that the peaks of frequency are reached at different ratios, that is, RA = 5.25, RB =222

5.25, RL = 3.75 for large-networks and RA = 6.25, RB = 5.75, RL = 4.25 in sub-networks.223

Notice that the distribution related to RB shows similarities in both cases as observed in224

Figure 3b.225

Figure 3. (a)-(c) Frequency distribution of RA, RL, RB for large-networks (continuous line in black) and sub-networks
(pointed-lines in red). The peaks of each draw were included for reference; (d) and (e) CDF curves for the Horton ratios, for
large and sub-networks. Horizontal dashed-line corresponds to CDF = 80%.
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Figure 3d-3e shows the Cumulative Normalized Frequency Distribution (CDF) of226

the Horton ratios. Once again, important differences arise on these curves depending on227

the size of the network. A referential value was included in these last two figures just to228

emphasise such differences (see the horizontal dashed lines). Respect to this last point,229

Figures 3d-3e show that Horton ratios saturate around RA = 8.49, RB = 7.09, RL = 5.38230

at sub-basins level, and around RA = 5.5, RB = 5.7, RL = 3.6 when dealing with large-231

basins. Almost all the curves shows also an almost constant growth-rate, but their232

mean slopes depend upon the size of the network. The constancy of each slope can be233

interpreted a priori as a sign of a certain homogeneity on the diffusion of streams into234

watershed. Unexpectedly, only RA presents a secondary outbreak for very large ratios.235

On the other hand, Figure 4 shows the distribution of RA, RB, RL versus log(A) (the236

logarithm of the area) for all the measurements. Points in the range 1.7 ≤ log(A) ≤ 3.8237

correspond to sub-networks and those in the range log(A) ≤ 3.8 correspond to large-238

networks. Scattering bands of ±50% were also drawn around each mean fit to emphasise239

the significant dispersion of measurements. Surprisingly, each distribution shows a240

decreasing behaviour that can be reasonably fitted by a linear function of negative slope241

η (as indicated in Figure 4). Notice that η values are quite similar between RL and RB242

(= −0.90 and −0.87, respectively), but quite different respect to RA for where η = −1.87,243

almost the double.244

Figure 4. Comparison between the averaged Horton ratios Rq versus log(A), with q = A, B, L. The continuous line is
the mean fit for each curve of approximated slope η = −1.87 ± 0.21,−0.90 ± 0.10,−0.86 ± 0.15 for q = A, L, B. A ±50%
scattering band was traced around each fit as a guide to the eye.

3.3. Fractal Dimension of Networks245

In this section the interplay between the fractal dimension and some morphological246

properties of the networks is explored. Table 3 shows the fractal dimension of each247

network calculated from Fractalyse, ordered by tectonic segment’s influence. If we look248

at the values obtained only for large basins, we readily note that networks located at249

Nazca North plate-segment show the highest values of the entire record. In particular,250

the overall fractal dimension for Loa network is DF ≈ 1.89, the highest value of the251

present study. However, the fractal dimension of networks under the influence of Nazca252

Flat Slab plate decreases into the range 1.51 ≤ DF ≤ 1.72. The units influenced by253

Nazca South plate shows a clear homogeneity in the distribution of DF, showing values254

bounded into the range 1.50 ≤ DF ≤ 1.71, very close to the results observed in the255

last situation. However, when we reach the networks located at Austral-Patagonian256

regions, the fractal dimension increases again leading to the values DF = 1.63 for Pascua257

network and DF = 1.71 for Baker. Thus, clear differences arise depending on the tectonic258

segment influencing basin’s topography, suggesting that fractal dimension is a parameter259

controlled at some point by tectonic processes and, to a lesser degree, by erosive-related260
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phenomena. This point of view is in agreement with the interpretation of the fractal261

dimension proposed by some authors for fluvial networks (e.g. [24,33]).262

Table 3. Fractal dimension DF for large basins and its sub-basins obtained from Fractalyse. Loa, Elqui, Valdivia and Baker
basins have been marked in red.

