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Abstract: Chilean geography is highly variable, not only from a climatic and hydrological point
of view, but also a morphological one, showing unpredictable natural patterns with marked
contrasts throughout the country, for which sometimes it is considered as a "crazy" geography.
In this paper we have investigated this apparent disorganized character by exploring the fractal
properties of fluvial networks extracted from basins distributed across the continental territory.
Analytical and semi-empirical methods were applied, finding striking patterns of organization
in the distributions of Horton parameters and the fractal dimension of the drainage networks.
Fractal dimension reveals to be quite dependent on the drainage area of each unit, showing clear
groupings by tectonic and climatological factors. Such dimension reveals to be an important
geomorphic parameter, if not the only one able to capture the real morphology of a fluvial network.
From our results and despite the diversity of landforms, hydrological, climatic and tectonic
conditions, Chilean’s geography is perhaps not as crazy and disorganized as believed.

Keywords: fluvial networks ; Chilean’s watersheds ; monofractal dimension ; morphometry ;
structural control.

1. Introduction

Fractals are objects whose geometrical structure remains invariant regardless of
the observation scale [1]. These objects can be found in different scientific areas such as
medicine, physics, mathematics, geology, biology and particularly, in geomorphology
where many natural systems can be described by using fractal concepts, for example the
shape of relief, borderlines of lakes, coasts and rivers and particularly, the topology of
streams networks [1-4]. In contrast to other classical metrics introduced for basins (see
e.g. [5]), fractal dimension arises as a revolutionary geomorphic index able to capture
the geometrical complexity of drainage patterns observed over the landscape. Such
dimension can be interpreted as the topological dimension where such invariability
remains [1,6]. To reach this state of knowledge, the collection and measuring of real
networks in different environments is a fundamental task to explore the variability,
coherence, and validity of such dimension.

Benjamin Subercaseux wrote a popular book about Chile [7], describing the territory
as a "crazy", and sometimes unpredictable, geography emphasising the significant
variability of topographical, climate and even, folk characteristics observed along the
continent. In this context, Chilean fluvial networks arise as an interesting example
of application of estimation of the mono-fractal dimension of such systems. The aim
of the present article is to explore this apparent "crazy" character applying a fractal
geometrical analysis to estimate the fractal degree of stream networks extracted from
different watersheds of the country at different observation levels. Particular emphasis
was put on exploring the connections between this parameter and the tectonics and
morphometric features of the relief.
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Horton [8] pioneered on this topic introducing a quantitative description of streams
developed in a fluvial network. Considering a hierarchical ordering of the streams,
Horton defined the following set of ratios representing such development [9]:
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where Ry, Rp and Ry, denote the area, bifurcation and length ratios of the
streams, respectively. The parameters L., N, and A, correspond to the length and
number of drains of the sub-catchments of area A,,, where w = 2, ..., () is the order of the
streams, whose maximum value is () [9]. An striking observation from Horton is that
for high enough dense networks, the parameter R, ., shows almost convergent values.
Such observation can be interpreted, a priori, as an intimate connection between fractals
and self-similar trees [10,11]. These convergent values can be well represented by the
average of each ratio, let’s say R; = % 28:1 Rgw, forg = A, B, L. The ratios R4, R, R,
can be considered characteristic parameters for a given fluvial network.
Inspired on Hack’s law [12], Mandelbrot explored this connection showing that
I < A%/2, where A is the area of catchment, d ~ 1.1 the meandering fractal dimension
and [ the length of the mainstream, respectively. Based on this relation and assuming the
constancy of the drainage density across the network, Feder [6] improved this definition
proposing the relationship d = 2In(Ry)/In(Rp). Rosso et al. [13] extended this result
suggesting the law d = max(1,2in(Ry)/In(R,), in agreement with the topological
minimum path dimension deduced by Liu [14].

Ry, = @M

1.1. Fractal dimension of a fluvial network

One of the problems of previous formulations is the need of connecting them with
the fractal dimension of the entire network. La Barbera and Rosso [2] derived a law
for this situation, assuming that Horton parameters holds through the whole network
across different scales:

_ In(Rg)
' In(Ry)

According to [2], Eq.2 leads to values in the range 1.5 < D; < 2.0 (1.67 in average).
The authors argued about the impossibility of reaching values close to 2, car fluvial
networks show decreasing drainage densities for increasing contributing areas. Tarboton
et al.[15] states that [2] assumes that mainstreams identify with topological objects of
dimension 1. However, many real streams show meandering patterns where d # 1.
Tarboton et al. [15] proposed the following law to estimate the fractal dimension in this
situation:

ifRB>RL & DlzlifRB<RL (2)

In(Rp)
In(Rr)

Tarboton et al. argues that there exists large evidence showing that d ~ 1.14, limiting
Eq.3 to values in the range Dy < 2 ([3,15,16]) . This is coherent with observations made
at larger scales where it is reasonable to assume that streams drain each point of the
basin as pointed by [17]. In an interesting exchange, La Barbera and Rosso [18] refuted
the conclusion of Tarboton proposing a modification of Eq.3 as follows:

D,=d 3)

In(Rp)
In(Ry)

D; =8 (4)

where g = ﬁ Also from a theoretical point of view, Liu [14] worked with infinite
dense networks ((3 — c0), at both meso and microscale. The author proposed five
different dimensions associated to the structure of individual streams, one of them
related to the fractal dimension of whole the network. Such dimension can be estimated
from the next relationship:
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Figure 1. Localization of the 23 basins used in the present study. The tectonic segments
of Chilean territory, ordered from north to south, can be also observed.
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Although Eqs.2-5 shows to be a practical approach to describe the fractal dimension
of stream networks, they requires a huge amount of geographic information to obtain
the morphometric parameters. On the other side, there are several limitations of these
methods that deserves to be considered. One of them is related with the self-similarity
hypothesis. This assumption has been objectively refuted by Kirchner [19]), giving
rise to another approaches based on self-affine attributes of networks [17,20-23]. This
self-affine character naturally arises from the morphological anisotropy of the network
and the combination of the different tectonic processes that constrains the diffusion of
the streams over the time ([24]).

