Review

Developmental formation of the GABAergic and glycinergic networks in the mouse spinal cord

Chigusa Shimizu-Okabe*, Shiori Kobayashi†, Jeongtae Kim‡, Yoshinori Kosaka§, Masanobu Sunagawa*, Akihito Okabe* and Chitoshi Takayama**

*Department of Molecular Anatomy, University of the Ryukyus, Graduate School of Medicine, 207 Uehara, Okinawa 9030215, Japan
†Department of Anatomy, Kosin University College of Medicine, Busan 49267, Republic of Korea
‡Department of Nutritional Science, Faculty of Health and Welfare, Seinan Jo Gakuin University, Fukuoka 803-0835, Japan
§Co-Director, Department of Molecular Anatomy, University of the Ryukyus, Graduate School of Medicine, 207 Uehara, Okinawa 9030215, Japan; Phone +81-98-895-1103; Fax. +81-895-1405; E-mail: takchan@med.u-ryukyu.ac.jp

Abstract Gamma-aminobutyric acid (GABA) and glycine act as inhibitory neurotransmitters. Three types of inhibitory neurons and terminals, GABAergic, GABA/glycine co-releasing, and glycinergic, are orchestrated in the spinal cord neural circuits and play key roles in the regulation of pain, locomotive movement, and respiratory rhythms. Herein, we first describe GABAergic and glycinergic transmission and inhibitory networks, which consist of three types of terminals, in the mature mouse spinal cord. Second, we describe the developmental formation of GABAergic and glycinergic networks, with specific focus on the differentiation of neurons, formation of synapses, maturation of removal systems, and changes in their action. GABAergic and glycinergic neurons are derived from the same domains of the ventricular zone. Initially, GABAergic neurons are differentiated and their axons form synapses. Some of these neurons remain GABAergic in lamina I and II. Many of GABAergic neurons convert to co-releasing state. The co-releasing neurons and terminals remain in the dorsal horn, whereas many of co-releasing ones ultimately become glycinergic in the ventral horn. During the development of terminals and the transformation from radial glia to astrocytes, GABA and glycine receptor subunit compositions markedly change, removal systems mature, and GABAergic and glycinergic action shifts from excitatory to inhibitory.

Keywords: astrocyte; gamma-aminobutyric acid (GABA); GABA transporter (GAT); GABA receptor; glutamic acid decarboxylase (GAD); glycine; glycine receptor; glycine transporter (GlyT); K⁺-Cl⁻-co-transporter 2 (KCC2); vesicular GABA transporter (VGAT)

1. Introduction

In the mature central nervous system (CNS), which includes the spinal cord, γ-aminobutyric acid (GABA) and glycine are inhibitory neurotransmitters that negatively regulate neuronal activity [1-4]. In the spinal cord, there are three types of inhibitory neurons and terminals: GABAergic, GABA/glycine co-releasing, and glycinergic [5-7]. These neurons and terminals are orchestrated in the spinal cord neural circuit and are involved in many important roles, such as the regulation of somatic sense, locomotive movement, and respiratory rhythms [8-10]. In the first part of this review, we will focus on the three types of neurons and terminals and describe the inhibitory networks in the mature spinal cord from the following viewpoints: (1) distribution of neurons and terminals, (2) receptor composition, (3) removal system, and (4) mechanisms underlying inhibitory transmission. In the latter half of the review, we will focus on morphological development and demonstrate the processes of how mature networks are established through the following
neuronal differentiation processes: GABAergic and glycinergic neurons are born in the ventricular zone, migrate in the gray matter, extend their dendrites and axons, and form synapses. During these processes, the neuronal types alter, the composition of the receptor subunits changes, the removal system matures, and the action of both neurotransmitters shifts from excitatory to inhibitory.

2. GABAergic and glycinergic network in the mature spinal cord

GABAergic and glycinergic synapses are schematically illustrated in Figure 1A and 1B, respectively. GABA and glycine are synthesized within the neurons and transported from the extracellular space, which includes the synaptic cleft. The neurotransmitters are loaded into synaptic vesicles and released from the axon terminals. After diffusion in the synaptic cleft, they bind to GABA or glycine receptors at the postsynaptic membrane. In the mature spinal cord, activation of GABA or glycine receptors induces hyperpolarization of the membrane potential and negatively regulates neuronal activity. The action of these neurotransmitters is terminated by their removal from the synaptic cleft into presynaptic terminals and astrocytic sheets that surround the synapses [3, 11-13].
Figure 1. GABAergic and glycinergic transmission in the adult spinal cord. A and B Schematic illustration of GABAergic (A) and glycinergic (B) synapses. Various key molecules are involved in GABAergic and glycinergic transmission. C and D Immunohistochemistry for GAD (C and D), GlyT2 (E and F), and both (G and H) in the dorsal (C, E, and G) and ventral (D, F, and H) horns. In
lamina I and II, GABAergic terminals are dominant (C), whereas GAD and GlyT2 double-positive co-localizing terminals (yellow) are dominant in lamina III of the dorsal horn (G). In the ventral horn, glycineergic GlyT2-positive terminals (green) are dominant (F), but GABAergic GAD-positive terminals (red) are scarce (F and H).