Tectonics Basin Sub-basin DF Tectonics Basin Sub-basin DF Tectonics Basin Sub-basin DF

Loa 1.89 Maipo 1.63 Baker 1.71
LO1 1.37 Mataquito 1.50 BA1 1.47
LO2 1.38 Rapel 1.58 BA2 1.56
LO3 1.71 Maule 1.63 BA3 1.30
LO4 1.64 Itata 1.59 BA4 1.31
LO5 1.43 Bio Bio 1.71 BA5 1.59
LO6 1.55 Imperial 1.58 BA6 1.30
LO7 1.51 Tolten 1.55 BA7 1.46

LO8 1.75 Valdivia 1.50

AP

Pascua 1.63

Quebrada
Caracoles 1.87 VA1 1.53

NPN

Salado 1.66 VA2 1.49

Copiapo 1.72 VA3 1.47
Huasco 1.56 VA4 1.30

Elqui 1.51 VA5 1.33
EQ1 1.49 VA6 1.24
EQ2 1.45 VA7 1.45

EQ3 1.51 Bueno 1.56
EQ4 1.36 Palena 1.55
EQ5 1.27

NPS

Aysen 1.56

EQ6 1.26
EQ7 1.29
EQ8 1.45

Limari 1.55
Choapa 1.53

NPFS

Aconcagua 1.68

From data presented in Table 3, we have built the curves shown in Figure 5. Figure263

5a compares the fractal dimension DF with the mean slope of each network (log(im)264

for simplicity); sub-basin data was also included. Although, not clear trends can be265

observed between the points, most of measurements obtained from large-basins fall into266

a high-sloped region. However, when analysing sub-basin data it is quite surprising that267

sub-networks extracted from Loa (LO1 − LO8) falls in a sloping regime different from268

that measured for the entire basin LO (low-slope vs. high-slope). A similar situation is269

observed for the case of Elqui (EQ), Valdivia (VA) and Baker (BA) basin. Such differences270

indicate that morphometric properties analysed at a finer radius of observation present271

significant departure from those obtained from the large-basins containing them. A large272

sub-set of measurements falls into a moderated slope region, constituting a transition-like273

region between low and high-sloped networks. On the other side, Figure 5b compares274

DF with the drainage density ρ. In this case most of points concentrate into the region275

0.8 ≤ ρ ≤ 1.24; only VA7 gets-out of it. In this region, DF shows a wide variation, going276

from 1.20 to 1.67 and no reasonable fitting function seems reasonable. However, into277

the range ρ > 1.24 fractal dimension shows a slight growth for increasing values of ρ278

leading to values closer to DF = 1.89 (LO large-basin). Notice that most of fractal values279

in the range ρ > 1.24 are under the influence of Nazca North plate-segment.280
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Figure 5. Fractalyse results versus (a) the slope of each basin and (b) versus the drainage density ρ. In (a) three regions
were drawn to separate the slope regimes from low to high. In (b) two regions were drawn, one for ρ ≤ 1.24 (very coarse
drainage networks) and another one, for ρ > 1.24 (coarse drainage networks). Loa, Elqui, Valdivia and Baker basins were
indicated to remark the differences between large and sub-networks.

Figure 6. DF versus log(A) for large and sub-networks. Continuous lines correspond to fits
DF ∝ slog(A) where s is the slope of the curve (s = 0.25, 0.30, 0.41 for each dataset). The fit
s = 0.30 is arbitrary.
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Figure 6 compares DF with log(A) for all the units. An unexpected nice agreement281

was obtained between the points, with data splitting-up into three different groups.282

Each group can be characterized by a linear fit of slope s, that is, s = 0.41 for large283

basins, s = 0.25 for sub-basins EQ5, EQ7, LO1, LO5, LO6, LO7, LO8 and an arbitrary284

central fit of slope s = 0.30 for the rest of sub-networks. This pattern of organisation is285

quite surprising, considering the apparent disorganised character of Chilean territory286

quite well known with respect to their latitudinal development, the current and past287

tectonic and geomorphological processes and the factors conditioning the climatic and288

hydrological characteristics, all of them already discussed in sub-section 3.1. The fits289

proposed in Figure 6 suggest that DF depends significantly upon network’s area. Thus,290

we can propose the simple allometric scaling DF ∝ s · log(A) = log(As), with s an291

area-dependent parameter. Curiously, this fit has been also obtained from measurements292

of fractal dimension in urban environments(see [34]).293

Figure 7 compares Fractalyse results with the analytical models detailed in section294

1.1 (see Eqs.2-5). Notice that Eq.2 systematically underestimates the fractal dimension,295

both for large units and sub-basins. In contrast, Liu’s approach (Eq.5) provides the296

highest values of the entire record leading, in some cases, towards values higher than 2.297