2. Methodology
2.1. Determination of the fractal dimension and geomorphic indexes

In this study, the determination of the mono-fractal dimension of the networks
was conducted by following two different approaches. The first method is based on
Horton metrics and its invariance laws, allowing to estimate the fractal dimension
according to Eqgs.2-5 (see Section 1.1). The second method is more practical in our opinion,
based on the application of a box-counting algorithm with the software Fractalyse. This
empirical method does not requires the determination of Horton ratios and/or any
other morphometric parameter of the basin. Fractalyse software was developed at
THEMA Laboratory and it can be applied to determine fractal patterns in different kind
of networks, urban and natural [25,26]. This software was fed with Landsat-5 satellite
images obtained from NASA’s platform site. Every image was first analysed by using
image processing tools in Matlab, from which the planar structure of the network can be
extracted. Inspired on the concept of topological recovering of a surface, a given drainage
pattern can be covered by a finite set of N(s) squared-box of side s. The parameter s can
be reduced step by step, increasing the number of boxes covering the figure. According
to Rodriguez-Iturbe and Rinaldo [27], the fractal dimension of the network arising from
this method can be calculated from the next relationship:

Dy — lim 28 NG)

5—0 log(%) ©)

In order to compare the morphological characteristics of each network, we have also
estimated some geomorphic parameters typically used to describe the characteristics of
drainage basins [5]. This is, the shape index F, the circularity index C and the elongation
factor E, respectively:

A _4nA _2VA
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where L is a characteristic length of the watershed (usually the longest distance of
the basin) and P its perimeter. We also introduce the drainage density (p) of the network.
This parameter is provided by GRASS-GIS and defined as follows:

=7 (8)

2.2. Definition of the region of interest

In the present report we have analyzed 23 large-basins, located between the latitudes
17°30'S and 5603015, covering a total area of 363, 354km?. The area of each network is
larger than 10,000km? and they were delimited by following the guidelines proposed by
Direccion General de Aguas (DGA), a governmental agency focused on water resources
management. Figure 1 shows the location of these units from north to south. From our
point of view, this classification considers reasonably well the tectonic, geographic and
climatic diversity of the country. The geographical analysis of every basin was conducted
on the software GRASS-GIS. This software provides the Horton ratios R 4, R, Ry, the
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hierarchical order (), catchment and sub-catchments drainage areas A, the average slope
i, and the mean elevation (H;,) of each network. The order () was determined by
following the criteria proposed by Strahler [28]. These parameters are presented in Table
1.

Table 1. Morphometric parameters of large-basins ordered from north to south and by tectonics
influence. (NPN: Nazca plate-north, NPFS: Nazca plate-flat slab,NPS: Nazca plate-south, AP:
Antarctic plate). Here A is the drainage area, i, the mean slope, H;, the mean elevation of the
unit and ) the maximum order of each network according to Strahler’s hierarchical ordering.
Drainage density and geomorphic indexes were also included. (The superscript ()* denotes the
basins chosen for analysis at sub-basin level).

Tectonics Basin A(km?) iy(%) Hy(m) Q F C E p(km™1)

Loa*(LO) 51056 13 2401 1.88 0.40 0.27 1.86
Caracoles (QC) 32537 9 1947 10 0.84 043 033 215
Salado (SA) 16826 20 3086 0.28 0.33 0.19 1.55
Average 1.00 0.38 0.26 1.85

Copiapo (CO) 18608 33 2707 049 034 024 1.16

Huasco (HU) 9759 43 2738 0.40 031 025 0.98
Elqui*(EQ) 9484 46 2520 0.47 0.34 0.26  0.99

NPFS Limari (LI) 11650 37 1673 0.62 0.45 0.30 1.02
Choapa (CHO) 7815 39 1701 0.46 0.33 0.29 1.02
Aconcagua (AC) 7341 42 1847 0.37 0.37 0.24 120

Average 0.47 0.36 0.26  1.06

e

NPN

O

NN NN N

Maipo (MP) 14810 37 1664 8 0.49 038 025 1.28
Mataquito (MAT) 6219 31 1106 7 0.20 022 0.18 1.13

Rapel (RA) 14041 33 1166 8 044 039 027 1.21

Maule (MA) 14788 17 432 8 057 0.34 024 117

Itata (IT) 11457 19 581 8 0.40 0.34 027 117

Bio Bio (BB) 24223 24 805 8 0.28 0.30 0.22 1.06

NPS Imperial (IM) 13443 15 397 7 044 042 024 1.09
Tolten (TO) 8100 22 555 7 039 0.35 020 1.15
Valdivia®*(VA) 11470 23 489 7 049 039 028 096

Bueno (BU) 13897 19 422 8 046 040 030 1.12

Palena (PAL) 11584 41 865 8 0.49 0.20 0.24 1.00

Aysen (AY) 12781 36 834 7 0.62 035029 1.01

Average 0.44 0.34 0.25 1.11
Baker*(BA) 29326 31 891 8 0.88 0.37 0.23 1.06

AP Pascua (PA) 12141 31 943 8 054 0.31 020 1.06
Average 0.71 0.34 0.22 1.06

In order to explore the fractal properties of the basins at a finer scale, a sub-set of
30 sub-basins were extracted from Loa, Elqui, Valdivia and Baker basins (ordered in
north-south direction). The same analysis detailed before was applied to each of these
units, in order to obtain the individual fractal structure and morphometric properties
of their drainage networks. In this context, eight sub-basins were extracted from Loa
network (LO1 — LO8),seven sub-basins were extracted from Elqui network (EQ1 — EQ8);
from Valdivia network seven more (VA1 — VA7) and finally, seven sub-basins from Baker
network (BA1 — BA7). To the best of our knowledge, only [29] has conducted previous
studies about morphometric properties of Chilean northern basins, although limited
to a few units located between Pampa Colorada and Pampa Tamarugal. Instead, the
analysis presented in this study takes is more extended along the territory. The main
characteristics of these sub-networks can be observed in Table 2.
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Table 2. Morphometric parameters of large basins, with A the drainage area, i;;, the mean slope, Hy,
the mean elevation of the unit and () the maximum order of the network according to Strahler’s
hierarchical ordering. Geomorphic indexes were also included and the drainage density, as well.