2.1. GABAergic transmission

GABAergic transmission at the synapse is illustrated in Figure 1A. GABA is synthesized from glutamate by two isoforms of glutamic acid decarboxylase (GAD65 and GAD67) [14] and loaded into vesicles by vesicular GABA transporter (VGAT), which is also known as vesicular inhibitory amino acid transporter (VIAAT) [15, 16]. GABA is released via the fusion of vesicles with the presynaptic membrane at the nerve terminals and binds to GABA receptors on the postsynaptic membrane. GABA receptors are classified into three groups based on their pharmacological and biochemical characteristics: GABA\(\alpha\), GABA\(\beta\), and GABA\(\gamma\). Among them, the fast synaptic transmission is mediated by GABA\(\alpha\) receptors in the mammalian CNS [1, 17]. The GABA\(\alpha\) receptor is a member of the ligand-gated ion channel receptor family and is thought to be composed of five heteromeric subunits belonging to seven different subunit families: \(\alpha1-6, \beta1-3, \gamma1-3, \delta, \epsilon, \pi, \) and \(\theta\) [1, 2, 17, 18]. Native GABA\(\alpha\) receptors contain at least one \(\alpha\), one \(\beta\), and one \(\gamma\) subunit. The subunit composition varies among the brain regions [19-21]. Different subunit compositions exhibit their own characteristic pharmacological and electrophysiological properties [1, 2, 18, 22, 23]. In situ hybridization histochemistry used to evaluate mRNA localization demonstrated that in the mature spinal cord, two of the six \(\alpha\) subunits, \(\alpha2\) and \(\alpha3\), are highly expressed in the gray matter [20, 24, 25]. Expression of the \(\alpha2\) subunit is high in motor neurons and the surrounding satellite neurons in the ventral horn. The \(\alpha3\) subunit is highly expressed in the dorsal horn and moderately localized in other regions of gray matter. Expression of the \(\alpha1\) and \(\alpha5\) subunits is weak, whereas the \(\beta3\) and \(\gamma2\) subunits are highly expressed throughout the gray matter. Immunohistochemical localization [26-28] confirmed the mRNA distributions observed by in situ hybridization histochemistry. However, there are some discrepancies between mRNA and protein localizations. For example, the distribution of \(\alpha1\), \(\alpha2\) and \(\alpha5\) subunits differ in the dorsal horn between in situ hybridization and immunohistochemical analysis. The results suggest that sensory neurons in the dorsal horn may express receptors consisting of \(\alpha3\beta3\gamma2\) subunits, and some receptors might include \(\alpha1\), \(\alpha2\), and \(\alpha5\) subunits. Motor neurons in the ventral horn may express \(\alpha2\)\(\alpha5\)\(\beta3\gamma2\) subunits. Binding of GABA to the GABA\(\alpha\) receptor induces the influx of chloride ions (Cl\(^-\)), and mediate hyperpolarization of the postsynaptic membrane potential. GABAergic transmission is terminated by the re-uptake of GABA into the nerve terminals or uptake into the surrounding astroglia by plasma membrane GABA transporters (GATs) [29]. GATs are high-affinity Na\(^+\) and Cl\(^-\)-dependent transporters that co-transport GABA with Na\(^+\) and Cl\(^-\) [30, 31]. In the CNS, there are three types of GAT: GAT-1, GAT-2, and GAT-3. GAT-2 is localized in leptomeningeal ependymal cells and the choroid plexus [32]. GAT-1 and GAT-3 function at the membranes of axon terminals containing GABAergic vesicles and astrocytic sheets surrounding GABAergic synapses, respectively [33-36].

2.2. Glycinergic transmission

Glycinergic transmission at the synapse is illustrated in Figure 1B. Several glycine biosynthesis pathways have been suggested [37, 38]. For example, serine, which is derived from 3-phosphoglycerate in the glycolytic pathway, is converted to glycine by serine hydroxymethyltransferase (SHMT) within the mitochondria. However, in glycinergic neurons, high-affinity uptake systems mediated by glycine transporter 2 (GlyT2) may be the dominant supply pathway for presynaptic glycine [39, 40]. GlyT2 knockout mice die from lack of glycine during the second postnatal week [41, 42], which suggests that de novo synthesis by SHMT is not sufficient for glycinergic neurotransmission [4, 12, 43]. After being loaded into vesicles via VGAT (VIAAT) [15, 16], glycine is released by exocytosis.
from the nerve terminals and binds to glycine receptors on the postsynaptic membrane. The glycine receptor is a ligand-gated ion channel receptor that consists of five subunits belonging to two subunit families: α1-3 and β in the mammalian CNS [3, 44, 45]. The α subunit has a strychnine binding site and the β subunit binds to the scaffolding protein gephyrin. The composition varies among the CNS regions. Different subunit compositions exhibit their own characteristic electrophysiological properties [45, 46]. Immunohistochemical and in situ hybridization analysis demonstrated that the α1 and β subunits are highly and homogeneously expressed in the gray matter of the spinal cord, which suggests that the dominant composition of the glycine receptor may be α1β (two α1 and three β subunits) [47–51]. In addition, the α2 and α3 subunits are weakly expressed in the dorsal horn. Glycine receptors consisting of α1β are localized at the postsynaptic membrane, whereas those containing the α2 and α3 subunits may be localized at the extra-synaptic region, as seen in the hippocampus [52]. Binding of glycine to the receptor induces an influx of Cl⁻ (Fig. 1A), as observed in GABA binding (Fig. 1B). The glycineergic action is terminated by re-uptake into the nerve terminals and uptake into the surrounding glia through plasma membrane glycine transporters (GlyTs) [39]. GlyTs are high-affinity Na⁺ and Cl⁻-dependent transporters that co-transport glycine with Na⁺ and Cl⁻. There are two types of GlyTs in the CNS: GlyT1 and GlyT2. In the spinal cord, as well as in other brain regions, GlyT1 is located at the astrocytic sheets that surround glycineergic synapses and GlyT2 is localized at the membranes of axon terminals that contain glycineergic vesicles [53, 54].

