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Abstract

In this paper, we give explicit asymptotic formulas for some sums
over primes involving generalized alternating hyperharmonic numbers
of types I, II and III. Analogous results for numbers with k-prime
factors will also be considered.
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1 Introduction and preliminaries

It is known to all that prime numbers play an essential role in number theory.
The infamous problem (known as the Prime Number Theorem) that how
many primes there are up to a given point has attracted many excellent
mathematicians’ interests since the time of Euclid. Let π(x) denote the
number of primes up to x. Gauss and Legendre proposed independently that
the ratio π(x)/ x

log x would approach 1 as x approaches ∞. With the help of
analytic tools, Hadamard [6] and de la Vallée Poussin [2] independently and
almost simultaneously proved the Prime Number Theorem, i.e.,

π(x) ∼ x

log x
. (1)

Here, and through out this paper, we use the natural logarithm (to base
e). We write A(x) ∼ B(x), that is A(x) is asymptotic to B(x), which is
equivalent to

lim
x→∞

A(x)

B(x)
= 1 .
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Let pn be the sequence of prime numbers, the Prime Number Theorem
can be restated as

π(x) =
∑
pn≤x

p0n ∼
x

log x
. (2)

It is natural to consider asymptotic formulas for more general sums of type∑
pn≤x p

α
n. An exercise in Granville’s book [5] states that

∑
p≤x p ∼

x2

2 log x .
This result can be proved with the help of asymptotic formula of pn, which is
equivalent to the Prime Number Theorem. In fact, we can prove asymptotic
formulas for

∑
pn≤x p

α
n, i.e.,

∑
pn≤x p

α
n ∼ x1+α

(1+α) log x , which is first obtained by

Šalát and Znám [16]. Later, Jakimczuk [8, 9] extends this kind of summation
to numbers with k prime factors and functions of slow increase. Gerard and
Washington [4] also give accurate estimates for

∑
pn≤x p

α
n − x1+α

(1+α) log x by
using the Prime Number Theorem with error terms.

The above results remind the author that it would be interesting to ob-
tain asymptotic formulas for sums over primes of types

∑
pn≤x p

α
nf(n)m,

where f(n) denotes an arithmetical function. Motivated by an exercise in
Granville’s book [5] and the author’s recent work [12] on generalized hyper-

harmonic numbers H
(p,r)
n , the author [13] give explicit asymptotic formulas

for sums over primes involving generalized hyperharmonic numbers of type∑
pn≤x p

α
n(H

(p,r)
n )m. Analogous results for numbers with k-prime factors

have also be considered by the author [13].
We now recall the definition of numbers with k-prime factors and the

hyperharmonic numbers. Let k ≥ 1 and consider a positive integer n which
is the product of just k prime factors, i.e.,

n = p1p2 · · · pk . (3)

We write τk(x) for the number of such n ≤ x. If we impose the additional
restriction that all the prime divisors p in (3) shall be different, n is square-
free. We write πk(x) for the number of these (squarefree) n ≤ x. It was
proved by Landau [7, 10] that

πk(x) ∼ τk(x) ∼ x(log log x)k−1

(k − 1)! log x
(k ≥ 2) . (4)

For k = 1, this result would reduce to the Prime Number Theorem, if, as
usual, we take 0! = 1.
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The conception of hyperharmonic numbers are first introduced by Con-
way and Guy in their famous book [1] as

h(r)n :=

n∑
j=1

h
(r−1)
j (n, r ∈ N := {1, 2, 3, · · · }) with h(1)n = Hn :=

n∑
j=1

1/j.

From the definition of hyperharmonic numbers we can see that these num-
bers can be obtained by taking repeated partial sums of harmonic numbers

Hn. Starting from the classical generalized harmonic numbers H
(p,1)
n =

H
(p)
n :=

∑n
j=1 1/jp and taking repeated partial sums, Dil, Mező and Cenkci

[3] introduced the generalized hyperharmonic numbers

H(p,r)
n :=

n∑
j=1

H
(p,r−1)
j (n, p, r ∈ N) ,

and studied their Euler sum properties. Ömür and Koparal [15] introduced

the generalized hyperharmonic numbers H
(p,r)
n independently and almost

simultaneously from a combinatorial point of view, and defined two n × n
matrices An and Bn with ai,j = H

(j,r)
i and bi,j = H

(p,j)
i , respectively. They

also gave some interesting factorizations and determinant properties of the
matrices An and Bn. The author [12] proved that the generalized hyperhar-

monic numbers H
(p,r)
n could be written in terms of linear combinations of

n’s power times generalized harmonic numbers.
The conception of generalized alternating hyperharmonic numbers are

introduced by the author [11] as an alternating analogue of the general-

ized hyperharmonic numbers H
(p,r)
n . Define the notion of the generalized

alternating hyperharmonic numbers of types I, II, and III, respectively, as

H(p,r,1)
n :=

n∑
k=1

(−1)k−1H
(p,r−1,1)
k (H(p,1,1)

n = H(p)
n ) ,

H(p,r,2)
n :=

n∑
k=1

H
(p,r−1,2)
k (H(p,1,2)

n = H
(p)
n :=

n∑
j=1

(−1)j−1/jp) ,

H(p,r,3)
n :=

n∑
k=1

(−1)k−1H
(p,r−1,3)
k (H(p,1,3)

n = H
(p)
n ) .