Basin Sub-basin = A(km?) iw(%) Hp(m) Q F C E  p(km™)
LO1 120 6.17 974 9 024 023 056 121
LO2 122 4.50 980 9 019 026 049 1.29
LO3 7551 7.51 1985 9 036 025 0.68 2.21
< LO4 8017 8.70 3800 9 026 019 057 1.70
S LO5 311 4.89 1181 9 033 026 0.65 1.81
LO6 616 8.30 1663 9 024 029 055 2.88
LO7 469 5.57 1489 9 017 025 047 2.83
LO8 3208 5.49 2170 9 037 021 0.69 2.51
Average 0.27 0.24 058 2.05
EQ1 1073 15.80 1027 7 032 023 0.64 1.05
EQ2 737 18.81 1634 7 036 028 0.67 1.02
EQ3 4086 25.48 3527 7 029 018 0.60 0.91
g EQ4 563 18.57 1052 7 026 020 058 0.97
g EQ5 261 22.16 1666 7 020 020 051 1.03
= EQ6 131 20.93 1368 7 021 029 052 1.23
EQ7 51 21.42 1481 7 037 032 0.69 1.59
EQ8 1515 27.15 3202 7 028 028 0.60 0.97
Average 0.29 0.25 0.60 1.10
VA1 3367 8.31 215 7 015 018 043 1.09
g VA2 1486 13.76 630 7 019 022 050 1.10
S VA3 1386 18.81 997 7 037 016 0.68 0.99
o) VA4 316 10.94 220 7 020 020 050 1.03
S VA5 615 9.29 200 7 028 023 0.60 1.01
VA6 107 6.61 207 7 021 032 051 1.14
VA7 960 11.76 447 7 029 023 061 0.11
Average 0.24 0.22 0.55 0.92
BA1 1896 20.33 874 8 014 019 043 0.96
BA2 3197 17.66 934 8 015 016 044 1.06
N BA3 394 27.62 1282 8§ 022 021 053 0.87
g BA4 306 14.68 898 8 009 028 034 1.00
= BA5 4785 8.32 870 8 040 031 072 1.16
BA6 386 19.61 1061 8§ 030 025 0.62 0.91
BA7 1499 18.82 1126 8 019 018 049 1.12
Average 0.22 0.23 0.51 1.01

3. Results

3.1. About the Drainage Patterns

Figure 2 shows the drainage patterns obtained in large-basins. The geometry of
these units respond to the action of both, the slope and landscape’s organization. Such
organisation traduces on three main morphostructural bands: the Cordillera de los Andes,
the Central Depression and the Cordillera de la Costa. These bands contribute to shape
the drainage patterns observed on every network, where the dendritic pattern is the
dominant feature of the networks in the country as observed in Figure 2 and Appendix
A, showing a clear east-west runoff direction. This pattern is generated on relatively
homogeneous lithological substrates with similar resistance properties to hydrodynamic
erosion and where the tributaries connect at acute angles (< 90°). Looking with more
detail, drainage patterns taking grid or rectangular shapes can be also observed, a clear
sign of structural control on streams diffusion. Moreover, the runoff regime of the
networks occurs in the east-west direction and the largest units develops over the three
morphostructural bands. On the other hand, the characteristics of the drainage patterns
of sub-basins can be observed in Appendix A.
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Figure 2. Fluvial networks of large basins obtained from GRASS-GIS, ordered from north to
south. Units were sorted by tectonic plate influence and every image is in its proportional areal
dimensions (scale 1:50,000).
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Fault macro-systems also help to delimit these morphostructural bands. The At-
acama Fault Zone in the north and Liquifie - Ofqui Fault Zone in the south (the most
important fault systems in Chile), separate the coastal and andean units from the central
depression [30,31]. The mountainous units are constituted by different types of rocks,
this is, volcanic, volcanoclastic, intrusive and sedimentary rocks [32]. A different sce-
nario takes place in the central depression where sedimentary rocks has been deposited
by fluvial, glacial, alluvial and volcanic processes, developing from east to west. These
deposits have contributed to their filling and plainform appearance.

Then, to characterize the geometry of drainage basins just looking at their patterns
and drainage density is not enough, justifying the use of new parameters taking into
account this variability. Loa, Caracoles and Salado basins in the north plate show high
drainage densities, this is, p = 1.86,2.15,1.55km !, respectively. The index F is quite
variable too, falling in the range 0.28 < F < 1.88. The average slopes of these units also
falls in the range 9% < i, < 20%, which are particularly high. The northern networks
develop mainly over the Central Depression in a hyper-arid climate context and under
the tectonic influence of the northern zone of the Nazca plate. Their drainage patterns
are essentially dendritic (from LO to SA in Figure 2) although, in the Salado basin (SA)
the influence of the Central Depression begins to disappear. Here, part of the basin
develops on mountainous sectors and rectangular patterns are also locally observed.