2.3. GABAergic and glycineergic transmission in the mature spinal cord

GABA or GAD immunohistochemistry [55–57] and GAD-green fluorescent protein (GFP) labeling [58] demonstrated that the density of GABAergic neurons is high in the dorsal horn and moderate in the middle part of gray matter central part, whereas GABAergic neurons are scarce or in the ventral horn. The distribution of GABAergic terminals is almost the same as that of GABAergic neurons, with high density observed in the dorsal horn (Fig. 1C) and low density observed in the ventral horn (Fig. 1D). In contrast, glycine immunohistochemistry [59] and GlyT2 expression analysis [8, 10] demonstrated that glycineergic neurons and terminals are homogeneously distributed in the gray matter, except for in the superficial layer of the dorsal horn (Fig. 1E, 1F). In lamina I and II, the density of glycineergic neurons and terminals was lower than that observed in the other laminae (Fig. 1E) [59, 60]. Furthermore, double staining of GABA/GAD and glycine/GlyT2 demonstrated that co-localizing (functionally co-releasing) neurons and terminals are often detected in the spinal cord (Fig. 1G, 1H) [5–7], and electrophysiological studies confirmed that the two neurotransmitters are loaded into the same synaptic vesicles and released simultaneously [61, 62]. Co-releasing terminals have been abundantly detected in the deep part of the dorsal horn and middle part of the gray matter. In general, GABAergic neurons and their terminals are dominant in lamina I and II (Fig. 1G). Co-releasing neurons and terminals are dominant in lamina III to VI (Fig. 1G). Glycinergic neurons and their terminals are dominant in the lamina VII–IX (Fig. 1H) [9, 53, 63–65]. Total inhibitory terminals, which are detected as VGAT (VIAAT)-positive dots, are homogeneously and ubiquitously distributed in the gray matter [55]. GABA and glycine play distinct roles in motor and sensory functions in the complex network in the dorsal [66, 67] and ventral horns [68]. GABAergic transmission is mediated by GABAα receptors consisting of α3β3γ2 subunits in the dorsal horn and α2(α5)β3γ2 subunits in the motor neurons [20, 27]. Glycinergic transmission is mediated by glycine receptors consisting of α1β subunits [46, 48]. GABAα and glycine receptors co-localize at the postsynaptic membrane of the co-releasing terminals [69]. Released GABA is removed into presynaptic terminals by GAT-1 and into astrocytic sheets by GAT-3. In contrast, uptake of released glycine into the astrocytic processes is mediated by GlyT1 and re-uptake of glycine into the presynaptic terminals is mediated by GlyT2. Because GAT-1 distribution is identical to that of the GABAergic terminals, GAT-1 is abundantly localized in the dorsal horn and sparsely
localized in the ventral horn [70]. In contrast, GlyT2 is homogeneously distributed throughout the gray matter [53, 71]. Although the localizations of GABAergic and glycineric terminals are different, both GAT-3 and GlyT1 are homogeneously distributed throughout the astrocytic sheets surrounding synapses, suggesting that astrocytic uptake may ubiquitously occur regardless of terminal distribution.

2.4. Regulation of GABAergic and glycineric action by chloride transporters

In the CNS, the change in membrane potential exerted by GABA and glycine is determined by the intracellular chloride ion concentration ([Cl\(^-\)]_i), which is regulated by the balance of two different chloride co-transporters, Na\(^+\)-K\(^+\)-Cl\(^-\) co-transporter 1 (NKCC1) and K\(^+\)-Cl\(^-\) co-transporter 2 (KCC2) [72-74]. NKCC1 increases the [Cl\(^-\)], whereas KCC2 decreases the [Cl\(^-\)]. When the action of NKCC1 is relatively high or KCC2 is absent, [Cl\(^-\)]_i is high and GABA and glycine induce depolarization of the membrane potential (Fig. 2A, left). In contrast, when KCC2 expression is high compared with the expression of NKCC1, [Cl\(^-\)]_i is low and GABA and glycine act in an inhibitory fashion (Fig. 2A, right). In the mature CNS, which includes the spinal cord, KCC2 is highly expressed on the membranes of neuronal cell bodies and dendrites (Fig. 2C) [55], and its expression level is very high compared with that of NKCC1 [72-74]. Thus, in the mature spinal cord, the [Cl\(^-\)]_i is low enough for GABA and glycine to act as inhibitory neurotransmitters [55, 75].

![Figure 2. Molecular mechanisms underlying developmental changes in the action of GABA and glycine. A Schematic illustration of GABA action depending on intracellular Cl\(^-\) concentration ([Cl\(^-\)]_i), which is regulated by K\(^+\)-Cl\(^-\) co-transporter 2 (KCC2) and Na\(^+\)-K\(^+\)-Cl\(^-\) co-transporter 1 (NKCC1). In the immature stage, KCC2 expression is low and [Cl\(^-\)]_i is high, thus GABA binding to GABA](image-url)
receptors (R) induces the efflux of chloride ions (Cl-) and mediates excitation (left). In contrast, after maturation, KCC2 expression is high and [Cl-]\textsubscript{i} is low, thus GABA mediates inhibition. When GABA/glycine elevated the membrane potential in the immature spinal cord, Ca2+ enters through the activated voltage dependent calcium channel (VDCC) (left). B and C Developmental localization of KCC2. KCC2 is weakly localized in the ventral horn at E12, but dorsal part was negative (B). In the adult spinal cord, KCC2 is expressed throughout the gray matter (C).

