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Abstract

In this paper, we give explicit asymptotic formulas for some sums
over primes involving generalized alternating hyperharmonic numbers
of types I, II and III. Analogous results for numbers with k-prime
factors will also be considered.
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1 Introduction and preliminaries

It is known to all that prime numbers play an essential role in number theory.
The infamous problem (known as the Prime Number Theorem) that how
many primes there are up to a given point has attracted many excellent
mathematicians’ interests since the time of Euclid. Let 7(z) denote the
number of primes up to x. Gauss and Legendre proposed independently that
the ratio 7 (z) 1021 would approach 1 as x approaches co. With the help of
analytic tools, Hadamard [6] and de la Vallée Poussin [2] independently and
almost simultaneously proved the Prime Number Theorem, i.e.,

()

X

(1)

~ logz

Here, and through out this paper, we use the natural logarithm (to base
e). We write A(z) ~ B(x), that is A(x) is asymptotic to B(x), which is
equivalent to
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Let p, be the sequence of prime numbers, the Prime Number Theorem
can be restated as

= > )~ logx (2)

pn<zx

It is natural to consider asymptotic formulas for more general sums of type
> pn<uzPp- An exercise in Granville’s book [5] states that > . p ~ 51~ 2%

This result can be proved with the help of asymptotic formula of p,,, which is
equivalent to the Prime Number Theorem. In fact, we can prove asymptotic

1+a

formulas for ang L D5, e, ang LD~ m, which is first obtained by

Salét and Znam [16]. Later, Jakimczuk [8, 9] extends this kind of summation
to numbers with &k prime factors and functions of slow increase. Gerard and
Washington [4] also give accurate estimates for an S Ofolé% by
using the Prime Number Theorem with error terms.

The above results remind the author that it would be interesting to ob-
tain asymptotic formulas for sums over primes of types an<x pef(n)™
where f(n) denotes an arithmetical function. Motivated by an exercise in
Granville’s book [5] and the author’s recent work [12] on generalized hyper-
harmonic numbers Hfzp ’r), the author [13] give explicit asymptotic formulas
for sums over primes involving generalized hyperharmonic numbers of type
angz pg(Hép ’r))m. Analogous results for numbers with k-prime factors
have also be considered by the author [13].

We now recall the definition of numbers with k-prime factors and the
hyperharmonic numbers. Let &£ > 1 and consider a positive integer n which
is the product of just k prime factors, i.e.,

n=pip2---Pk- (3)

We write 7i(x) for the number of such n < z. If we impose the additional
restriction that all the prime divisors p in shall be different, n is square-
free. We write mi(x) for the number of these (squarefree) n < z. It was
proved by Landau [7, 10] that

x(log log x k-1
(@) ~ (@) ~ m (h>2). (@)

For k = 1, this result would reduce to the Prime Number Theorem, if, as
usual, we take 0! = 1.
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The conception of hyperharmonic numbers are first introduced by Con-
way and Guy in their famous book [I] as

W =3V (nreN={1,2,3,--}) with D =H, = 1/j.
: ~

From the definition of hyperharmonic numbers we can see that these num-
bers can be obtained by taking repeated partial sums of harmonic numbers
H,. Starting from the classical generalized harmonic numbers Hp P _
H,Sp) = ijl 1/4P and taking repeated partial sums, Dil, Mez6 and Cenkci
[3] introduced the generalized hyperharmonic numbers

P =S HPY (n,preN),

and studied their Euler sum properties. Omiir and Koparal [I5] introduced

the generalized hyperharmonic numbers Hq(zp ) independently and almost
simultaneously from a combinatorial point of view, and defined two n x n
matrices A,, and B,, with a;; = HZ-(J ) and b; ; = Hi(p 7 ), respectively. They
also gave some interesting factorizations and determinant properties of the
matrices A, and B,,. The author [12] proved that the generalized hyperhar-
r)
n’s power times generalized harmonic numbers.

The conception of generalized alternating hyperharmonic numbers are
introduced by the author [II] as an alternating analogue of the general-
ized hyperharmonic numbers H,(Lp ") Define the notion of the generalized
alternating hyperharmonic numbers of types I, II, and III, respectively, as

monic numbers Hflp 7/ could be written in terms of linear combinations of

Hr’(lp,r,l) — Z(_l)k—lH(P,T—l,l) (H7(Lp,1,1) _ H’r(zp)) ’
k=1

ZH” P < HY =Y (=175,
j=1

Hépﬂ”ﬁ) — Z(_l)k—lHlipyr—lﬁ) (H7(1p,1,3) _ Fflp)) .
k=1

Let Ny denote the set of nonnegative integers. If p € Ny, then Hj P) and
AP are understood to be the sum > i1 gP and YU (— 1)7=14P  respec-

n

tively. The author [11] proved that Euler sums of the generahzed alternating
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hyperharmonic numbers of types I, II, and III could be expressed in terms
of linear combinations of classical (alternating) Euler sums.

The motivation of this paper arises from an exercise in Granville’s book
[5] and the author’s recent work [11] on generalized alternating hyperhar-
monic numbers of types I, II and III. This paper is a continuation of the
previous paper of the author with the same title [13]. In this paper, we
will derive explicit asymptotic formulas for some sums over primes involv-
ing generalized alternating hyperharmonic numbers of types I, II and III.
Analogous results for numbers with k-prime factors will also be considered.

2 Some notations and lemmata

We now recall some notations and lemmata which will be useful in later
sections.

Lemma 1 ([I4]). For alln € N and a fized order r > 1, we have

' 1 T—
A ~ e 1)!n Hog(n).