The basins located between the Copiapo and Aconcagua rivers (CO to AC in Figure
2) are quite similar both in their network patterns and their drainage density. They
develop mainly on the mountainous reliefs where the Central Depression has started
to disappear and to fall into the influence area of the flat subduction of the Nazca Plate
(Nazca Flat Slab). For these units, the networks clearly organize around a main stream
and the drainage pattern is once again dendritic, especially in that regions of the Central
Depression. However, there is a clear trend to adopt lattice patterns in the mountains
regions of the Cordillera de los Andes and the Cordillera de la Costa. There, the smaller
streams connect to the higher ones at almost 90°. These characteristics traduce in quite
homogeneous drainage densities fluctuating in the range 0.98 < p < 1.20km ! and
0.37 < F < 0.62. The mean slopes for these units are particularly high with values in the
range 33% < iy, < 46%.

Basins between the regions of Maipo and Aysen (MP to AY in Figure 2) locates
to the south of Nazca Plate. They develop in a Mediterranean climate with marked
seasonality and under a rainfall regime. In this region, the drainage pattern and density
shows a clear the influence of the aforementioned morphostructural units. This influence
traduces in north-south strip’s arrangement. In almost all the cases, a dendritic drainage
pattern is observed again over the Central Depression and also over mountain regions.
Lattice and rectangular patterns can be also observed with tributaries bifurcating rather
at almost right angles. It is interesting to note that in the Itata basin (IT), a parallel
pattern develops very well in the Central Depression. This case corresponds to a large
fluvio-alluvial fan associated with the Laja river sub-basin, formed from successive dam
breaks of volcanic materials from the Quaternary. Here the shape index falls in the range
0.20 < F < 0.62 and p =~ 1.0, showing a maximum of 1.28 in the extreme north of this
plate (for MP) and 0.96 in the south of this plate (for VA).

In Austral and Patagonian regions, Palena and Aysen basins (BA and PA in Figure
2) are under the tectonic influence of the Antarctic plate, developing over the Cordillera
de Los Andes. A common drainage pattern here is the parallel and trellis one, where
acute contact angles between tributary streams are practically nonexistent. For this
reason, the structural control of these networks is mainly related to an intense faulting
of the crust and the aggressive erosive process existent from the Quaternary glaciations.
The temperate climate of this region provides abundant rainfall conditions throughout
the year. These characteristics strongly influence the runoff regime of rivers, many of
them torrential with high flow rates. For these networks the mean slope i, ~ 31% (very
high) and the drainage densities are also particularly high, showing values in the range
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1.87 < p < 2.49. The morphological parameters of each network are summarized in
Table 2.

Thus, in average the shape index (F) is very different between large-networks,
although this is not the case of C and E, both of them showing no significant variation
from one network to another. However, dramatic differences arise for these parameters
at sub-basin level. In this case, F is not only more homogeneous, but its values strongly
decreases in the range 0.22 < F < 0.29. Similar values are observed respect to C.
However, the parameter E shows a significant increase falling into the range 0.51 < E <
0.60. All of these indexes shows a dramatic departure from the values reported in Table
1. A similar conclusion can be deduced with respect to p. Despite the similar order of
the watersheds (Q2), the differences between Tables 1-2 are non-negligible.

3.2. About the Distribution of Horton Ratios

Figure 3a-3c shows the frequency distributions of Horton ratios for all the fluvial
networks (23 large-networks and 30 sub-networks). A first look at each distribution
shows that the peaks of frequency are reached at different ratios, thatis, R4 = 5.25, Rp =
5.25, R, = 3.75 for large-networks and R4 = 6.25, R = 5.75, R} = 4.25 in sub-networks.
Notice that the distribution related to Rg shows similarities in both cases as observed in

Figure 3b.
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Figure 3. (a)-(c) Frequency distribution of R4, Ry, Rp for large-networks (continuous line in black) and sub-networks
(pointed-lines in red). The peaks of each draw were included for reference; (d) and (e) CDF curves for the Horton ratios, for
large and sub-networks. Horizontal dashed-line corresponds to CDF = 80%.
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Ra

slope = -1.87+0.21

Figure 3d-3e shows the Cumulative Normalized Frequency Distribution (CDF) of
the Horton ratios. Once again, important differences arise on these curves depending on
the size of the network. A referential value was included in these last two figures just to
emphasise such differences (see the horizontal dashed lines). Respect to this last point,
Figures 3d-3e show that Horton ratios saturate around R4 = 8.49, Rp = 7.09, Ry = 5.38
at sub-basins level, and around R4 = 5.5, Rp = 5.7, R, = 3.6 when dealing with large-
basins. Almost all the curves shows also an almost constant growth-rate, but their
mean slopes depend upon the size of the network. The constancy of each slope can be
interpreted a priori as a sign of a certain homogeneity on the diffusion of streams into
watershed. Unexpectedly, only R 4 presents a secondary outbreak for very large ratios.

On the other hand, Figure 4 shows the distribution of R4, Rp, Ry, versus log(A) (the
logarithm of the area) for all the measurements. Points in the range 1.7 < log(A) < 3.8
correspond to sub-networks and those in the range log(A) < 3.8 correspond to large-
networks. Scattering bands of +50% were also drawn around each mean fit to emphasise
the significant dispersion of measurements. Surprisingly, each distribution shows a
decreasing behaviour that can be reasonably fitted by a linear function of negative slope
1 (as indicated in Figure 4). Notice that # values are quite similar between R; and Rp
(= —0.90 and —0.87, respectively), but quite different respect to R 4 for where 7 = —1.87,
almost the double.
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Figure 4. Comparison between the averaged Horton ratios R; versus log(A), with g = A, B, L. The continuous line is
the mean fit for each curve of approximated slope 7 = —1.87 £0.21, —0.90 £ 0.10, —0.86 = 0.15 for ¢ = A, L, B. A £50%
scattering band was traced around each fit as a guide to the eye.

