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Abstract: Classification and mapping of plant communities is an essential  step for 

conservation and management of ecosystems and biodiversity. We adopt the Genus-

Physiognomy-Ecosystem (GPE) system developed in previous study for satellite-based 

classification of plant communities. This paper assesses the potential of multi-spectral and 

multi-temporal images collected by Sentinel-2 satellites. This research was conducted in 

five representative study sites in a temperate region. It consists of 44 types of plant 

communities including a few land cover types as well. The plant community types were 

enumerated in the study sites and ground truth data were prepared with reference to 

extant vegetation surveys, visual interpretation of high-resolution images, and onsite field 

observations. We acquired all Sentinel-2 Level-1C product images available for the study 

sites between 2017-2019 and generated monthly median composite images consisting of 

ten spectral and twelve spectral-indices. Gradient Boosting Decision Trees (GBDT) 

classifier was employed as an efficient and distributed gradient boosting technique for the 

supervised classification of big datasets involved in the research. The cross-validation 

accuracy in terms of kappa coefficient varied from 87% in Oze site with 41 land cover and 

plant community types to 95% in Hakkoda site with 19 land cover and plant community 

types; with average performance of 91% across all sites. In addition, the resulting maps 

demonstrated a clear distribution of plant community types involved in all sites, 

highlighting the potential of Sentinel-2 multi-spectral and multi-temporal images with 

GPE classification system for operational and broad-scale mapping of land cover and plant 

communities. 
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1. Introduction 

 

Classification and mapping of plant communities is an essential  step for 

conservation and management of ecosystems and biodiversity.  In recent years, availability 

of free and open access data, high performance computing, and automated data processing 

and analysis capabilities have brought new opportunities for classification and mapping 

of plant communities from remotely sensed images (Murakami and Mochizuki, 2014; 

Wulder, 2018). In contrast to potential natural vegetation mapping based on climatic 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 December 2021                   

©  2021 by the author(s). Distributed under a Creative Commons CC BY license.

doi:10.20944/preprints202112.0443.v1

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.20944/preprints202112.0443.v1


 

parameters available at coarse spatial resolution (Hengl et al., 2018), actual vegetation 

mapping (Bredenkamp et al., 1998; Su et al., 2020) with recently available satellite images 

can provide much detailed information at higher spatial resolution for improving the 

knowledge of plant community. 

In Japan, a wide variety of land cover and plant communities, ranging from Southern 

Subtropical Forests to Northern Arctic Meadows, exists (Numata et al., 1972; Miyawaki, 

1984; Himiyama, 1998). Nationwide vegetation surveys have been conducted continuously 

since 1973 and distribution of plant communities is well known. First vegetation survey of 

the entire country was completed in 1999 with the production of vegetation survey maps 

at 1:50,000 scale (MoE and AAS, 1999). Since 1999, extensive field surveys have been 

repeated and a 1:25,000 scale vegetation survey map is being produced nationwide (Hioki, 

2007). The vegetation survey follows phyto-sociological units based organization plant 

communities (Miyawaki 1968; Ohno, 2006). The plant communities are recognized 

through field surveys and delineated in a geographical environment via a manual 

procedure facilitated by visual interpretation of aerial and satellite images. The manual 

delineation procedure is subject to human discernment, laborious, and costly. To cope with 

these issues, more intelligent technology has been expected. 

The major objective of this paper is to assess the potential of multi-spectral and multi-

temporal images available from the Sentinel-2 mission satellites (Sentinel-2A and 2B) for 

operational and broad-scale mapping of land cover and plant community types by 

adopting the Genus-Physiognomy-Ecosystem (GPE) system developed in previous study 

for satellite-based classification of plant communities. 

2. Materials and Methods 

2.1. Study sites 

This research was conducted in five representative sites of the Tohoku region 

in Japan. These five study sites were selected in such a way that they can represent all land 

cover and plant communities types present in the Tohoku region. The location map of five 

study sites has been shown in Figure 1. 