3. Development of GABAergic and glycinergic neurons and their axon terminals

In general, spinal cord development progresses in the ventral-to-dorsal and rostral-to-caudal directions [76, 77]. The formation of synapses, maturation of the removal system, and changes in the action of GABA and glycine also proceed in the same directions. This ventral-to-dorsal development may be regulated by sonic hedgehog signals [78-80].

3.1. Early development of the GABAergic and glycinergic neurons

The early development of GABAergic neurons has been precisely described in previous reviews [68, 81, 82]. Twelve progenitor domains are formed in the spinal cord ventricular zone (neuroepithelial layer), including the vMN and vP0-vP3 domains in the ventral half and the dP1-dP6 domains in the dorsal half (Fig. 3A) [76, 77]. Each domain produces distinct neuron groups (classes): MN and V0-V3 in the basal plate (ventral half) and dI1-dI6 in the alar plate (dorsal half). The dIL\textscript{A} and dIL\textscript{B} classes are derived later from the dP4 and dP5 domains. The V0 class is further divided into V0\textscript{v} and V0\textscript{b} subclasses, and the V2 class is subdivided into V2a and V2b subclasses. These classes are characterized by the expression of marker proteins such as Isl1, Evx1/2, and Evx1 [83]. GABAergic neurons are derived from six of the classes (V0\textscript{D}, V1, V2b, dI4, dI6, and dIL\textscript{A}). After exiting the cell cycle, neurons move out of the ventricular zone and migrate into the gray matter (Fig. 3A). Figure 3 demonstrates the developmental localization of GABAergic neurons in embryonic heterozygous GAD-GFP knock-in mice [58]. In the cervical spinal cord, GABAergic neurons first appear on the surface of the ventricular zone between embryonic day 10 (E10) and E11 (Fig. 3B, 3C). The neurons migrate along distinct routes and finally settle in distinct laminae (Fig. 3A). The differentiation processes of GABAergic neurons have been precisely demonstrated using GAD or GABA immunohistochemistry [55, 84, 85] and GAD-GFP knock-in mice (Fig. 3B-G) [58, 86]. In contrast, early developmental processes of glycinergic neurons are still unclear. RNA sequencing studies demonstrated that GlyT2 mRNA-expressing neuron groups were identical to those expressing GAD mRNA [87, 88]. GlyT2-GFP histochemistry and glycine immunohistochemistry demonstrated that glycinergic neurons often co-localize with GABA or GAD after E13, which suggests that late embryonic development of glycinergic neurons may be the same as that of GABAergic neurons [60, 89]. Taken together, these findings indicate that glycinergic neurons may be derived from the same domains as GABAergic neurons and may appear later than GABAergic neurons.
Figure 3. Developmental localization of GABAergic neurons in the spinal cord. A Schematic illustration of the origin of GABAergic neurons and their migration routes. GABAergic neurons are derived from six classes (V0d, V1, V2b, dI6, dI4, and dIL) that arise from five domains (vP0, vP1, vP2, dP6, and dP4). Each class of GABAergic neurons migrate their own routes and settle in distinct laminae. B–G Immunohistochemical analysis of GFP in the developing GFP–GAD knock-in mouse spinal cord. GABAergic neurons were absent at E10 (B) and appeared at E11 (B) and expanded their localization during embryonic development in the ventral-to-dorsal direction (D–G). In contrast to the mature spinal cord (Figure 1B), many GABAergic neurons were detected homogeneously in the dorsal and ventral horn of the embryonic spinal cord.

3.2. Development in the ventral horn

After motor neurons are differentiated from the MN class in the ventral horn, three classes of cells—V0b, V1, and V2b—develop into GABA and glycinergic neurons under the regulation of various transcriptional factors [68, 90] and distinctly participate in the complex network around the motor neurons (Fig. 3B-G) [91]. In the cervical spinal cord [55], V0b neurons first appear on the ventral side of the sulcus limitans between E10 and E11. Subsequently, these cells move ventrally and send commissural axons into the contralateral marginal zone (Fig. 3C, D). The axons ascend two to four segments and enter the contralateral motor neuron pool [55, 68, 92, 93]. Finally, they give rise to inhibitory neurons in the mature lamina VII. Second, V1 neurons appear before E11, located ventrally to the V0 neurons, and V2b neurons subsequently arise between E12 and E13 (Fig. 3C, 3D). These neurons settle in the ventral horn and extend their axons into the ipsilateral marginal zone. Their axons ascend or descend for several segments [94-96]. The V1 neurons develop into the major inhibitory interneurons, including Renshaw cells, in the ventral horn [96]. Inhibitory neurons derived from V2b are low in number among the neurons in lamina VII [97]. Last, the dI6 neurons, which are derived from the dP6 domain, migrate in the ventral direction into lamina VII and VIII and also take part in the ventral horn.
network (Fig. 3D, 3E). Glycinergic neurons appear at E13 in the ventral horn [60], when GlyT2 is localized at the axon varicosities in the marginal zone [53]. Double labeling of GABA and glycine demonstrated that glycine-positive neurons often contained GABA immunolabeling, during embryonic development [60]. These results suggest that many GABAergic neurons may gradually convert to co-releasing neurons in the ventral horn after E13.