3.3. Fractal Dimension of Networks

In this section the interplay between the fractal dimension and some morphological
properties of the networks is explored. Table 3 shows the fractal dimension of each
network calculated from Fractalyse, ordered by tectonic segment’s influence. If we look
at the values obtained only for large basins, we readily note that networks located at
Nazca North plate-segment show the highest values of the entire record. In particular,
the overall fractal dimension for Loa network is Dr ~ 1.89, the highest value of the
present study. However, the fractal dimension of networks under the influence of Nazca
Flat Slab plate decreases into the range 1.51 < Dp < 1.72. The units influenced by
Nazca South plate shows a clear homogeneity in the distribution of Df, showing values
bounded into the range 1.50 < Dr < 1.71, very close to the results observed in the
last situation. However, when we reach the networks located at Austral-Patagonian
regions, the fractal dimension increases again leading to the values Dr = 1.63 for Pascua
network and Dr = 1.71 for Baker. Thus, clear differences arise depending on the tectonic
segment influencing basin’s topography, suggesting that fractal dimension is a parameter
controlled at some point by tectonic processes and, to a lesser degree, by erosive-related
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phenomena. This point of view is in agreement with the interpretation of the fractal
dimension proposed by some authors for fluvial networks (e.g. [24,33]).

Table 3. Fractal dimension Dr for large basins and its sub-basins obtained from Fractalyse. Loa, Elqui, Valdivia and Baker
basins have been marked in red.

Tectonics  Basin Sub-basin Dp ‘Tectonics Basin  Sub-basin Dp ‘Tectonics Basin Sub-basin Dp

Loa 1.89 Maipo 1.63 Baker 1.71
LO1 1.37 Mataquito 1.50 BA1 1.47
LO2 1.38 Rapel 1.58 BA2 1.56
LO3 1.71 Maule 1.63 BA3 1.30
LO4 1.64 Ttata 1.59 AP BA4 1.31
LO5 1.43 Bio Bio 1.71 BA5 1.59
LO6 1.55 Imperial 1.58 BA6 1.30
NPN LO7 1.51 Tolten 1.55 BA7 1.46
LO8 1.75 Valdivia 1.50 Pascua 1.63
Quebrada 1.87 VAL 153
Caracoles
Salado 1.66  NPSs VA2 1.49
Copiapo 1.72 VA3 147
Huasco 1.56 VA4 1.30
Elqui 1.51 VA5 1.33
EQ1 1.49 VA6 1.24
EQ2 1.45 VA7 1.45
EQ3 1.51 Bueno 1.56
EQ4 1.36 Palena 1.55
NPFS EQ5 1.27 Aysen 1.56
EQ6 1.26
EQ7 1.29
EQ8 1.45
Limari 1.55
Choapa 1.53
Aconcagua 1.68

From data presented in Table 3, we have built the curves shown in Figure 5. Figure
5a compares the fractal dimension Dr with the mean slope of each network (log (i)
for simplicity); sub-basin data was also included. Although, not clear trends can be
observed between the points, most of measurements obtained from large-basins fall into
a high-sloped region. However, when analysing sub-basin data it is quite surprising that
sub-networks extracted from Loa (LO1 — LO8) falls in a sloping regime different from
that measured for the entire basin LO (low-slope vs. high-slope). A similar situation is
observed for the case of Elqui (EQ), Valdivia (VA) and Baker (BA) basin. Such differences
indicate that morphometric properties analysed at a finer radius of observation present
significant departure from those obtained from the large-basins containing them. A large
sub-set of measurements falls into a moderated slope region, constituting a transition-like
region between low and high-sloped networks. On the other side, Figure 5b compares
Dr with the drainage density p. In this case most of points concentrate into the region
0.8 < p < 1.24; only VA7 gets-out of it. In this region, Dr shows a wide variation, going
from 1.20 to 1.67 and no reasonable fitting function seems reasonable. However, into
the range p > 1.24 fractal dimension shows a slight growth for increasing values of p
leading to values closer to Dy = 1.89 (LO large-basin). Notice that most of fractal values
in the range p > 1.24 are under the influence of Nazca North plate-segment.
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Figure 5. Fractalyse results versus (a) the slope of each basin and (b) versus the drainage density p. In (a) three regions
were drawn to separate the slope regimes from low to high. In (b) two regions were drawn, one for p < 1.24 (very coarse
drainage networks) and another one, for p > 1.24 (coarse drainage networks). Loa, Elqui, Valdivia and Baker basins were
indicated to remark the differences between large and sub-networks.
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Figure 6. Dr versus log(A) for large and sub-networks. Continuous lines correspond to fits
Dr « slog(A) where s is the slope of the curve (s = 0.25,0.30,0.41 for each dataset). The fit
s = 0.30 is arbitrary.
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Figure 6 compares D with log(A) for all the units. An unexpected nice agreement
was obtained between the points, with data splitting-up into three different groups.
Each group can be characterized by a linear fit of slope s, that is, s = 0.41 for large
basins, s = 0.25 for sub-basins EQ5, EQ7, LO1, LO5, LO6,L07, LO8 and an arbitrary
central fit of slope s = 0.30 for the rest of sub-networks. This pattern of organisation is
quite surprising, considering the apparent disorganised character of Chilean territory
quite well known with respect to their latitudinal development, the current and past
tectonic and geomorphological processes and the factors conditioning the climatic and
hydrological characteristics, all of them already discussed in sub-section 3.1. The fits
proposed in Figure 6 suggest that Dr depends significantly upon network’s area. Thus,
we can propose the simple allometric scaling Dr o s-log(A) = log(A®), with s an
area-dependent parameter. Curiously, this fit has been also obtained from measurements
of fractal dimension in urban environments(see [34]).