However, a fractal dimension higher than 2 (whatever the model used) is an unexpected298

result, not representative of the networks here explored. Only the model proposed by299

La Barbera and Rosso and Tarboton et al. (Eqs.3-4, respectively) show closeness with300

Fractalyse estimations, from our point of view the most representative values for our301

networks. The Pearson correlation index rk was also estimated between Dk and DF,302

when k = 1, ..., 4 (following the notation used in Eqs.2-5, obtaining (r2, r3) = (0.78, 0.77)303

for large-basins and (r2, r3) = (0.77, 0.55) at sub-basins level. Such results, confirms the304

agreement between Eqs.3-4 and Fractalyse, as detailed before.305

Figure 7. Comparison between Fractalyse results (DF) and Eq.2 (k = 1), Eq.3 (k = 2), Eq.4 (k = 3) and Eq.5 (k = 4) for
(a) large-basins and (b) sub-basins. The parameter rk denotes the Pearson correlation index between the each model and
Fractalyse, for k = 1, ..., 4.

4. Discussion306

4.1. Fractal dimension: an area-dependent parameter307

The curves presented in Figure 4 lead to the relationship Rq = ξ + ηlog(A), with308

q = A, B, L and ξ, η fitting parameters, with η the slope of each curve. Let’s define the309

parameter ζ =
log(Rp)

log(Rq)
, with p = B and q = L, A. This parameter can be also written310

as ζ = log(ξ+ηlog(A))
log(ξ ′+η′ log(A))

, with ξ ′, η′ another fitting parameters. The relationship between311

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 December 2021                   doi:10.20944/preprints202112.0471.v1

https://doi.org/10.20944/preprints202112.0471.v1


Version December 29, 2021 submitted to Fractal Fract. 14 of 22

ζ and A can be observed in Figure 8a. Referential averages of each dataset were also312

included (ζ̄ = 1.28 for q = L and ζ̄ = 0.96 for q = A). For q = L (points in red), this313

distribution presents a significant deviation around its average, particularly important314

in the range A ≥ 24, 223km2. Although less evident, such departure also appears for315

q = A (points in gray), being significant in the range A ≤ 261km2. Thus, an intrinsic316

variability of Eqs. 2-5 with A can be observed. To delve into the properties of ζ we317

have built the Figure 8b. In this graph, we show how large is the departure between ζ318

and DF, comparing the ratio DF
ζ with the A. Notice that DF

ζ is always larger than unity,319

showing an almost linear increasing behaviour with A in the range A < 6219km2. When320

A ≥ 6219km2, a kind of saturation effect can be observed, where DF
ζ ≈ κ3 with κ3 a321

fitting parameter.322

Figure 8. (a) Comparison between ζ and A (p = B; q = A, L), for large and sub-networks. The
vertical line is a referential value denoting the transition area, separating both kind of networks
(A = 6219km2). Horizontal dashed-lines correspond to the averages ζ̄ = 1.28 for q = L and
ζ̄ = 0.96 for q = A, respectively. (b) Comparison between the ratio DF/ζ and log(A). Continuous
lines corresponds the fit proposed in Eq. 9.

Taking these elements into account, both growth regimes can be roughly described323

by the next relationships:324

DF
ζ

∝ κ1log(A) + κ2 i f A < 6219km2 &
DF
ζ

= κ3 i f A ≥ 6219km2 (9)
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where κ1, κ2, κ3 are fitting constants. When q = L we obtain (κ1, κ2, κ3) = (0.06 ±325

0.02, 0.99 ± 0.1, 1.21 ± 0.02), but for q = A we obtain instead (κ1, κ2, κ3) = (0.13 ±326

0.04, 1.18 ± 0.1, 1.60 ± 0.02). Notice that κ1 is small, but not small enough to neglect the327

term κ1log(A) at all. In any of both regimes, significant contrast arise when considering328

RL or RA in the determination of ζ and thus, the fractal dimension Dk for k = 1, ...4. Such329

saturation effect observed for very large areas emphasises the idea that fractal dimension330

of fluvial networks cannot growth indefinitely. There must be a limit for this index331

according to the full-filling space concept proposed by [24], that is, fractal dimension332

cannot exceed the dimension of the embedding space for this case (DF = 2). These333

results also show that fractal values obtained from both methodologies can be related334

through a law of the type DF = ψ(A, d)Dk, where d is the meandering fractal dimension335

of the mainstream and ψ a fitting function. This function shows a linear variation with336