 

 
Figure 1. The location of five study sites (Hakkoda, Oze, Zao, Shirakami, and Kitakami) 

are shown by blue rectangles in the Tohoku region of Japan (red polygon).  
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2.2. Preparation of ground truth data 

First of all, land cover and plant community types present in five study sites were 

enumerated by adopting the Genus-Physiognomy-Ecosystem (GPE) system developed in 

previous study (Sharma, 2021) for satellite-based classification and mapping of plant 

communities. Extant vegetation survey reports available from Nature Conservation 

Bureau, Ministry of the Environment and Asia Air Survey Co., Ltd were utilized as 

reference materials for enumerating land cover and plant community types in each study 

site. The land cover and plant community types were further verified by onsite field 

observations conducted between 2017 and 2020 in all study sites. The final confirmed list 

of land cover and plant community types present in five study sites has been described in 

Table 1.  

 

Table 1. List of land cover and plant community types of Tohoku region enumerated in 

the research. The occurrence of land cover and plant community types in each study site 

are denoted by asterisk (*) symbol.  

 

Classes Hakkoda Oze Zao Shirakami Kitakami 

Abies ECF * * *   * 

Acer DBF   * *     

Alnus DBF * * *   * 

Alpine Herb   * * * * 

Alpine Shrub     *   * 

Bamboo EBF   *     * 

Barren * * * * * 

Betula DBF * * * * * 

Carpinus DBF   *   * * 

Cryptomeria ECF * * * * * 

Euptelea DBF   *       

Fagus DBF * * * * * 

Fraxinus DBF   *   * * 

Hydrangea Shrub   * *     

Juglans DBF   *   * * 

Larix DCF * * * * * 

Miscanthus Herb * * * * * 

Other Herb * * * *   

Other Shrub * * *   * 

Paddy field   *   * * 

Pasture * *   * * 

Picea ECF         * 

Pinus ECF * * * * * 

Pinus Shrub * * * * * 

Populus DBF   *       

Pterocarya DBF * * * * * 

Quercus DBF * * * * * 
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Quercus Shrub * * * *   

Rhododendron Shrub   *     * 

Robinia DBF   *   * * 

Salix DBF   *   * * 

Salix Shrub   * * * * 

Sasa Shrub * * * * * 

Thuja ECF   *       

Thujopsis ECF   *     * 

Tsuga ECF * * *   * 

Ulmus DBF   *     * 

Upland field   *   * * 

Urban builtup  * * * * 

Water   * * * * 

Wetland Herb * * *   * 

Zanthoxylum DBF   *       

Zelkova DBF   *   * * 

Zoysia Herb         * 

Total classes 19 41 25 26 36 

DBF: Deciduous Broadleaf Forest; DCF: Deciduous Conifer Forest 

ECF: Evergreen Conifer Forest; EBF: Evergreen Broadleaf Forest 

 

The ground truth data, polygons representing homogeneous land cover and plant 

community types of around 1ha size, were collected with reference to extant vegetation 

survey maps (1:25,0000 scale) produced from extensive field surveys between 2012 to 

2020, and visual interpretation of time-lapse images available in the Google Earth by local 

experts in plant ecology and vegetation sciences. The distribution of ground truth data in 

the study sites has been shown in Figure 2. 
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Figure 2. The distribution of ground truth data (yellow color) collected in the 

research. 

2.3. Processing of satellite data 

We acquired all Level-1C product images collected by Sentinel-2 mission satellites 

(Sentinel-2A and 2B) for the study sites between 2017-2019. The Sentinel-2 mission 

satellites collect optical imagery at high spatial resolution (10-60m) in visible, near 

infrared, and short-wave wavelengths at a frequency of five days (Drusch et al., 2012). The 

images were processed for cloud masking and ten spectral bands (blue, green, red, red 

edge 1-3, near infrared, mid infrared, and shortwave infrared 1-2) were extracted. For each 

scene, twelve vegetation indices (as shown in Table 2) were also calculated. The spectral 

and spectral-indices images were composited by computing monthly median values. In 

this manner, we generated 264 features (22 spectral and spectral-indices × 12 months) 

altogether for machine learning, classification, and mapping. 
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Table 2. List of vegetation indices utilized in the research. Blue (B, Band 2), Green (G, Band 3), Red (R, Band 

4), Red edge1 (RE1, Band 5), Red edge3 (RE3, Band 7), and Near infrared (N, Band 8) were used for 

calculating the vegetation indices. 