In the ventral horn, GABAergic axon terminals, identified as axon varicosities, first appear in the marginal zone at E11 and are detected within the ventral horn at E13. They markedly increase in number and density after E15 and often surround the cell bodies of large motor neurons at E17 [55]. Until postnatal day 7 (P7), they continue to markedly increase in density, and the neuropil region is occupied by numerous GABAergic terminals. In contrast, glycineergic terminals appear in the ventral horn at E15 and continue to increase during embryonic and postnatal development [53]. Double staining of GAD and GlyT2 revealed that GlyT2 immunolabeling was usually localized at GABAergic axon terminals, while GlyT2 single-positive terminals were scarce during embryonic development (Fig. 4A). During postnatal development, GABAergic terminals gradually convert to co-releasing terminals in the marginal zone after E14 and in the ventral horn after E16. The co-releasing terminals markedly increase in density during the first postnatal week, and co-releasing terminals become dominant at P7 (Fig. 4B). Between P7 and P14, the majority of co-releasing terminals change to glycineergic terminals via the removal of GAD from the terminals (Fig. 4C). After P21, glycineergic terminals, detected as GlyT2-positive dots, often surround the large neurons, whereas GABAergic terminals are sparse in the ventral horn [53]. The aforementioned shift in dominant neurotransmitters may underlie the difference in the survival period of GAD67-knockout mice and GlyT2-knockout mice [39, 41, 42, 98-100]. Because GABAergic inhibition is dominant at birth, GAD67-knockout mice cannot survive after birth, whereas GlyT2-knockout mice can survive. In contrast, GlyT2-knockout mice suffer from neuromotor disorder and die around P10 because the dominant inhibitory input shifts from GABAergic to glycineergic during the second postnatal week.
Figure 4. Developmental changes in inhibitory terminals in the spinal cord. A–C Double labeling of GAD and GlyT2 in the developing ventral horn. Dominant inhibitory terminals are GABAergic (red) at P0 (A) and change to co-releasing terminals at P7 (B) and glycineric terminals at P14 (C). D–K Schematic illustrations of the developmental changes in inhibitory terminals. Initially, GABAergic terminals are formed after starting GABA synthesis by GAD in the gray matter (D, E, and H). In lamina I and II, GABAergic terminals remain (D). In lamina III to IX, GABAergic terminals convert to co-releasing terminals by the additional glycine reuptake by GlyT2 (F, G, I, and J). In lamina VIII and IX, GAD disappears from the terminals, and the co-releasing terminals give rise to glycineric terminals (K).

3.3. Development in the dorsal horn
The dI4 class and late-born dIL\textsubscript{A} subclass, which are derived from the dP4 domain, differentiate into GABAergic neurons in the dorsal horn (Fig. 3A) [68, 81, 82]. GABAergic neurons appear on the surface of the dorsal ventricular zone between E11 and E13, migrate laterally and dorsally, and enter the dorsal horn after E13 (Fig. 3C–E) [55]. The number of GABAergic neurons markedly increases until E17, and the neurons distribute throughout lamina I to IV by the day of birth (Fig. 3E–G). Glycinergic neurons may be derived from the same dorsal domains under the direction of transcription factors such as Ptfla [82, 88]. Double staining with GAD/GABA and GlyT2/glycine suggests that GABAergic neurons in lamina I through IV may remain GABAergic before birth [53, 60, 89]. The GABAergic neurons convert to co-releasing neurons in lamina IV and lamina III during postnatal development, whereas many GABAergic neurons remain GABAergic in lamina I and II until maturation is complete.

GABAergic axon terminals are first detected in the dorsal horn at E15, markedly increase in density after E17, and are homogeneously distributed in lamina I through V at P0 [53, 55]. The density of GABAergic terminals further increases during postnatal development. In contrast, glycinergic terminals are absent in lamina I to IV during embryonic development. During postnatal development, GlyT2 is localized at GABAergic axon terminals, as detected in the ventral horn. Thus, GABAergic terminals gradually shift to co-releasing terminals in lamina IV during the first postnatal week and lamina III during the second postnatal week. For two weeks after birth, co-releasing terminals increase in density in lamina III to V, but many GABAergic terminals remain in lamina I and II until maturation is complete.

The development processes of inhibitory terminal formation and maturation are summarized schematically in Figure 4. First, GABAergic terminals are produced by GAD expression (Fig. 4D, 4E, 4H). In lamina I and II, many GABAergic neurons and terminals remain (Fig. 4D). In lamina III to IX, many GABAergic terminals convert to co-releasing terminals via the expression of GlyT2 (Fig. 4F, 4I). After the initiation of high-affinity glycine uptake, both synthesized GABA and uptaken glycine are loaded into the same synaptic vesicles and co-released from these terminals (Fig. 4G, 4J). In lamina III to VI, co-releasing neurons and terminals are dominant (Fig. 4G). In lamina VII to IX (motor neuron pools) of the ventral horn, many co-releasing terminals become glycinergic via the disappearance of GAD (Fig. 4K). The mechanism underlying regional differences in the differentiation of terminals is still unclear. Furthermore, this developmental shift in inhibitory neurotransmitters from GABA to glycine has been reported previously in electrophysiological experiments in the spinal cord [101, 102] and other regions [103-106].

3.4. Developmental formation of total inhibitory terminals

As VGAT/VIAAT transports not only GABA but also glycine into synaptic vesicles, VGAT immunohistochemistry allows for the visualization of all types of inhibitory terminals, including GABAergic, co-releasing, and glycinergic terminals. Inhibitory terminals appeared in the marginal zone at E11 and ventral horn at E13 [55]. The developmental expression of VGAT exhibit ventral-to-dorsal gradation (Figure 4), which indicates that inhibitory terminals are gradually formed in the ventral–dorsal direction during embryonic and early postnatal development [53, 55].