Let N0 denote the set of nonnegative integers. If p ∈ N0, then H
(−p)
n and

H
(−p)
n are understood to be the sum

∑n
j=1 j

p and
∑n

j=1(−1)j−1jp, respec-
tively. The author [11] proved that Euler sums of the generalized alternating
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hyperharmonic numbers of types I, II, and III could be expressed in terms
of linear combinations of classical (alternating) Euler sums.

The motivation of this paper arises from an exercise in Granville’s book
[5] and the author’s recent work [11] on generalized alternating hyperhar-
monic numbers of types I, II and III. This paper is a continuation of the
previous paper of the author with the same title [13]. In this paper, we
will derive explicit asymptotic formulas for some sums over primes involv-
ing generalized alternating hyperharmonic numbers of types I, II and III.
Analogous results for numbers with k-prime factors will also be considered.

2 Some notations and lemmata

We now recall some notations and lemmata which will be useful in later
sections.

Lemma 1 ([14]). For all n ∈ N and a fixed order r ≥ 1, we have

h(r)n ∼
1

(r − 1)!
nr−1 log(n) .

Lemma 2 ([13]). For r, n, p ∈ N with p ≥ 2, we have

H(p,r)
n ∼ 1

(r − 1)!
nr−1ζ(p) ,

where ζ(p) :=
∑∞

n=1 n
−p denotes the well-known Riemann zeta function.

Lemma 3 ([12]). For r, n, p ∈ N, we have

H(p,r,2)
n =

r−1∑
m=0

r−1−m∑
j=0

a(r,m, j)njH
(p−m)
n .

The coefficients a(r,m, j) satisfy the following recurrence relations:

a(r + 1, r, 0) = −
r−1∑
m=0

a(r,m, r −m− 1)
1

r −m
,

a(r + 1,m, `) =
r−1−m∑
j=`−1

a(r,m, j)

j + 1

(
j + 1

j − `+ 1

)
B+
j−`+1

(0 ≤ m ≤ r − 1, 1 ≤ ` ≤ r −m) ,
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a(r + 1,m, 0) = −
m∑
y=0

r−1−y∑
j=max{0,m−y−1}

a(r, y, j)D(r,m, j, y) (0 ≤ m ≤ r − 1) ,

where

D(r,m, j, y) =

j∑
`=max{0,m−y−1}

1

j + 1

(
j + 1

j − `

)
B+
j−`

(
`+ 1

m− y

)
(−1)1+`−m+y

and Bernoulli numbers B+
n are determined by the recurrence formula

k∑
j=0

(
k + 1

j

)
B+
j = k + 1 (k ≥ 0)

or by the generating function

t

1− e−t
=
∞∑
n=0

B+
n

tn

n!
,

The initial value is given by a(1, 0, 0) = 1.

Definition 1. For m, j ∈ N0, define the quantities c(m, j), d(m, j), c1(m, j),
and d1(m, j) as

c(m, j) =
1

m+ 1

(
m+ 1

m+ 1− j

)
B+
m+1−j ,

d(m, j) =
1

m+ 1

m∑
k=j−1

(
m+ 1

m− k

)
B+
m−k

(
1 + k

j

)
(−1)1+k−j ,

c1(m, j) =
1

2(m+ 1)

m−j∑
k=0

(
m+ 1

k

)
B+
k 2k

(
m+ 1− k

j

)
(−1)m−k−j ,

d1(m, j) =

m∑
k=j

(
k

j

)
(−1)k−jc1(m, k) .

Definition 2. For r ∈ N, define the quantities b1(r,m, j, k), k = 0, 1, 2, 3 as

b1(1, 0, 0, 2) = 1 , b1(1, 0, 0, 3) = 0 , b1(r,m, j, 0) = b1(r,m, j, 1) = 0 (r = odd) ,

b1(r,m, j, 2) = b1(r,m, j, 3) = 0 (r = even) ,

b1(r,m, j, 3) = 0 (r = odd, m+ j =
2r − (−1)r − 3

4
) ,
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and for k = 0, 1, 2, 3, b1(r,m, j, k) satisfy the following recurrence relations:
when r is odd,

b1(r + 1,m, j, 0) =

2r−(−1)r−3
4∑

`=m

b1(r, `, j, 2)c1(`,m) ,

(1 ≤ m ≤ 2r − (−1)r − 3

4
, 0 ≤ j ≤ 2r − (−1)r − 3

4
−m) ;

b1(r + 1, 0, j, 0) =

2r−(−1)r−3
4

−j∑
`=0

b1(r, `, j, 2)c1(`, 0) , (0 ≤ j ≤ 2r − (−1)r − 3

4
) ;

b1(r + 1,m, j, 1) =

2r−(−1)r−3
4

−1∑
`=m−1

b1(r, `, j, 3)c(`,m) ,

(1 ≤ m ≤ 2r − (−1)r − 3

4
, 0 ≤ j ≤ 2r − (−1)r − 3

4
−m) ;

b1(r + 1, 0, j, 1) =

2r−(−1)r−3
4∑

m=0

∑
j1+`=j

0≤j1≤ 2r−(−1)r−3
4

−m
1≤`≤m

b1(r,m, j1, 2)d1(m, `)