 

Spectral indices Formula References 

Atmospherically Resistant Vegetation Index (ARVI) 

𝑁 − 𝑅 − (𝑅 − 𝐵)

𝑁 + 𝑅 − (𝑅 − 𝐵)
 

 
Kaufman and Tanre, 1992 

Enhanced Vegetation Index (EVI) 2.5 ×
𝑁 − 𝑅

(𝑁 + 6 × 𝑅 − 7.5 × 𝐵) + 1
 Huete et al., 2002 

Green Atmospherically Resistant Index (GARI) 

𝑁 − (𝐺 − 1.7 × (𝐵 − 𝑅))

𝑁 + ( 𝐺 − 1.7 × (𝐵 − 𝑅))
 

 

Gitelson et al., 1996 

Green Leaf Index (GLI) (𝐺 − 𝑅) + (𝐺 − 𝐵)

(2 ∗ 𝐺) + 𝑅 + 𝐵
 

Louhaichi et al., 2001 

Green Red Vegetation Index (GRVI) 
𝐺 − 𝑅

𝐺 + 𝑅
 Falkowski et al., 2005 

Modified Red Edge Simple Ratio (MRESR) 𝑅𝐸3 − 𝐵

𝑅𝐸1 − 𝐵
 

Sims and Gamon, 2002 

Modified Soil Adjusted Vegetation Index (MSAVI) 
2𝑁 + 1 − √(2𝑁 + 1)2 − 8(𝑁 − 𝑅)

2
 Qi et al., 1994 

Normalized Difference Vegetation Index (NDVI) 
𝑁 − 𝑅

𝑁 + 𝑅
 Rouse et al., 1974 

Optimized Soil Adjusted Vegetation Index (OSAVI) 
(𝑁 − 𝑅)

(𝑁 + 𝑅 + 0.16)
 

Rondeaux et al., 1996 

Red Edge Normalized Difference Vegetation Index 

(RENDVI) 

𝑅𝐸3 − 𝑅𝐸1

𝑅𝐸3 + 𝑅𝐸1
 

Gitelson and Merzlyak, 

2003 

Soil-Adjusted Vegetation Index (SAVI) 
1.5 × (𝑁 − 𝑅)

𝑁 + 𝑅 + 0.5
 Huete, 1988 

Structure Insensitive Pigment Index (SIPI) 
𝑁 − 𝐵

𝑁 − 𝑅
 Penuelas et al., 1995 

2.4. Machine learning and classification 

We employed Gradient Boosting Decision Trees (GBDT) classifier implemented by 

XGBoost, an efficient and optimized distributed gradient boosting library 

(https://github.com/dmlc/xgboost) for the supervised classification of Sentinel-2 images as 

it can handle large data volume with Compute Unified Device Architecture (CUDA) 

computations. We implemented a train-test split method for fine tuning of input features 

and model parameters. Classification accuracy metrics (Accuracy, Kappa coefficient, F1-

score, Recall, and Precision) were utilized for quantitative evaluation. For this method, 

ground truth data were shuffled and randomly splitted into train (75%) and test (25%) sets. 

The GBDT model was trained on the training data, whereas test data was utilized for fine 

tuning the parameters of the model. The GBDT model established in this was utilized for 

prediction and mapping of  land cover and plant community types separately for each site.   

3. Results and Discussion 

3.1. Model test results 

The model test results obtained from the machine learning (GBDT classifier) of multi-

temporal Sentinel-2 images have been shown using the confusion matrix figures (Figures 

3-5) for three sites (Hakkoda, Zao, and Shirakami). Due to many classes involved, class-

wise accuracy tables (Tables 3 and 4) have been shown for two sites (Oze and Kitakami). 
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Figure 3. Confusion matrix obtained for Hakkoda site. 

 

Figure 4. Confusion matrix obtained for Zao site. 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 December 2021                   doi:10.20944/preprints202112.0443.v1

https://doi.org/10.20944/preprints202112.0443.v1


 

 

Figure 5. Confusion matrix obtained for Shirakami site. 

Table 3. Class-wise accuracy obtained for Oze site. 