4. Developmental changes in ionotropic GABA and glycine receptors

4.1. GABA\textsubscript{A} receptor

The subunit composition of GABA\textsubscript{A} receptors changes during spinal cord development [24, 25], as in various other brain regions [19, 25]. In the rat spinal cord, GABA\textsubscript{A} receptors first appear in the ventricular zone. The main subunit composition continued to be α4β1γ1. These receptors in the ventricular zone may be independent of synaptic transmission [107], because synapses have not yet been formed within the ventricular zone. In the gray matter, developing neurons start to express the α2, α3, α5, β2, β3, γ2,
and γ3 subunits. The α1 subunit appears after birth, but expression is low to moderate. The α2 subunit continues to be highly expressed in the developing and mature motor neurons in lamina VIII and IX. The expression of the α2 subunit gradually increases in other laminae during embryonic development but decreases after birth. Expression of the α3 and α5 subunits begins homogeneously and increases in intensity during late embryonic and early postnatal development. After birth, α3 expression decreases in the ventral horn but remains high in the dorsal horn. The α5 subunit also decreases in expression throughout the gray matter, but expression remains moderate in the motor neurons. Expression of the β2 and γ3 subunits declines during postnatal development and is low or faint in the mature spinal cord. In contrast, expression level of the β3 and γ2 subunits continues to increase after birth and then remains high [24, 25]. The developmental changes in α2, α3, β3, and γ2 subunit expression parallel the change in the formation of GABAergic synapses.

4.2. Glycine receptors

The subunit combination [48, 108] and electrophysiological characteristics [46, 109-111] of glycine receptors also markedly change during spinal cord development. During embryonic development, the α2 subunit is highly and exclusively expressed throughout the gray matter of the rat spinal cord. Around the day of birth, expression of the β and α1 subunits is initiated. After birth, α2 subunit expression gradually decreases, whereas α1 and β subunit expression continues to increase. During postnatal development, expression of the α3 subunit slightly increases [47]. In the mature spinal cord, α2 and α3 expression is low. These results suggest that the glycine receptor exists as an α2 homomeric pentamer during embryonic development and may temporally change to an α2β heteromeric receptor. Ultimately, the major composition of this receptor changes to α1β during postnatal development [45]. These changes in composition are in agreement with the results of in vitro electrophysiological studies [110, 111].

5. Developmental formation of GABA and glycine removal system

GABA is specifically removed by GAT-1 and GAT-3 [31, 112, 113] and glycine is removed by GlyT1 and GlyT2 during CNS development and in the mature stage (Fig. 1A, 1B) [39]. GAT-1 and GlyT2 are localized at distinct axon terminals, while GAT-3 and GlyT1 are localized on the astrocytic sheets that face the synaptic cleft [53, 55].

5.1. Uptake into the presynaptic terminals

In the marginal zone and dorsal horn, the GABA removal system at the presynaptic terminals develops simultaneously with the formation of the presynaptic terminals [70]. First, GAT-1 is localized at the GABAergic axon terminals in the marginal zone. In the dorsal horn, GAT-1 localization begins in the axon terminals at E15, and the GAT-1-positive terminals markedly increase in density during embryonic and early postnatal development [70]. During dorsal horn development, localization of GATs spreads in the deep-to-superficial direction, as is observed in GABAergic terminal formation [55]. In the ventral horn, however, although numerous GABAergic terminals and synapses temporally function during embryonic and early postnatal development, GAT-1 immunolabeling is always sparse. These results suggest that the presynaptic GABA removal system does not function at the temporal GABAergic synapses in the ventral horn, and GABA, which is released from transient terminals, may be mainly removed into astrocytes near these temporal GABAergic synapses. In summary, the GABA removal system develops simultaneously with the formation of “permanent” presynaptic terminals in the spinal cord [70].

Onset of the GlyT2 expression was almost concomitant to the initial distribution of glycine immunolabeling [53, 60, 89]. As mentioned in section 2.2, uptake from the extracellular space through GlyT2 is the main glycine supply pathway, suggesting that GlyT2 localization at the presynaptic terminals may be the common onset of both glycineergic
transmission and glycine removal. Therefore, the development of the glycine removal system proceeds simultaneously with the formation of glycinergic transmission [53].