+

2r−(−1)r−3
4

−j∑
m=0

b1(r,m, j, 2)d1(m, 0) + b1(r, 0, j, 3)

−

2r−(−1)r−3
4

−1∑
m=0

∑
j1+`=j

0≤j1≤ 2r−(−1)r−3
4

−m−1
1≤`≤m+1

b1(r,m, j1, 3)d(m, `) ,

(0 ≤ j ≤ 2r − (−1)r − 3

4
) ;

when r is even,

b1(r + 1,m, j, 2) =

2r−(−1)r−3
4∑

`=m−1
b1(r, `, j, 0)c(`,m) ,

(1 ≤ m ≤ 2r − (−1)r − 3

4
+ 1, 0 ≤ j ≤ 2r − (−1)r − 3

4
+ 1−m) ;
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b1(r + 1, 0, j, 2) = −

2r−(−1)r−3
4∑

m=0

∑
j1+`=j

0≤j1≤ 2r−(−1)r−3
4

−m
1≤`≤m+1

b1(r,m, j1, 0)d(m, `)

+

2r−(−1)r−3
4

−j∑
m=0

b1(r,m, j, 1)d1(m, 0) + b1(r, 0, j, 0)

+

2r−(−1)r−3
4∑

m=0

∑
j1+`=j

0≤j1≤ 2r−(−1)r−3
4

−m
1≤`≤m

b1(r,m, j1, 1)d1(m, `) ,

(0 ≤ j ≤ 2r − (−1)r − 3

4
+ 1) ;

b1(r + 1,m, j, 3) =

2r−(−1)r−3
4∑

`=m

b1(r, `, j, 1)c1(`,m) ,

(1 ≤ m ≤ 2r − (−1)r − 3

4
, 0 ≤ j ≤ 2r − (−1)r − 3

4
−m) ;

b1(r + 1, 0, j, 3) =

2r−(−1)r−3
4

−j∑
`=0

b1(r, `, j, 1)c1(`, 0) , (0 ≤ j ≤ 2r − (−1)r − 3

4
) .

Lemma 4 ([11]). For r, n, p ∈ N, we have

H(p,r,1)
n =

2r−(−1)r−3
4∑

m=0

2r−(−1)r−3
4

−m∑
j=0

(
b1(r, j,m, 0)(−1)n−1H(p−m)

n + b1(r, j,m, 1)H
(p−m)
n

+ b1(r, j,m, 2)H(p−m)
n + b1(r, j,m, 3)(−1)n−1H

(p−m)
n

)
nj ,

H(p,r,3)
n =

2r−(−1)r−3
4∑

m=0

2r−(−1)r−3
4

−m∑
j=0

(
b1(r, j,m, 0)(−1)n−1H

(p−m)
n + b1(r, j,m, 1)H(p−m)

n

+ b1(r, j,m, 2)H
(p−m)
n + b1(r, j,m, 3)(−1)n−1H(p−m)

n

)
nj ,

where b1(r, j,m, k) (k = 0, 1, 2, 3) are given in Definition 2.
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Lemma 5 ([8, 9]). Let
∑∞

i=1 ai and
∑∞

i=1 bi be two series of positive terms
such that limn→∞

ai
bi

= 1. Then if
∑∞

i=1 bi is divergent, the following limit
holds:

lim
n→∞

∑n
i=1 ai∑n
i=1 bi

= 1 ,

Lemma 6 ([7, 13]). Let pn,k denote the nth squarefree number with just
k prime factors and qn,k denote the nth number with just k prime factors.
Then the following asymptotic relations hold:

pn,k ∼ qn,k ∼ (k − 1)!
n log(n)

(log log(n))k−1
,

pn,k(log log(pn,k))
k−1 ∼ qn,k(log log(qn,k))

k−1 ∼ (k − 1)!n log(n) .

For k = 1, we have pn ∼ n log(n) .

Lemma 7 ([13]). For m,n, k, x ∈ N, we have

x∑
`=1

`m(log(`))n ∼ xm+1(log(x))n

m+ 1
,

x∑
`=1

`m(log(`))n

(log log(`))k
∼ xm+1(log(x))n

(m+ 1)(log log(x))k
.

3 Sums over primes involving generalized alter-
nating hyperharmonic numbers of type H

(p,r,1)
n

Now we will provide the asymptotic formula for the generalized alternating

hyperharmonic numbers of type H
(p,r,1)
n .