Figure 7 compares Fractalyse results with the analytical models detailed in section
1.1 (see Eqs.2-5). Notice that Eq.2 systematically underestimates the fractal dimension,
both for large units and sub-basins. In contrast, Liu’s approach (Eq.5) provides the
highest values of the entire record leading, in some cases, towards values higher than 2.
However, a fractal dimension higher than 2 (whatever the model used) is an unexpected
result, not representative of the networks here explored. Only the model proposed by
La Barbera and Rosso and Tarboton et al. (Eqs.3-4, respectively) show closeness with
Fractalyse estimations, from our point of view the most representative values for our
networks. The Pearson correlation index r; was also estimated between Dy and D,
when k =1, ..., 4 (following the notation used in Eqs.2-5, obtaining (r,,r3) = (0.78,0.77)
for large-basins and (rp,r3) = (0.77,0.55) at sub-basins level. Such results, confirms the
agreement between Eqs.3-4 and Fractalyse, as detailed before.

Large-basins Sub-basins
2.0 r,=0.76 X & 2.0 hg < Fractalyse vs. :
195 | =078 190 o0 o0 o Eq.(2), k=1
| A i PR < A Eq.(3), k=2
1.7} f4=-0.11 A 1.7} <<>><><> ¢ Eq.(5), k=4
A A
16+ ° 161 A, r, =0.77
&  15f a  15F R Q‘A o0 r,=0.77
141 : ) 14l @ 0 r;=0.55
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Figure 7. Comparison between Fractalyse results (D) and Eq.2 (k = 1), Eq.3 (k = 2), Eq.4 (k = 3) and Eq.5 (k = 4) for
(a) large-basins and (b) sub-basins. The parameter r; denotes the Pearson correlation index between the each model and
Fractalyse, fork =1, ..., 4.

4. Discussion
4.1. Fractal dimension: an area-dependent parameter

The curves presented in Figure 4 lead to the relationship R; = & + 77log(A), with
q = A, B,L and ¢, 1 fitting parameters, with 7 the slope of each curve. Let’s define the
log(Rp)
log(Ry)”

log(S+ylog(A)) . e . .
Tog (& T Tog (A))” with ¢’, " another fitting parameters. The relationship between

parameter { = with p = B and g = L, A. This parameter can be also written

as{ =
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¢ and A can be observed in Figure 8a. Referential averages of each dataset were also
included ({ = 1.28 for g = L and { = 0.96 for ¢ = A). For q¢ = L (points in red), this
distribution presents a significant deviation around its average, particularly important
in the range A > 24,223km?. Although less evident, such departure also appears for
q = A (points in gray), being significant in the range A < 261km?. Thus, an intrinsic
variability of Egs. 2-5 with A can be observed. To delve into the properties of { we
have built the Figure 8b. In this graph, we show how large is the departure between ¢

and Dr, comparing the ratio % with the A. Notice that % is always larger than unity,

showing an almost linear increasing behaviour with A in the range A < 6219km?. When

A > 6219km?, a kind of saturation effect can be observed, where % ~ K3 with k3 a
fitting parameter.

e p=Bg=L ® p=Bg=A - A=6219 km2 a)

sub-basins large-basins
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| °

____________ ® L0 2 ’e®_____

~ 1.2- 0 oo ®

o &% By -

“““ v RAPeee g SN 2
084 @ 0.96+0.1

107 10° 10* 10°
A (km2)

05 log(A)=3.78 b)
50- K;log(A) + K, | K3

o /

N
~ 15/ ® .
()
1.0- |
0.5 . : | — :
15 20 25 30 35 40 45 50

log(A)

Figure 8. (a) Comparison between ¢ and A (p = B;q = A, L), for large and sub-networks. The
vertical line is a referential value denoting the transition area, separating both kind of networks
(A = 6219km?). Horizontal dashed-lines correspond to the averages { = 1.28 for g = L and
{ = 0.96 for g = A, respectively. (b) Comparison between the ratio Dr/{ and log(A). Continuous
lines corresponds the fit proposed in Eq. 9.

Taking these elements into account, both growth regimes can be roughly described
by the next relationships:

Dp

D
?F xkilog(A) +ry if A< 6219%m?® & 7 =R if A>6219%m> (9)
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where k7, k3, k3 are fitting constants. When g = L we obtain (x1,xp,x3) = (0.06 +
0.02,0.99 +0.1,1.21 + 0.02), but for 4 = A we obtain instead (x1,%p,k3) = (0.13 +
0.04,1.18 +0.1,1.60 £ 0.02). Notice that «; is small, but not small enough to neglect the
term «1l0g(A) at all. In any of both regimes, significant contrast arise when considering
Ry or R4 in the determination of { and thus, the fractal dimension Dy for k = 1, ...4. Such
saturation effect observed for very large areas emphasises the idea that fractal dimension
of fluvial networks cannot growth indefinitely. There must be a limit for this index
according to the full-filling space concept proposed by [24], that is, fractal dimension
cannot exceed the dimension of the embedding space for this case (Dr = 2). These
results also show that fractal values obtained from both methodologies can be related
through a law of the type Dr = (A, d) Dy, where d is the meandering fractal dimension
of the mainstream and # a fitting function. This function shows a linear variation with
A for sub-networks and ¢ &~ C*, for larger units. This area-dependence structure can
be also obtained from Figure 6. At this point, it is quite important mentioning that the
variability of the ramification patterns observed in our networks, are properly taken into
account by a box-counting algorithm. Such characteristic is, however, not necessarily
considered when the fractal dimension is only estimated from the analytical expressions
based on Horton ratios. Meandering or avulsion patterns of ramification of individual
streams are not always considered by a Hortonian-like structure; even more, it is not
always possible to do that particularly when streams are analysed at very large scales.
Then, serious differences are expected when comparing both methods of calculation as
shown in Figure 8. This effect was also suggested by [35].