5.2. Re-uptake into the astrocytes

Both GAT-3 and GlyT1 continue to localize in the astrocytic lineage cells, from radial glial to astrocytes, during spinal cord development [70]. The onset of GAT-3 localization on the radial glia is nearly concomitant with the distribution of GABAergic neurons in the ventral horn at E11 and dorsal horn at E13 before the formation of GABAergic terminals [70]. GlyT1 localization is almost concomitant with the appearance of glycinergic neurons at E13 [60]. When GlyT2-positive glycinergic terminals were detected at E15, GlyT1 had already been localized at the radial glial processes (Fig. 5A). These results indicate that GABA and glycine removal system may function before synaptic transmission, and suggest that extrasynaptically released GABA and glycine may be exclusively removed into radial glial processes [114]. During spinal cord development, GAT-3- and GlyT1-expressing radial glia gradually spread to the dorsal area. Initially, GABA and glycine are removed at distinct positions on the radial glial processes. GAT-3 is localized at the shaft of radial processes, whereas GlyT1 is localized at the spine-like profiles of the shafts (Fig. 5A). While radial glia differentiate into astroglia and astrocytic processes surrounding the synapses, GABAergic terminals gradually change to co-releasing terminals between E17 to P14. Concomitantly, GAT-3 and GlyT2 gradually co-localize at the astrocytic sheets that face the synaptic clefts (Fig. 5B, C). Thus, in the co-releasing synapses, GABA and glycine are released into the same synaptic cleft and removed by adjacent transporters, GlyT1 and GAT-3. Development of the GABA and glycine removal system may be fixed by P21 [70]. Interestingly, although many GABAergic neurons remain GABAergic and do not convert to co-releasing neurons in lamina I and II, GlyT1 is abundantly localized in this region. In addition, after co-releasing terminals give rise to glycinergic terminals by disappearance of GABA synthesis, GAT-3 continues to be abundantly localized at the astroglia sheets [70]. The developmental formation of the removal system is illustrated in Figure 5. During the middle embryonic stage, extrasynaptically released GABA and glycine are uptaken at the shaft and spines of radial glial processes, respectively (Fig. 5D). In the dorsal horn, when GABAergic synapses are formed, GABA is removed through GAT-1 and GAT-3 (Fig. 5E). Furthermore, GlyT1 is also localized near GAT-3 on the astrocytic sheets and may remove extracellular glycine (Fig. 5E). This type of synapse remains in lamina I and II. Next, GlyT2 appears at the presynaptic terminals and GABAergic synapses convert to co-releasing synapses. In these synapses, GAT-3 and GlyT2 intermingle on the astrocytic sheets (Fig. 6F). These synapses remain in lamina III to VII. In contrast, in lamina VIII and IX, when temporal GABAergic synapses are formed, GABA is removed through only GAT-3 (Fig. 5G). After GABAergic synapses convert to co-releasing terminals glycine start to be removed by GlyT1 into the presynaptic terminals (Fig. 5H). Even after co-releasing terminals convert to glycinergic terminals, GAT-1 persists at the astrocytic sheets (Fig. 6I).
6. Developmental changes in GABAergic and glycine action

In general, GABA and glycine induce depolarization of the membrane potential in the immature CNS, whereas these molecules act as inhibitory neurotransmitters in the mature CNS [72, 73, 115]. This developmental change in the action of these neurotransmitters occurs as a result of a negative shift in the Cl\(^{-}\) reversal potential due to the marked increase in KCC2 localization and decrease in NKCC1 expression (Fig. 2A) [72-74]. Changes in KCC2 activity may play a pivotal role in the fine tuning of [Cl\(^{-}\)] for the following reasons [116-119]. During development, the expression of NKCC1 does not markedly change [120], whereas changes in the levels of KCC2 correlate with modification of the action of GABA. Transfection of KCC2 into hippocampal neurons converts the action of GABA from excitatory to inhibitory, and GABA is excitatory in KCC2 knockout mice [73, 74, 116]. Furthermore, after nerve injury, expression of KCC2 is markedly decreased in motor neurons and the action of GABA and glycine is shifted from inhibitory to excitatory.
[121-124]. At E11, weak KCC2 signals appear on the surface of the ventral horn, whereas the dorsal horn is negative for KCC2 expression (Fig. 2B). During embryonic development, KCC2 expression gradually increases in intensity, and the KCC2-positive area gradually spreads to the dorsal horn. The gray matter becomes homogeneously labeled by the day of birth [55, 125, 126]. Concomitantly, NKCC1 expression gradually decreases [126]. These results suggest that the action of GABA and glycine may change from excitation to inhibition in the direction from the ventral-to-dorsal horn [55]. As the expression of KCC2 increases and that of NKCC1 decreases, the reversal potential of Cl⁻ and inhibitory post synaptic potentials (IPSPs) gradually decreases [120, 126, 127]. Taken together, these observations indicate that GABAergic and glycinergic action in the ventral horn may developmentally change as follows: initially, GABA and glycine mediate depolarization and induce action potentials; next, they mediate depolarization of the membrane potential, but the depolarization is below threshold; and finally the excitatory inputs are shut around birthday. This membrane potential is termed “depolarizing IPSP” and this phenomenon is called a “shunting effect”. Finally, GABA and glycine induce hyperpolarization of the membrane potential [128, 129].

The activity of KCC2 is regulated not only by expression level but also through various other mechanisms, such as phosphorylation/de-phosphorylation [130-132] and membrane trafficking [133-135]. For example, phosphorylation of threonine residues 906 and 1007 decreases the activity of KCC2. In the developing CNS, this phosphorylation inhibits KCC2 activity, maintains the excitatory action of GABA and glycine, and may play key roles in morphogenesis [136]. Conversely, continuous phosphorylation affects the postnatal mouse brain functions; phosphomimetic KCC2 knock-in mice cannot survive due to the lack of GABAergic inhibition [137]. The phosphorylation of serine residue 940 increases the influx of K⁺ and Cl⁻ ions. Abnormalities in phosphorylation may cause various neuropsychiatric diseases [131, 132]. The phosphorylation of tyrosine residue 1087 is involved in internalization of KCC2, which results in the down-regulation of KCC2 activity [135]. In addition to tyrosine residue phosphorylation, other complex mechanisms may play roles in trafficking and endocytosis of KCC2 and regulate the activity of KCC2 in developing neurons [133-135].