Lemma 8. Let y, p ∈ N with p ≥ 2, the following asymptotic formulas hold:

H(1,2y+1,1)
n ∼ 1

2y · y!
ny log(n) , H(p,2y+1,1)

n ∼ 1

2y · y!
nyζ(p) ,

H(1,2y,1)
n ∼ 1

2y · (y − 1)!
ny−1(−1)n−1 log(n) ,

H
(p,2y,1)
2n ∼ − 1

2 · (y − 1)!
ny−1(ζ(p)− ζ(p)) ,

H
(p,2y,1)
2n−1 ∼ 1

2 · (y − 1)!
ny−1(ζ(p) + ζ(p)) ,
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where ζ(s) denotes the well-known alternating zeta function

ζ(s) :=
∞∑
n=1

(−1)n−1

ns
= (1− 21−s)ζ(s) with ζ(1) = log 2.

Proof. From Definition 2 and Lemma 4, we have the following identities:
when r = odd,

H(p,r,1)
n =

2r−(−1)r−3
4∑

m=0

2r−(−1)r−3
4

−m∑
j=0

(
b1(r, j,m, 2)H(p−m)

n + b1(r, j,m, 3)(−1)n−1H
(p−m)
n

)
nj ,

when r = even,

H(p,r,1)
n =

2r−(−1)r−3
4∑

m=0

2r−(−1)r−3
4

−m∑
j=0

(
b1(r, j,m, 0)(−1)n−1H(p−m)

n + b1(r, j,m, 1)H
(p−m)
n

)
nj .

When r = odd, note that b1(r,m, j, 3) = 0 (m + j = 2r−(−1)r−3
4 ), we

know that the main term of H
(p,r,1)
n is b1(r,

2r−(−1)r−3
4 , 0, 2)H

(p)
n n

2r−(−1)r−3
4 .

When r = even and p = 1, we know that the main term of H
(1,r,1)
n is

b1(r,
2r−(−1)r−3

4 , 0, 0)(−1)n−1Hnn
2r−(−1)r−3

4 .

When r = even and p ≥ 2, we know that the main term of H
(p,r,1)
n is(

b1(r,
2r−(−1)r−3

4 , 0, 0)(−1)n−1H
(p−m)
n +b1(r,

2r−(−1)r−3
4 , 0, 1)H

(p)
n

)
n

2r−(−1)r−3
4 .

From Definition 2 we can obtain the following recursive formulas:
when r is odd with r ≥ 3,

b1(r + 1,
2(r + 1)− (−1)r+1 − 3

4
, 0, 0) = b1(r,

2r − (−1)r − 3

4
, 0, 2)

1

2
,

b1(r + 1,
2(r + 1)− (−1)r+1 − 3

4
, 0, 1) = b1(r,

2r − (−1)r − 3

4
− 1, 0, 3)

1
2r−(−1)r−3

4

,

when r is even,

b1(r + 1,
2(r + 1)− (−1)r+1 − 3

4
, 0, 2) = b1(r,

2r − (−1)r − 3

4
, 0, 0)

1
2r−(−1)r−3

4 + 1
,

b1(r + 1,
2(r + 1)− (−1)r+1 − 3

4
− 1, 0, 3) = b1(r,

2r − (−1)r − 3

4
− 1, 0, 1)

1

2
.

9
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By using the initial values b1(1, 0, 0, 2) = 1 , b1(1, 0, 0, 3) = 0 , and the
above recursive formulas, we can give the following explicit formulas:
For y ∈ N,

b1(2y + 1, y, 0, 2) =
1

2y · y!
,

b1(2y + 1, y − 1, 0, 3) =
1

2y+1 · (y − 1)!
,

b1(2y, y − 1, 0, 0) = b1(2y, y − 1, 0, 1) =
1

2y · (y − 1)!
.

Thus we get the desired results.

Now we will prove our main theorems of this section.