Classes Accuracy Kappa F1-score Recall Precision 

Abies ECF 0.995 0.891 0.955 0.84 0.894 

Acer DBF 0.996 0.927 0.915 0.944 0.929 

Alnus DBF 0.986 0.716 0.736 0.712 0.724 

Alpine Herb 0.996 0.927 0.921 0.936 0.929 

Bamboo EBF 1.000 1.000 1.000 1.000 1.000 

Barren  0.994 0.890 0.883 0.904 0.893 

Betula DBF 0.988 0.766 0.785 0.760 0.772 

Carpinus DBF 0.995 0.904 0.885 0.928 0.906 

Cryptomeria ECF 0.991 0.820 0.861 0.792 0.825 

Euptelea DBF 0.994 0.882 0.875 0.896 0.885 

Fagus DBF 0.987 0.760 0.723 0.816 0.767 

Fraxinus DBF 0.998 0.968 0.947 0.992 0.969 

Hydrangea Shrub 0.985 0.718 0.701 0.752 0.726 

Juglans DBF 0.991 0.832 0.797 0.88 0.837 

Larix DCF 0.994 0.877 0.914 0.848 0.880 

Miscanthus Herb 0.993 0.870 0.866 0.88 0.873 

Other Herb 0.996 0.929 0.943 0.92 0.931 

Other Shrub 0.99 0.797 0.829 0.776 0.802 

Paddy field 0.996 0.915 0.949 0.888 0.917 

Pasture  0.995 0.903 0.891 0.920 0.906 

Pinus ECF 0.991 0.823 0.831 0.824 0.827 

Pinus Shrub 0.999 0.782 0.643 1.000 0.783 

Populus DBF 0.998 0.955 0.952 0.960 0.956 

Pterocarya DBF 0.988 0.760 0.772 0.760 0.766 
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Quercus DBF 0.989 0.785 0.781 0.800 0.791 

Quercus Shrub 0.990 0.799 0.862 0.752 0.803 

Rhododendron Shrub 0.996 0.851 0.812 0.897 0.852 

Robinia DBF 0.998 0.967 0.961 0.976 0.968 

Salix DBF 0.994 0.879 0.893 0.872 0.883 

Salix Shrub 0.994 0.879 0.868 0.896 0.882 

Sasa Shrub 0.996 0.917 0.927 0.912 0.919 

Thuja ECF 0.909 0.810 0.821 0.808 0.815 

Thujopsis ECF 0.992 0.833 0.851 0.824 0.837 

Tsuga ECF 0.992 0.845 0.821 0.880 0.849 

Ulmus DBF 0.998 0.956 0.938 0.976 0.957 

Upland field 0.996 0.918 0.920 0.920 0.920 

Urban builtup 0.997 0.937 0.966 0.912 0.938 

Water  1.000 0.992 0.992 0.992 0.992 

Wetland Herb 0.998 0.954 0.975 0.936 0.955 

Zanthoxylum DBF 0.997 0.904 0.886 0.925 0.905 

Zelkova DBF 0.993 0.855 0.869 0.848 0.858 

 

Table 4. Class-wise accuracy obtained for Kitakami site. 

Classes Accuracy Kappa F1-score Recall Precision 

Abies ECF 0.995 0.932 0.941 0.929 0.935 

Alnus DBF 0.987 0.811 0.852 0.786 0.818 

Alpine Herb 0.998 0.964 0.962 0.970 0.966 

Alpine Shrub 0.996 0.944 0.943 0.948 0.946 

Bamboo EBF 1.000 0.850 0.755 0.974 0.851 

Barren  0.993 0.899 0.918 0.888 0.903 

Betula DBF 0.989 0.849 0.863 0.845 0.854 

Carpinus DBF 0.996 0.946 0.924 0.974 0.948 

Cryptomeria ECF 0.995 0.929 0.952 0.913 0.932 

Fagus DBF 0.993 0.899 0.882 0.926 0.903 

Fraxinus DBF 0.998 0.949 0.945 0.956 0.951 

Juglans DBF 0.988 0.826 0.821 0.845 0.833 

Larix DCF 0.995 0.927 0.935 0.924 0.930 

Miscanthus Herb 0.991 0.868 0.895 0.852 0.873 

Other Shrub 0.998 0.831 0.774 0.901 0.833 

Paddy field 0.998 0.973 0.977 0.97 0.974 

Pasture  0.998 0.971 0.971 0.974 0.972 

Picea ECF 0.999 0.752 0.613 0.974 0.752 

Pinus ECF 0.994 0.909 0.895 0.931 0.913 

Pinus Shrub 1.000 0.913 0.840 1.000 0.913 

Pterocarya DBF 0.992 0.885 0.895 0.883 0.889 

Quercus DBF 0.988 0.820 0.877 0.782 0.827 

Rhododendron Shrub 1.000 0.976 0.953 1.000 0.976 

Robinia DBF 0.996 0.840 0.776 0.92 0.842 

Salix DBF 0.993 0.885 0.913 0.865 0.889 

Salix Shrub 0.997 0.894 0.855 0.94 0.895 
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Sasa Shrub 0.999 0.955 0.937 0.974 0.955 