7. Discussion

Lastly, we will focus on the processes in which GABAergic excitatory action plays a role. Glycine may play a similar role in the developing CNS. It is thought that GABA may act as a trophic factor in the developing CNS and induce brain morphogenesis. In the developing immature CNS, GABA receptor-mediated depolarization activates voltage-dependent calcium channels and/or N-methyl-D-aspartate-type glutamate receptors and elevates cytosolic calcium ion concentration (Fig. 2A) [138-145]. The elevation of cytosolic calcium may play roles in various steps in CNS development such as (1) stop signals for cell proliferation, (2) cell migration, and (3) neuronal maturation, which includes synaptogenesis [11, 14, 72, 73, 146-148]. GABA acts as an anti-proliferation molecule, reduces DNA synthesis in the proliferating precursor cells, and depresses the rate of cellular proliferation via the activation of GABA receptors and other GABA receptor-related molecules [107, 149]. GABA modulates neuronal migration at the femtomolar (10⁻¹⁴M) to micromolar (μM) level [150-152]. Furthermore, exposure of neurons to GABA or GABA receptor agonists induces the synthesis of neuron-specific molecules such as neuron-specific enolase and neural cell adhesion molecules, enhances the growth rate of neuronal processes, and facilitates synapse formation by inducing the expression and targeting of GABA receptor subunits [147, 153-166]. Consequently, it is suggested that lack of GABA synthesis and inhibition of GABA release may cause morphological abnormalities in the CNS, including abnormalities of the spinal cord. To reveal this hypothesis, two types of knockout mice lacking GAD67 [98-100] and VGAT [61, 167-169] were established. Although they have common severe phenotypes, such as omphalocele, cleft palate, hunched posture, loss of movement, and respiratory failure, and cannot survive after birth, no
morphological abnormalities were detected in the CNS of these mice. Total GAD knockout mice, which lack both GAD65 and GAD67, also exhibited normal histology in the CNS [100, 170]. Furthermore, KCC2-knockout mice, in which GABA and glycine continued to be excitatory, exhibited similar phenotypes [116]. These results suggest that the abnormalities detected in the three types of knockout mice may be the consequences of hyperexcitation resulting from the loss of GABAergic and glycinergic inhibition. The inhibitory action by GABA and glycine in the ventral horn may be crucial for the survival of newborn mice. Therefore, the function of GABAergic and glycinergic excitation is still unclear.

8. Conclusion

Initially, six groups of GABAergic neurons are derived from five domains in the ventricular zone. Each group migrates along a distinct route, settles in distinct laminae, and forms synapses. Many GABAergic neurons remain GABAergic, mainly those located in lamina I and II. In other laminae, many of these neurons convert to GABA and glycine coreleasing neurons by initiating glycine reuptake via GlyT2. In the ventral horn, many of these neurons give rise to be glycinergic after GABA synthesis ceases. During these developmental processes, the subunit compositions and electrophysiological characteristics of GABA and glycine receptors change. During changes in neuronal types, GABA and glycine removal systems mature. Furthermore, the action of GABA and glycine shifts from excitatory to inhibitory.

Abbreviations

AF: anterior funiculus;
CNS: central nervous system;
[Cl−], intracellular chloride ion concentration;
CNS, central nervous system;
DH: dorsal horn;
DRG: dorsal root ganglion;
dI1-6, dIL, dILA, dILB, MN, V0–3, V0b, V0v, V2a, and V2b: neuronal groups, classes, derived from their distinct domains of spinal cord ventricular zone;
dP1–dP6, vMN, and vP0–vP3: domains of the ventricular zone in embryonic spinal cord

E: embryonic day;
FP: floor plate;
GABA, γ-amino butyric acid;
GAD: glutamic acid decarboxylase;
GAT-1, GAT-2, and GAT-3: GABA transporter 1, 2, and 3;
Gly: glycine
GlyT1 and GlyT2: glycine transporter 1 and 2;
GFP: green fluorescence protein;
IPSP: inhibitory post synaptic potential;
KCC2, potassium (K+)–chloride (Cl−) co-transporter 2;
LF: lateral funiculus;
NKCC1: sodium (Na+)–K+–2Cl− co-transporter 1;
P: postnatal day;
PF: posterior funiculus;
R: GABA, glycine receptor;
RP: roof plate;
SHMT: serine hydroxy-methyltransferase;
VDCC: voltage-dependent calcium channel;
VIAAT: vesicular inhibitory amino acid transporter;
VGAT: vesicular GABA transporter;
VH: ventral horn;
VZ: ventricular zone;
I-IX: laminar number of the gray matter;
1: GAT-1;
3: GAT-3;

Funding: This work was supported by JSPS KAKENHI [Grant-in-Aid for Scientific Research (C) JP18K07823 (CS-O), 21K06394 (CT) and Early-Career Scientists 20K16111(SK) and 19K19871 (YK)].

Acknowledgments: We are grateful to Makiko Moriyasu-Kurogi and Asako Komesu at the Department of Molecular Anatomy for their assistance with preparation of this manuscript. We also thank Dr. Nobuhiko Okura for valuable discussions. We thank Emma Longworth-Mills, PhD, from Edanz (https://jp.edanz.com/ac) for editing a draft of this manuscript.

Author Contributions: C.S-O., S.K., and N.S. studied the development of glycinergic network. Y.K., J.K., A.O. examined the development of GABAergic network. C.T. organized the total research projects and prepared the figure plates. The manuscript was written by C.T., and checked by all authors.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
34. Minelli, A.; DeBiasi, S.; Brecha, N. C.; Zuccarello, L. V.; Conti, F., GAT-3, a high-affinity GABA plasma membrane transporter, is localized to astrocytic processes, and it is not confined to the vicinity of GABAergic synapses in the cerebral cortex. J Neurosci 1996, 16, (19), 6255-64.
45. Lynch, J. W., Molecular structure and function of the glycine receptor chloride channel. Physiol Rev 2004, 84, (4), 1051-95.

152. Behar, T. N.; Schaffner, A. E.; Tran, H. T.; Barker, J. L., GABA-induced motility of spinal neuroblasts develops along a ventrodorsal gradient and can be mimicked by agonists of GABA(A) and GABA(B) receptors. J Neurosci Res 1995, 42, (1), 97-108.