Theorem 1. For α,m, q, y ∈ N with q ≥ 2, we have∑
`≤x

pα` (H
(1,2y+1,1)
` )m ∼ xα+my+1(log(x))α+m

(2y · y!)m(α+my + 1)
,

∑
p`≤x

pα` (H
(1,2y+1,1)
` )m ∼ xα+my+1

(2y · y!)m(α+my + 1)(log(x))m(y−1)+1
,

∑
`≤x

pα` (H
(q,2y+1,1)
` )m ∼ ζ(q)mxα+my+1(log(x))α

(2y · y!)m(α+my + 1)
,

∑
p`≤x

pα` (H
(q,2y+1,1)
` )m ∼ ζ(q)mxα+my+1

(2y · y!)m(α+my + 1)(log(x))my+1
,

∑
`≤x

pα` ((−1)`−1H
(1,2y,1)
` )m ∼ xα+m(y−1)+1(log(x))α+m

(2y · (y − 1)!)m(α+m(y − 1) + 1)
,

∑
p`≤x

pα` ((−1)`−1H
(1,2y,1)
` )m ∼ xα+m(y−1)+1

(2y · (y − 1)!)m(α+m(y − 1) + 1)(log(x))m(y−2)+1
,

∑
`≤x

pα` (H
(1,2y,1)
2`−1 )m ∼

∑
`≤x

pα` (−H(1,2y,1)
2` )m ∼ xα+m(y−1)+1(log(x))α+m

(2 · (y − 1)!)m(α+m(y − 1) + 1)
,

∑
p`≤x

pα` (H
(1,2y,1)
2`−1 )m ∼

∑
p`≤x

pα` (−H(1,2y,1)
2` )m

10
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∼ xα+m(y−1)+1

(2 · (y − 1)!)m(α+m(y − 1) + 1)(log(x))m(y−2)+1
,

∑
`≤x

pα` (H
(q,2y,1)
2`−1 )m ∼ (ζ(q) + ζ(q))mxα+m(y−1)+1(log(x))α

(2 · (y − 1)!)m(α+m(y − 1) + 1)
,

∑
p`≤x

pα` (H
(q,2y,1)
2`−1 )m ∼ (ζ(q) + ζ(q))mxα+m(y−1)+1

(2 · (y − 1)!)m(α+m(y − 1) + 1)(log(x))m(y−1)+1
,

∑
`≤x

pα` (−H(q,2y,1)
2` )m ∼ (ζ(q)− ζ(q))mxα+m(y−1)+1(log(x))α

(2 · (y − 1)!)m(α+m(y − 1) + 1)
,

∑
p`≤x

pα` (−H(q,2y,1)
2` )m ∼ (ζ(q)− ζ(q))mxα+m(y−1)+1

(2 · (y − 1)!)m(α+m(y − 1) + 1)(log(x))m(y−1)+1
.

Proof. By using Lemmata 5, 6, 7, and 8, we have∑
`≤x

pα` (H
(1,2y+1,1)
` )m ∼

∑
`≤x

`α+my(log(`))α+m

(2y · y!)m
∼ xα+my+1(log(x))α+m

(2y · y!)m(α+my + 1)
.

The other eleven asymptotic formulas can be proved in a similar manner.

Theorem 2. For α,m, k, q, y ∈ N with q ≥ 2, we have∑
`≤x

pα`,k(H
(1,2y+1,1)
` )m ∼ ((k − 1)!)αxα+my+1(log(x))α+m

(2y · y!)m(α+my + 1)(log log(x))α(k−1)
,

∑
p`,k≤x

pα`,k(H
(1,2y+1,1)
` )m ∼ xα+my+1(log log(x))(my+1)(k−1)

(2y · y!)m((k − 1)!)my+1(α+my + 1)(log(x))m(y−1)+1
,

∑
`≤x

pα`,k(H
q,2y+1,1)
` )m ∼ ((k − 1)!)αζ(q)mxα+my+1(log(x))α

(2y · y!)m(α+my + 1)(log log(x))α(k−1)
,

∑
p`,k≤x

pα`,k(H
(q,2y+1,1)
` )m ∼ ζ(q)mxα+my+1(log log(x))(my+1)(k−1)

(2y · y!)m((k − 1)!)my+1(α+my + 1)(log(x))my+1
,

∑
`≤x

pα`,k((−1)`−1H
1,2y,1)
` )m ∼ ((k − 1)!)αxα+m(y−1)+1(log(x))α+m

(2y · (y − 1)!)m(α+m(y − 1) + 1)(log log(x))α(k−1)
,

∑
p`,k≤x

pα`,k((−1)`−1H
(1,2y,1)
` )m ∼ xα+m(y−1)+1(log log(x))(m(y−1)+1)(k−1)

(2y · (y − 1)!)m((k − 1)!)m(y−1)+1

× 1

(α+m(y − 1) + 1)(log(x))m(y−2)+1
,
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∑
`≤x

pα`,k(H
1,2y,1)
2`−1 )m ∼

∑
p`,k≤x

pα`,k(−H
(1,2y,1)
2` )m

∼ ((k − 1)!)αxα+m(y−1)+1(log(x))α+m

(2 · (y − 1)!)m(α+m(y − 1) + 1)(log log(x))α(k−1)
,∑

p`,k≤x
pα`,k(H

(1,2y,1)
2`−1 )m ∼

∑
p`,k≤x

pα`,k(−H
(1,2y,1)
2` )m

∼ xα+m(y−1)+1(log log(x))(m(y−1)+1)(k−1)

(2 · (y − 1)!)m((k − 1)!)m(y−1)+1(α+m(y − 1) + 1)(log(x))m(y−2)+1
,

∑
`≤x

pα`,k(H
(q,2y,1)
2`−1 )m ∼ ((k − 1)!)α(ζ(q) + ζ(q))mxα+m(y−1)+1(log(x))α

(2 · (y − 1)!)m(α+m(y − 1) + 1)(log log(x))α(k−1)
,

∑
p`,k≤x

pα`,k(H
(q,2y,1)
2`−1 )m ∼ (ζ(q) + ζ(q))mxα+m(y−1)+1(log log(x))(m(y−1)+1)(k−1)