A for sub-networks and ψ ≈ Cst, for larger units. This area-dependence structure can337

be also obtained from Figure 6. At this point, it is quite important mentioning that the338

variability of the ramification patterns observed in our networks, are properly taken into339

account by a box-counting algorithm. Such characteristic is, however, not necessarily340

considered when the fractal dimension is only estimated from the analytical expressions341

based on Horton ratios. Meandering or avulsion patterns of ramification of individual342

streams are not always considered by a Hortonian-like structure; even more, it is not343

always possible to do that particularly when streams are analysed at very large scales.344

Then, serious differences are expected when comparing both methods of calculation as345

shown in Figure 8. This effect was also suggested by [35].346

Figure 9. Comparison between Rp and Rq for (a) sub-basins and (b) large-basins measurements. Continuous lines (C1 − C4)
correspond to power-law fits of the form Rp = Rm

q , where m is a fitted exponent for each dataset.

In the same context, a comparison between the Horton parameters calculated for347

all the units can be observed in Figures 9a-9b. As anticipated by Figure 4, patterns348

of regularity also arise in this case. Such regularity is quite evident for large-basins349

measurements, and less evident for sub-network measurements. In any of both cases,350

both distributions can be roughly described by a law of the type Rp = Rq
m (p ̸= q),351

with m a characteristic exponent of each curve. For sub-networks we obtain m = 1.20352

for p = B, q = L (fit C1) and m = 1.09 for p = A, q = B (fit C2). In contrast, for large-353

networks measurements we get m = 1.32 for p = B, q = L (fit C3), whereas m = 0.98 for354

p = A, q = B (fit C4). By one hand, these exponents show that Horton ratios measured355

at sub-basin level are strictly bounded by large watersheds data but on the other side,356
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these metrics are dependent on the size of the units, even if they were extracted from the357

same morphological unit. Once again, this area-dependent character can be observed in358

many parameters at the same time revealing that fluvial networks analysed in this paper359

are objects whose behaviour is far from "pure" fractals typically reported in literature.360

Another striking element arises when analysing sub-networks from the North of361

the country. In this case, dataset shows an important dispersion suggesting the influence362

of tectonics control in our measurements, particularly when we discuss about this scale-363

invariance property. This competition between tectonics and water-erosive effects have364

been discussed by [36] and it is inherent to the fractal dimension of a fluvial network.365

Soil characteristics, lithology and tectonic conditions are major agents of influence on the366

final pattern of a fluvial network. However, climatic and hydrological conditions play a367

sculpting role on a given network, influencing the measure of its fractal properties. If we368

analyse the role played by other geomorphic parameters, Figure 5a shows however no369

clear trends, for example, between DF and the mean slope im or the drainage density370

ρ (Figures 5a-5b). In this last case, however, DF strongly concentrates in the range371

0.8 < ρ < 1.24, slightly increasing for higher drainage densities. This effect becomes372

more clear for networks under the influence of Nazca North segment-plate (e.g. LO373

and QC), showing an accentuated contrast with the basins from the rest of the country.374

Following this idea, it is equally surprising that sub-basin dataset, in almost all the cases,375

shows a tendency to group in regimes different from those observed for larger units.376

This departure could be explained because of the detailed morphological information377

obtained at a finer measurement scale, not possible to recover when analysing the same378

morphological unit with a larger "ruler".379

Our results also shows that the determination of the fractal dimension is quite sen-380

sitive to the choice of the method of calculation. From an analytical point of view, if Eq.381

2 approach underestimates this parameter, Eq.4 over-estimates it leading to unrealistic382

values larger than 2 (the theoretical limit for our networks). The approach proposed by383

Tarboton et al. (Eq.3) it is the only model presenting a rough agreement with Fractalyse384

results (see Figure 7). Thus, the models given by Eqs.3-5 a size-dependent multiplicative385

factor should be involved and therefore, the universality of such formulations must386

be carefully analysed. Claps and Oliveto [35] seems to support this idea, proposing a387

size-dependent coefficient on the allometric relationships of a given basin. Following388

this argument, we wonder to which extent the fractal dimension of a large-basin could389

be reproduced by averaging the fractal dimensions of their respective sub-basins. Ac-390

cording to our measurements, the closeness (or distance) between these results could be391

interpreted as a sign of self-similarity patterns related to the distribution of the fractal392

dimension of each network, in particular for Loa, Elqui,Valdivia and Baker. Among the393

many ways to perform such averaging, here we have considered an area-weighed law394

for such purpose, that is:395

D̄i =
D1 A1 + ... + Dn(i)An(i)