Thujopsis ECF 0.994 0.921 0.927 0.921 0.924 

Tsuga ECF 0.996 0.947 0.952 0.946 0.949 

Ulmus DBF 0.997 0.899 0.858 0.949 0.901 

Upland field 0.994 0.907 0.925 0.896 0.910 

Urban builtup 0.995 0.927 0.925 0.934 0.930 

Water  0.999 0.979 0.978 0.982 0.980 

Wetland Herb 0.996 0.937 0.941 0.938 0.939 

Zelkova DBF 0.991 0.878 0.876 0.888 0.882 

Zoysia Herb 0.999 0.792 0.670 0.969 0.792 

Zoysia Herb 0.999 0.792 0.670 0.969 0.792 

The classification accuracy matrices obtained for all study sites have been 

summarized in Table 5. The classification accuracy in terms of kappa coefficient varied 

from 87% in Oze site with 41 classes to 95% in Hakkoda site with 19 classes.   

Table 5. Summary of classification accuracy metrics obtained for all sites. 

Sites Classes Accuracy Kappa  F1-score Recall  Precision 

Hakkoda 19 0.950 0.947 0.950 0.950 0.950 

Zao 25 0.941 0.937 0.941 0.941 0.941 

Oze 41 0.873 0.870 0.873 0.873 0.873 

Shirakami 26 0.938 0.935 0.938 0.938 0.938 

Kitakami 36 0.912 0.909 0.912 0.912 0.912 

3.2. Land Cover and Plant Community Maps 

The Land Cover and Plant Community Maps produced in this research have been 

shown in Figures 6-10. These maps demonstrate the extent and distribution of land cover 

and plant community types clearly for the study sites concerned. 

 

Figure 6. 19-class land cover and plant community map of Hakkoda site produced 

in the research. 
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Figure 7. 25-class land cover and plant community map of Zao site produced in the 

research. 

 

Figure 8. 41-class land cover and plant community map of Oze site produced in the 

research. 
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Figure 9. 26-class land cover and plant community map of Shirakami site produced 

in the research. 

 

Figure 10. 36-class land cover and plant community map of Kitakami site produced 

in the research. 

Preparation of ground truth data becomes very difficult, time-consuming, and 

expensive when the heterogeneity and complexity of plant community types increase. 

Even with the large amounts of high quality ground truth data, classification of satellite 

images becomes increasingly challenging as the number of classes increases. On the other 

hand, the characteristic species based phyto-sociological classes (Poore, 1955; Whittaker, 

1980; Miyawaki and Fujiwara, 1988) delineated by nationwide vegetation survey is out 

from automated digital mapping approach as remote sensing signals are mostly governed 
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by physical interactions of dominant species rather than characteristic species. Therefore, 

a right and effective organization of plant communities is essential for operational and 

broad-scale mapping. In line with this, the Genus-Physiognomy-Ecosystem (GPE) system,  

developed by Sharma, 2021 for the classification of plant communities from the perspective 

of satellite remote sensing, was extended in this research for operational mapping of land 

cover and plant community types collectively.  

4. Conclusions 

In this research, we presented operational mapping of land cover and plant 

community types in five study sites in a temperate region in Japan by utilizing multi-

spectral and multi-temporal Sentinel-2. Machine learning based accuracy analysis showed 

potential of the Sentinel-2 images for the mapping of land cover and plant community 

types by adopting Genus-Physiognomy-Ecosystem (GPE) system as the kappa coefficient 

varied from 87% (41 classes in Oze site) to 95% (19 classes in Hakkoda site). Still, some 

misclassifications were detected in some classes such as Betula DBF, Alnus DBF, Fagus 

DBF, Quercus DBF, Picea ECF, Hydrangea Shrub, and Zoysia Herb particularly in sites 

associated with many classes. Further increase in the temporal resolution of Sentinel-2 

mission satellites images with future launches of Sentinel-2C and 2D satellites is highly 

expected for improving the classification accuracy of plant communities. Future plan is to 

expand this methodology for seamless mapping of plant communities in the same region 

by further increasing the ground truth data.  
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