(2 · (y − 1)!)m((k − 1)!)m(y−1)+1

× 1

(α+m(y − 1) + 1)(log(x))m(y−1)+1
,

∑
`≤x

pα`,k(−H
(q,2y,1)
2` )m ∼ ((k − 1)!)α(ζ(q)− ζ(q))mxα+m(y−1)+1(log(x))α

(2 · (y − 1)!)m(α+m(y − 1) + 1)(log log(x))α(k−1)
,

∑
p`,k≤x

pα`,k(−H
(q,2y,1)
2` )m ∼ (ζ(q)− ζ(q))mxα+m(y−1)+1(log log(x))(m(y−1)+1)(k−1)

(2 · (y − 1)!)m((k − 1)!)m(y−1)+1

× 1

(α+m(y − 1) + 1)(log(x))m(y−1)+1
,

Proof. By using Lemmata 5, 6, 7, and 8, we have∑
`≤x

pα`,k(H
(1,2y+1,1)
` )m ∼

∑
`≤x

((k − 1)!)α`α+my(log(`))α+m

(2y · y!)m(log log(`))α(k−1)

∼ ((k − 1)!)αxα+my+1(log(x))α+m

(2y · y!)m(α+my + 1)(log log(x))α(k−1)
.

The other eleven asymptotic formulas can be proved in a similar manner.
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4 Sums over primes involving generalized alter-
nating hyperharmonic numbers of type H

(p,r,2)
n

Now we will provide the asymptotic formula for the generalized alternating

hyperharmonic numbers of type H
(p,r,2)
n .

Lemma 9. For r, n, p ∈ N, we have

H(p,r,2)
n ∼ 1

(r − 1)!
nr−1ζ(p) .

Proof. By using Lemma 3, we know that the main term ofH
(p,r,2)
n is a(r, 0, r−

1)nr−1H
(p)
n . It is known that [13] a(r, 0, r − 1) = 1

(r−1)! and H
(p)
n ∼ ζ(p).

Thus we get the desired result.

Now we will prove our main theorems of this section.

Theorem 3. For α,m, q, k, r ∈ N, we have

∑
`≤x

pα` (H
(q,r,2)
` )m ∼ ζ(q)mxα+m(r−1)+1(log(x))α

((r − 1)!)m(α+m(r − 1) + 1)
,

∑
p`≤x

pα` (H
(q,r,2)
` )m ∼ ζ(q)mxα+m(r−1)+1

((r − 1)!)m(α+m(r − 1) + 1)(log(x))m(r−1)+1
,

∑
`≤x

pα`,k(H
(q,r,2)
` )m ∼ ((k − 1)!)αζ(q)mxα+m(r−1)+1(log(x))α

((r − 1)!)m(α+m(r − 1) + 1)(log log(x))α(k−1)
,

∑
p`,k≤x

pα`,k(H
(q,r,2)
` )m ∼ ζ(q)mxα+m(r−1)+1(log log(x))(m(r−1)+1)(k−1)

((k − 1)!)m(r−1)+1((r − 1)!)m(α+m(r − 1) + 1)(log(x))m(r−1)+1
,

Proof. By using Lemmata 5, 6, 7, and 9, we have

∑
`≤x

pα`,k(H
(q,r,2)
` )m ∼

∑
`≤x

((k − 1)!)αζ(q)m`α+m(r−1)(log(`))α

((r − 1)!)m(log log(`))α(k−1)

∼ ((k − 1)!)αζ(q)mxα+m(r−1)+1(log(x))α

((r − 1)!)m(α+m(r − 1) + 1)(log log(x))α(k−1)
.

The other three asymptotic formulas can be proved in a similar manner.
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Theorem 4. For q1, q2, α, β,m, k, s, n, r1, r2 ∈ N with q1 ≥ 2, we have∑
`≤x

pα`,k(H
(q1,r1)
` )m(h

(s)
` )n(H

(q2,r2,2)
` )β ∼ ((k − 1)!)αζ(q1)

mζ(q2)
β(log(x))α+n

((r1 − 1)!)m((s− 1)!)n((r2 − 1)!)β

× xα+m(r1−1)+n(s−1)+β(r2−1)+1

(α+m(r1 − 1) + n(s− 1) + β(r2 − 1) + 1)(log log(x))α(k−1)
,

∑
p`,k≤x

pα`,k(H
(q1,r1)
` )m(h

(s)
` )n(H

(q2,r2,2)
` )β ∼ ζ(q1)

mζ(q2)
β

(α+m(r1 − 1) + n(s− 1) + β(r2 − 1) + 1)

× xα+m(r1−1)+n(s−1)+β(r2−1)+1(log log(x))(m(r1−1)+n(s−1)+β(r2−1)+1)(k−1)

((r1 − 1)!)m((s− 1)!)n((r2 − 1)!)β((k − 1)!)m(r1−1)+n(s−1)+β(r2−1)+1

× 1

(log(x))m(r1−1)+n(s−2)+β(r2−1)+1
.