A1 + ... + An(i)
(10)

where D̄i is the average value of the sub-networks extracted from a given large-396

basin, for i = 1, ..., 4, (i = 1 for Loa, i = 2 for Elqui, i = 3 for Valdivia and i = 4 for Baker);397

n(i) is the number of such sub-basins and Ak the area of each of them (k = 1, ..., n(i)). The398

parameter Dk corresponds to the fractal dimension of the sub-networks already estimated399

by the methods detailed in Eqs. 2-6. Table 4 shows a comparison of D̄i. The calculations400

evidence clear discrepancies between the results, suggesting a priori the impossibility of401

recovering the fractal dimension of the entire basin by simply averaging the fractal values402

of its "parts", whatever the model used. Only when comparing Fractalyse results, the403

regions of Elqui and Valdivia show some similarities. From our point of view, this result404

emphasizes the idea that Chilean networks cannot be considered strictly as self-similar405

systems, being quite sensitive to the choice of the model of estimation.406
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Table 4. Averaged fractal dimension D̄k for Loa (k = 1), Elqui (k = 2), Valdivia (k = 3) and Baker
(k = 4) basins, calculated according to different models. Fractalyse values were also included for
comparison. Values of the entire basin are shown in the last column, obtained from the Table 3.

Averages for When Dk is calculated from: Dimension of
the entire basin

sub-basins from: Eq.2 Eq.3 Eq.4 Eq.5 Fractalyse Fractalyse

Loa (D̄1) 1.37 1.56 1.47 1.87 1.67 1.89
Elqui (D̄2) 1.22 1.39 1.30 1.88 1.47 1.51

Vadivia (D̄3) 1.23 1.40 1.34 1.85 1.48 1.50
Baker (D̄4) 1.27 1.46 1.39 1.85 1.52 1.71

4.2. About the relationship between ρ, A, im and the fractal dimension of each network.407

From the results presented though this paper is clear that a relationship between408

the mean slope, the drainage density and the fractal dimension of each network must409

exists. Such interplay can be observed in Figure 10. Climatic and tectonics effects on410

data were also qualitatively indicated in the same graph.411

Figure 10. Diagram between ρ, the mean slope im, the fractal dimension and the dominant tectonics and climatic conditions.
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About this diagram it is important to introduce two elements. First, the subduction412

influence of Nazca and Antarctic plates shows a west-east direction, also known as413

the collision margin with the South American plate. Such phenomenon has generated414

the main morphostructural units organized in longitudinal bands of the relief already415

explained in Section 3.1. Second, in general the development of the different climatic416

types is related with the global atmospheric circulation patterns, allowing a latitudinal417

climatic zonification in the north-south direction. For this reason, arid climates in the418

north progressively becomes more humid towards the south of the country. From these419

considerations, it is reasonable to think about isolated or combined natural effects in the420

development of drainage networks. In this context, most of fluvial networks in Chile421

have been the combined result of both, tectonics and erosive processes, giving rise to422

very coarse drainage textures (ρ < 1.24), with a tendency to present moderate to high423

slopes in larger basins (for which fractal values falls in the range 1.50 ≤ DF ≤ 1.72) and424

moderate to low slopes sub-basins (with values in the range 1.24 ≤ DF ≤ 1.51). On425

the other hand, a smaller sub-set of basins shows a strong tectonics influence on their426

drainage patterns, only because of they are located in the north of the country. These427

units present moderate to low slopes regimes and coarse drainage textures (ρ ≥ 1.24),428

for which fractal values are essentially high (1.87 ≤ DF ≤ 1.89 for large-basins and429