14 7 7 , 14 ’
a c1 cC2 - -
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12 7 12 c2 -
v . C4
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Figure 9. Comparison between Rj, and R; for (a) sub-basins and (b) large-basins measurements. Continuous lines (C1 — C4)
correspond to power-law fits of the form R, = R, where m is a fitted exponent for each dataset.

In the same context, a comparison between the Horton parameters calculated for
all the units can be observed in Figures 9a-9b. As anticipated by Figure 4, patterns
of regularity also arise in this case. Such regularity is quite evident for large-basins
measurements, and less evident for sub-network measurements. In any of both cases,
both distributions can be roughly described by a law of the type R, = R;" (p # q),
with m a characteristic exponent of each curve. For sub-networks we obtain m = 1.20
forp = B,q = L (fit C1) and m = 1.09 for p = A,q = B (fit C2). In contrast, for large-
networks measurements we get m = 1.32 for p = B,q = L (fit C3), whereas m = 0.98 for
p = A,q = B (fit C4). By one hand, these exponents show that Horton ratios measured
at sub-basin level are strictly bounded by large watersheds data but on the other side,
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these metrics are dependent on the size of the units, even if they were extracted from the
same morphological unit. Once again, this area-dependent character can be observed in
many parameters at the same time revealing that fluvial networks analysed in this paper
are objects whose behaviour is far from "pure" fractals typically reported in literature.

Another striking element arises when analysing sub-networks from the North of
the country. In this case, dataset shows an important dispersion suggesting the influence
of tectonics control in our measurements, particularly when we discuss about this scale-
invariance property. This competition between tectonics and water-erosive effects have
been discussed by [36] and it is inherent to the fractal dimension of a fluvial network.
Soil characteristics, lithology and tectonic conditions are major agents of influence on the
final pattern of a fluvial network. However, climatic and hydrological conditions play a
sculpting role on a given network, influencing the measure of its fractal properties. If we
analyse the role played by other geomorphic parameters, Figure 5a shows however no
clear trends, for example, between Dr and the mean slope i, or the drainage density
o (Figures 5a-5b). In this last case, however, Dr strongly concentrates in the range
0.8 < p < 1.24, slightly increasing for higher drainage densities. This effect becomes
more clear for networks under the influence of Nazca North segment-plate (e.g. LO
and QC), showing an accentuated contrast with the basins from the rest of the country.
Following this idea, it is equally surprising that sub-basin dataset, in almost all the cases,
shows a tendency to group in regimes different from those observed for larger units.
This departure could be explained because of the detailed morphological information
obtained at a finer measurement scale, not possible to recover when analysing the same
morphological unit with a larger "ruler".

Our results also shows that the determination of the fractal dimension is quite sen-
sitive to the choice of the method of calculation. From an analytical point of view, if Eq.
2 approach underestimates this parameter, Eq.4 over-estimates it leading to unrealistic
values larger than 2 (the theoretical limit for our networks). The approach proposed by
Tarboton et al. (Eq.3) it is the only model presenting a rough agreement with Fractalyse
results (see Figure 7). Thus, the models given by Eqs.3-5 a size-dependent multiplicative
factor should be involved and therefore, the universality of such formulations must
be carefully analysed. Claps and Oliveto [35] seems to support this idea, proposing a
size-dependent coefficient on the allometric relationships of a given basin. Following
this argument, we wonder to which extent the fractal dimension of a large-basin could
be reproduced by averaging the fractal dimensions of their respective sub-basins. Ac-
cording to our measurements, the closeness (or distance) between these results could be
interpreted as a sign of self-similarity patterns related to the distribution of the fractal
dimension of each network, in particular for Loa, Elqui,Valdivia and Baker. Among the
many ways to perform such averaging, here we have considered an area-weighed law
for such purpose, that is:

D- _ D1A1 + ...+ Dn(i)An(i)
! Ap ot Ay

(10)

where D; is the average value of the sub-networks extracted from a given large-
basin, fori =1, ...,4, (i = 1for Loa, i = 2 for Elqui, i = 3 for Valdivia and i = 4 for Baker);
n(i) is the number of such sub-basins and Ay, the area of each of them (k = 1, ..., n(i)). The
parameter Dy corresponds to the fractal dimension of the sub-networks already estimated
by the methods detailed in Egs. 2-6. Table 4 shows a comparison of D;. The calculations
evidence clear discrepancies between the results, suggesting a priori the impossibility of
recovering the fractal dimension of the entire basin by simply averaging the fractal values
of its "parts”, whatever the model used. Only when comparing Fractalyse results, the
regions of Elqui and Valdivia show some similarities. From our point of view, this result
emphasizes the idea that Chilean networks cannot be considered strictly as self-similar
systems, being quite sensitive to the choice of the model of estimation.
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Table 4. Averaged fractal dimension Dy for Loa (k = 1), Elqui (k = 2), Valdivia (k = 3) and Baker
(k = 4) basins, calculated according to different models. Fractalyse values were also included for
comparison. Values of the entire basin are shown in the last column, obtained from the Table 3.