Proof. By using Lemmata 1, 2, 5, 6, 7, and 9, we have∑
`≤x

pα`,k(H
(q1,r1)
` )m(h

(s)
` )n(H

(q2,r2,2)
` )β

∼
∑
`≤x

((k − 1)!)αζ(q1)
mζ(q2)

β`α+m(r1−1)+n(s−1)+β(r2−1)(log(`))α+n

((r1 − 1)!)m((s− 1)!)n((r2 − 1)!)β(log log(`))α(k−1)

∼ ((k − 1)!)αζ(q1)
mζ(q2)

β(log(x))α+n

((r1 − 1)!)m((s− 1)!)n((r2 − 1)!)β(log log(x))α(k−1)

× xα+m(r1−1)+n(s−1)+β(r2−1)+1

(α+m(r1 − 1) + n(s− 1) + β(r2 − 1) + 1)
.

The other asymptotic formula can be proved in a similar manner.

5 Sums over primes involving generalized alter-
nating hyperharmonic numbers of type H

(p,r,3)
n

Now we will provide the asymptotic formula for the generalized alternating

hyperharmonic numbers of type H
(p,r,3)
n .

Lemma 10. Let y, p ∈ N, the following asymptotic formulas hold:

H(p,2y+1,3)
n ∼ 1

2y · y!
nyζ(p) ,

H(1,2y,3)
n ∼ 1

2y · (y − 1)!
ny−1 log(n) ,
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H
(p,2y,3)
2n ∼ 1

2 · (y − 1)!
ny−1(ζ(p)− ζ(p)) , p ≥ 2 ,

H
(p,2y,3)
2n−1 ∼ 1

2 · (y − 1)!
ny−1(ζ(p) + ζ(p)) , p ≥ 2 .

Proof. From Definition 2 and Lemma 4, we have the following identities:
when r = odd,

H(p,r,3)
n =

2r−(−1)r−3
4∑

m=0

2r−(−1)r−3
4

−m∑
j=0

(
b1(r, j,m, 2)H

(p−m)
n + b1(r, j,m, 3)(−1)n−1H(p−m)

n

)
nj ,

when r = even,

H(p,r,1)
n =

2r−(−1)r−3
4∑

m=0

2r−(−1)r−3
4

−m∑
j=0

(
b1(r, j,m, 0)(−1)n−1H

(p−m)
n + b1(r, j,m, 1)H(p−m)

n

)
nj .

When r = odd, note that b1(r,m, j, 3) = 0 (m + j = 2r−(−1)r−3
4 ), we

know that the main term of H
(p,r,3)
n is b1(r,

2r−(−1)r−3
4 , 0, 2)H

(p)
n n

2r−(−1)r−3
4 .

When r = even and p = 1, we know that the main term of H
(1,r,3)
n is

b1(r,
2r−(−1)r−3

4 , 0, 1)Hnn
2r−(−1)r−3

4 .

When r = even and p ≥ 2, we know that the main term of H
(p,r,3)
n is(

b1(r,
2r−(−1)r−3

4 , 0, 0)(−1)n−1H
(p−m)
n +b1(r,

2r−(−1)r−3
4 , 0, 1)H

(p)
n

)
n

2r−(−1)r−3
4 .

From the proof of Lemma 8, we have the following explicit formulas:
For y ∈ N,

b1(2y + 1, y, 0, 2) =
1

2y · y!
,

b1(2y + 1, y − 1, 0, 3) =
1

2y+1 · (y − 1)!
,

b1(2y, y − 1, 0, 0) = b1(2y, y − 1, 0, 1) =
1

2y · (y − 1)!
.

Thus we get the desired results.

Now we will prove our main theorems of this section.
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Theorem 5. For α,m, p, q, y ∈ N with q ≥ 2, we have∑
`≤x