1.53 ≤ DF ≤ 1.75 for sub-networks). This level of organisation is not coincidental,430

revealing a non-aleatory connection between tectonics, climate and fractality, questioning431

this apparent disordered character of the territory.432

5. Conclusions433

In this paper we have studied the fractal properties of Chilean relief by measuring434

morphometric properties of fluvial networks distributed across the country, analysed at435

different scales. The mono-fractal dimension of each unit was estimated by applying436

two different methods: one, based on Horton ratios metrics and another one, based on a437

box-counting algorithm trough Fractalyse. A first impression is that such estimations438

are quite sensitive to the chosen method, revealing significant differences at sub-basin439

level. In this sens, only the approaches proposed by Eq.3 and Eq.4 show similarities440

with Fractalyse data, suggesting that a box-counting method seems to better captures441

the main topological features of each network (e.g. the shape of individual streams, the442

presence of curvatures, meanders and avulsion patterns, among others). Such features443

are essentially a consequence of the erosive power of the streams, as well as by structural444

control whose influence is visible throughout Chilean territory.445

Following this argument, fractal dimension estimated from Fractalyse (DF) for446

large-basins located under the influence of the Nazca North segment show values in447

the range 1.66 ≤ DF ≤ 1.89, while networks located in Antartica plate fall in the range448

1.63 ≤ DF ≤ 1.71. Both ranges evidence a clear contrast between the extreme regions of449

the country. On the other side, basins located under the influence of Nazca Flat Slab and450

Nazca South segments fall in the range 1.50 ≤ DF ≤ 1.72. These last values are close to451

the magnitudes reported in the cited literature, particularly for networks developing on452

alluvial fans like the morpho-structural unit Central Depression detailed in Section 3.1. It453

is also interesting mention that these basins are influenced by Mediterranean climates.454

These latitudinal differences emphasises, once again, the structural control on the ability455

of a fluvial network to diffuse into the basin. Such effects introduce morphological456

anisotropic features on drainage patterns, as suggested by [24]. This characteristic is457

present in most of networks analysed in this report and is intimately related with the458

concept of self-affine diffusion of streams.459

Analyzing this information at sub-basin level, the results becomes as surprising,460

as disturbing. Fractal values for these units show a clear departure with respect to the461

values observed at larger units. This is the case of Loa, Elqui, Valdivia and Aysen. Such462

departure is strongly revealed when looking at the distribution of Horton ratios and463

geomorphic indexes as well (F, C, E). Despite these differences, reasonable groupings464
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between DF and the size of each unit were obtained (see Figure 6), conducting to nice465

correlations of the type DF ∝ slog(A), with s an area-dependent exponent. A similar466

conclusion was obtained from Figure 8b. This result suggest that DF should not be467

considered a scale-invariant parameter, but rather a complex function of the are of the468

network, and the meandering pattern of diffusion of individual streams. landscape. This469

kind of connection between fractal dimension and the area of the object was reported470

previously by [34] from measurements on urban environments.471

Finally, all the results presented in this paper invite to consider the fractal dimension472

as a rich geomorphic parameter revealing the self-affine character of fluvial networks as473

inferred from the the results presented in Table 4. This parameter could definitely help474

to improve our comprehension about the characteristics of drainage patterns measured475

across the territory. The information provided by this dimension is no possible to get476

from classical morphometric indexes (e.g. parameters F, C, E). In this context, it is very477

surprising that despite the climatic, morphological, tectonic and lithological variability478

of the country, a significant amount of parameters show reasonable groupings and trends479

(e.g. Figures 6,9,10). These striking patterns of organisation seems to be camouflaged into480

each basin, inviting to consider Chilean territory not as so "crazy", nor so unpredictable481

as believed.482

Chilean landscapes could be taken as a powerful natural laboratory to test the483

validity of mprphometric and fractal scaling-laws, widely disseminated in the literature484

(e.g. Eqs.2-5). Most of these findings deserve to be analysed with more detail, but due485

to the scale of such work it requires to use a methodology different from that reported486

here. In this context, a multifractal analysis is an interesting tool to conduct this process487

considering the complex mechanisms involved on the generation and evolution of a488

fluvial network. This is a very challenging task will definitely be the goal of a next report.489
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Appendix A Drainage patterns of sub-networks498

In this appendix we can observe the drainage patterns of the 33 sub-basins extracted499

from Loa (LO1− LO8), Elqui (EQ1−EQ7), Valdivia (VA1−VA7) and Baker (BA1− BA7)500

watersheds.501
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Figure A1. Drainage networks extracted from Loa basin.

Figure A2. Drainage networks extracted from Elqui basin.
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Figure A3. Drainage networks extracted from Valdivia basin.

Figure A4. Drainage networks extracted from Baker basin.
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