Averages for When Dy is calculated from: Dimension of
the entire basin
sub-basins from: Eq.2 Eq.3 Eq4 Eqb5 Fractalyse Fractalyse

Loa (Dy) 137 156 147 1.87 1.67 1.89
Elqui (D5) 122 139 130 1.88 1.47 1.51
Vadivia (D3) 123 140 134 185 1.48 1.50
Baker (Dy) 127 146 139 1.85 1.52 1.71

4.2. About the relationship between p, A, iy, and the fractal dimension of each network.

From the results presented though this paper is clear that a relationship between
the mean slope, the drainage density and the fractal dimension of each network must
exists. Such interplay can be observed in Figure 10. Climatic and tectonics effects on
data were also qualitatively indicated in the same graph.
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Figure 10. Diagram between p, the mean slope i;;, the fractal dimension and the dominant tectonics and climatic conditions.
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About this diagram it is important to introduce two elements. First, the subduction
influence of Nazca and Antarctic plates shows a west-east direction, also known as
the collision margin with the South American plate. Such phenomenon has generated
the main morphostructural units organized in longitudinal bands of the relief already
explained in Section 3.1. Second, in general the development of the different climatic
types is related with the global atmospheric circulation patterns, allowing a latitudinal
climatic zonification in the north-south direction. For this reason, arid climates in the
north progressively becomes more humid towards the south of the country. From these
considerations, it is reasonable to think about isolated or combined natural effects in the
development of drainage networks. In this context, most of fluvial networks in Chile
have been the combined result of both, tectonics and erosive processes, giving rise to
very coarse drainage textures (o < 1.24), with a tendency to present moderate to high
slopes in larger basins (for which fractal values falls in the range 1.50 < Dr < 1.72) and
moderate to low slopes sub-basins (with values in the range 1.24 < Dp < 1.51). On
the other hand, a smaller sub-set of basins shows a strong tectonics influence on their
drainage patterns, only because of they are located in the north of the country. These
units present moderate to low slopes regimes and coarse drainage textures (p > 1.24),
for which fractal values are essentially high (1.87 < Dr < 1.89 for large-basins and
1.53 < Dr < 1.75 for sub-networks). This level of organisation is not coincidental,
revealing a non-aleatory connection between tectonics, climate and fractality, questioning
this apparent disordered character of the territory.

5. Conclusions

In this paper we have studied the fractal properties of Chilean relief by measuring
morphometric properties of fluvial networks distributed across the country, analysed at
different scales. The mono-fractal dimension of each unit was estimated by applying
two different methods: one, based on Horton ratios metrics and another one, based on a
box-counting algorithm trough Fractalyse. A first impression is that such estimations
are quite sensitive to the chosen method, revealing significant differences at sub-basin
level. In this sens, only the approaches proposed by Eq.3 and Eq.4 show similarities
with Fractalyse data, suggesting that a box-counting method seems to better captures
the main topological features of each network (e.g. the shape of individual streams, the
presence of curvatures, meanders and avulsion patterns, among others). Such features
are essentially a consequence of the erosive power of the streams, as well as by structural
control whose influence is visible throughout Chilean territory.

Following this argument, fractal dimension estimated from Fractalyse (Dr) for
large-basins located under the influence of the Nazca North segment show values in
the range 1.66 < Dr < 1.89, while networks located in Antartica plate fall in the range
1.63 < D < 1.71. Both ranges evidence a clear contrast between the extreme regions of
the country. On the other side, basins located under the influence of Nazca Flat Slab and
Nazca South segments fall in the range 1.50 < D < 1.72. These last values are close to
the magnitudes reported in the cited literature, particularly for networks developing on
alluvial fans like the morpho-structural unit Central Depression detailed in Section 3.1. It
is also interesting mention that these basins are influenced by Mediterranean climates.
These latitudinal differences emphasises, once again, the structural control on the ability
of a fluvial network to diffuse into the basin. Such effects introduce morphological
anisotropic features on drainage patterns, as suggested by [24]. This characteristic is
present in most of networks analysed in this report and is intimately related with the
concept of self-affine diffusion of streams.

Analyzing this information at sub-basin level, the results becomes as surprising,
as disturbing. Fractal values for these units show a clear departure with respect to the
values observed at larger units. This is the case of Loa, Elqui, Valdivia and Aysen. Such
departure is strongly revealed when looking at the distribution of Horton ratios and
geomorphic indexes as well (F, C, E). Despite these differences, reasonable groupings
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between Dr and the size of each unit were obtained (see Figure 6), conducting to nice
correlations of the type Df o slog(A), with s an area-dependent exponent. A similar
conclusion was obtained from Figure 8b. This result suggest that Dr should not be
considered a scale-invariant parameter, but rather a complex function of the are of the
network, and the meandering pattern of diffusion of individual streams. landscape. This
kind of connection between fractal dimension and the area of the object was reported
previously by [34] from measurements on urban environments.

Finally, all the results presented in this paper invite to consider the fractal dimension
as a rich geomorphic parameter revealing the self-affine character of fluvial networks as
inferred from the the results presented in Table 4. This parameter could definitely help
to improve our comprehension about the characteristics of drainage patterns measured
across the territory. The information provided by this dimension is no possible to get
from classical morphometric indexes (e.g. parameters F, C, E). In this context, it is very
surprising that despite the climatic, morphological, tectonic and lithological variability
of the country, a significant amount of parameters show reasonable groupings and trends
(e.g. Figures 6,9,10). These striking patterns of organisation seems to be camouflaged into
each basin, inviting to consider Chilean territory not as so "crazy", nor so unpredictable
as believed.

Chilean landscapes could be taken as a powerful natural laboratory to test the
validity of mprphometric and fractal scaling-laws, widely disseminated in the literature
(e.g- Egs.2-5). Most of these findings deserve to be analysed with more detail, but due
to the scale of such work it requires to use a methodology different from that reported
here. In this context, a multifractal analysis is an interesting tool to conduct this process
considering the complex mechanisms involved on the generation and evolution of a
fluvial network. This is a very challenging task will definitely be the goal of a next report.
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Appendix A Drainage patterns of sub-networks

In this appendix we can observe the drainage patterns of the 33 sub-basins extracted
from Loa (LO1 — LOS8), Elqui (EQ1 — EQ?7), Valdivia (VA1 — VA7) and Baker (BA1 — BA7)
watersheds.
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Figure A2. Drainage networks extracted from Elqui basin.
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VA4

VAS

Figure A3. Drainage networks extracted from Valdivia basin.

BA3

BA2

Figure A4. Drainage networks extracted from Baker basin.
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