pα` (H
(p,2y+1,3)
` )m ∼ ζ(p)mxα+my+1(log(x))α

(2y · y!)m(α+my + 1)
,

∑
p`≤x

pα` (H
(p,2y+1,3)
` )m ∼ ζ(p)mxα+my+1

(2y · y!)m(α+my + 1)(log(x))my+1
,

∑
`≤x

pα` (H
(1,2y,3)
` )m ∼ xα+m(y−1)+1(log(x))α+m

(2y · (y − 1)!)m(α+m(y − 1) + 1)
,

∑
p`≤x

pα` (H
(1,2y,3)
` )m ∼ xα+m(y−1)+1

(2y · (y − 1)!)m(α+m(y − 1) + 1)(log(x))m(y−2)+1
,

∑
`≤x

pα` (H
(q,2y,3)
2`−1 )m ∼ (ζ(q) + ζ(q))mxα+m(y−1)+1(log(x))α

(2 · (y − 1)!)m(α+m(y − 1) + 1)
,

∑
p`≤x

pα` (H
(q,2y,3)
2`−1 )m ∼ (ζ(q) + ζ(q))mxα+m(y−1)+1

(2 · (y − 1)!)m(α+m(y − 1) + 1)(log(x))m(y−1)+1
,

∑
`≤x

pα` (H
(q,2y,3)
2` )m ∼ (ζ(q)− ζ(q))mxα+m(y−1)+1(log(x))α

(2 · (y − 1)!)m(α+m(y − 1) + 1)
,

∑
p`≤x

pα` (H
(q,2y,3)
2` )m ∼ (ζ(q)− ζ(q))mxα+m(y−1)+1

(2 · (y − 1)!)m(α+m(y − 1) + 1)(log(x))m(y−1)+1
.

Proof. By using Lemmata 5, 6, 7, and 10, we have∑
`≤x

pα` (H
(p,2y+1,3)
` )m ∼

∑
`≤x

ζ(p)m`α+my(log(`))α

(2y · y!)m
∼ ζ(p)mxα+my+1(log(x))α

(2y · y!)m(α+my + 1)
.

The other seven asymptotic formulas can be proved in a similar manner.

Theorem 6. For α,m, k, p, q, y ∈ N with q ≥ 2, we have∑
`≤x

pα`,k(H
p,2y+1,1)
` )m ∼ ((k − 1)!)αζ(p)mxα+my+1(log(x))α

(2y · y!)m(α+my + 1)(log log(x))α(k−1)
,

∑
p`,k≤x

pα`,k(H
(p,2y+1,1)
` )m ∼ ζ(p)mxα+my+1(log log(x))(my+1)(k−1)

(2y · y!)m((k − 1)!)my+1(α+my + 1)(log(x))my+1
,

∑
`≤x

pα`,k(H
1,2y,3)
` )m ∼ ((k − 1)!)αxα+m(y−1)+1(log(x))α+m

(2y · (y − 1)!)m(α+m(y − 1) + 1)(log log(x))α(k−1)
,
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∑
p`,k≤x

pα`,k(H
(1,2y,3)
` )m ∼ xα+m(y−1)+1(log log(x))(m(y−1)+1)(k−1)

(2y · (y − 1)!)m((k − 1)!)m(y−1)+1

× 1

(α+m(y − 1) + 1)(log(x))m(y−2)+1
,

∑
`≤x

pα`,k(H
(q,2y,3)
2`−1 )m ∼ ((k − 1)!)α(ζ(q) + ζ(q))mxα+m(y−1)+1(log(x))α

(2 · (y − 1)!)m(α+m(y − 1) + 1)(log log(x))α(k−1)
,

∑
p`,k≤x

pα`,k(H
(q,2y,3)
2`−1 )m ∼ (ζ(q) + ζ(q))mxα+m(y−1)+1(log log(x))(m(y−1)+1)(k−1)

(2 · (y − 1)!)m((k − 1)!)m(y−1)+1

× 1

(α+m(y − 1) + 1)(log(x))m(y−1)+1
,

∑
`≤x

pα`,k(H
(q,2y,3)
2` )m ∼ ((k − 1)!)α(ζ(q)− ζ(q))mxα+m(y−1)+1(log(x))α

(2 · (y − 1)!)m(α+m(y − 1) + 1)(log log(x))α(k−1)
,

∑
p`,k≤x

pα`,k(H
(q,2y,3)
2` )m ∼ (ζ(q)− ζ(q))mxα+m(y−1)+1(log log(x))(m(y−1)+1)(k−1)

(2 · (y − 1)!)m((k − 1)!)m(y−1)+1

× 1

(α+m(y − 1) + 1)(log(x))m(y−1)+1
,

Proof. By using Lemmata 5, 6, 7, and 10, we have∑
`≤x

pα`,k(H
(p,2y+1,3)
` )m ∼

∑
`≤x

((k − 1)!)αζ(p)m`α+my(log(`))α

(2y · y!)m(log log(`))α(k−1)

∼ ((k − 1)!)αζ(p)mxα+my+1(log(x))α

(2y · y!)m(α+my + 1)(log log(x))α(k−1)
.

The other seven asymptotic formulas can be proved in a similar manner.

6 Data availability

The datasets generated during and/or analysed during the current study are
available from the corresponding author on reasonable request.
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[3] A. Dil, I. Mező, M. Cenkci. Evaluation of Euler-like sums via Hurwitz
zeta values. Turkish J. Math. 41 (2017), no. 6, 1640–1655.

[4] J. Gerard, L.C. Washington, Sums of powers of primes. Ramanujan J.
45 (2018), no. 1, 171–180.

[5] A. Granville, Analytic Number Theory Revealed: The Distribution of
Prime Pumbers. Book draft, unpublished.

[6] J. Hadamard, Sur la distribution des zéros de la fonction ζ(s) et ses
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