Lemma 2 ([13]). For r,n,p € N with p > 2, we have

1
(pﬂ‘) ~ r—1

where ((p) := > -2y n~P denotes the well-known Riemann zeta function.

Lemma 3 ([12]). For r,n,p € N, we have

r—1 r—1-m

p’” Z Zarmjn]H( ™

m=0 j=0

The coefficients a(r,m,j) satisfy the following recurrence relations:

1
a(r+1,7,0) = — a(r,m,r —m — 1) ,
r—m
m=0
r—1l—m
_ a(r,m,j) [ j+1 n
a(r+1,m,£)— ~. j+1 (]_E‘i‘l) Jj—0+1
=t
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m r—1-y
ar+1m0) ==Y > alny)Dermgy) O<m<r-1),
y=0 j=max{0,m—y—1}
where
j .
1 741 +1 -
(T7m7j?y) Z ]+1<]—€> ]_€<m_y>( )

{=maz{0,m—y—1}

and Bernoulli numbers Bl are determined by the recurrence formula

2:(h+UB+—k+1 (k> 0)

=0~/

or by the generating function

t SN
1—e—t:nz_;B"H’

The initial value is given by a(1,0,0) = 1.

Definition 1. Form, j € Ny, define the quantities c(m, j), d(m,j), c1(m,j),
and dy(m,j) as

. 1 m+1
C(muj) = —( ) B;_H-l_j )

m+1\m+1—j
, 1 & /m+1 1+k ki
) =y S (0 ) () e
m—i—lkzj_1 m—k J
m—j
m+1 m+1—k -
'_ B+2k _1m—k—]
aimd) = g 2 (") (" e
R, e
dy(m,j) = D em. ).
k=j

Definition 2. For r € N, define the quantities by(r,m,j, k), k =0,1,2,3 as

b1(1,0,0,2) =1, 5(1,0,0,3) =0, by(r,m,5,0)=bi(r,m,5,1) =0 (r=odd),
bi(r,m,j,2) = bi(r,m,j,3) =0 (r =even),
2r—(=1)" -3

bl(’r',m,j,?)):() (T:Odd, m—l-]: 4 )7
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and for k =0,1,2,3, bi(r,m, j, k) satisfy the following recurrence relations:
when r is odd,

2r—(—=1)"-3
4

bl(r—l-l,m,j,(]) == Z bl(’r‘7£,j,2)01(€,m),

l=m
2r — (—1)" — 2r —(=1)" -
Q<me =V =3 (=D =3
4 4
2'r—(—41)r—3_j
2 — (—1)" =3
bt 105.0)= Y bl 2e0), 0 << D23
/=0
2'r—(—41)r—371
bi(r+1,m,j,1) = Z bi(r,¢,5,3)c(l,m),
l=m—1
— (1" — 2r — (=1)" —
Gem<? (1) 3 o<j<X (-1) 3 _m);
4 4
2r—(=1)"-3
1
bl(’l"-l-]_,o,j,].) = Z Z bl(T7m7j172)d1(m’£)
m=0 J1+l=j
0<j< =8 gy,
1<6<m
2r—(—41)T—3_j
+ Z bl(ramaja 2)d1(m70) + bl(raoaja 3)
m=0

2r—(—=1)"-3
f—l

B Z Z bi(r,m, j1,3)d(m, ),

m=0 J1+Hl=j
S
1<e<m+1
2r — (—=1)" =3
(0<j< =V =3),
4
when r is even,
(1" -3
4
bl(r + ]-7m7j7 2) = Z bl(r7£7j7 0)0(67 m)’
l=m—1
2r —(—1)" =3 2r—(-1)" -3
(1§ms%+1, 0<j< I (4) +1—m);
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2r—(—=1)"-3
1
bi(r+1,05,2) =~ > > bi(r,m, j1,0)d(m, ()
m=0 ]1+€=]
0<j < Z=CEN=E gy
1<0<m+1
27'7(741)7”73 —j
+ Z bl(r,m,j,l)dl(m,()) +bl(7“,0,j, 0)
m=0
2r—(—=1)"-3
1
+ Z bl(ramvjly 1)d1 (mag) )
m=0 Ji+l=j
OSjlgzr—(—;)T—s_m
1<e<m
2r — (=1)" =3
0<j<Z=D 1);
4
2r—(—=1)"-3
1
bl(r+1,m,j,3) = Z bl(r7£7j7 1)01(6’ m)’
f=m
2r — (=1)" — 3 2r—(=1)" -3
Geme XN =8 gy oG =3 )
4 4
2r—(=1)"-3 .
-’ 2 — (—1)" —3
bi(r+1,0,5,3) = Y bi(r,4,5,1)ei(£,0),(0< 5 < T )
=0
Lemma 4 ([11]). For r,n,p € N, we have
2r—(—41)T—3 2'r—(—41)r—37m B
CEECED SR DR (T R T e P R
m=0 j=0
+ bl (T7 j, m, 2)H7(Lp—m) + bl (Ta ja m, 3)(_1)”—1F7(1p_m)> nj )
27"—(—41)T—B 2r—(—41)r—3_m o
e =S Y (im0 b,
m=0 j=0

+ b, jom, 20H ™ 4 by (r, Gy, 3)(—1)"—1H£”‘m)> n’

where by(r,j,m,k) (k=0,1,2,3) are given in Definition @
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Lemma 5 ([8, 9]). Let > ;2 a; and > ;2 b; be two series of positive terms
such that limy, o 3¢ = 1. Then if Y 2, b; is divergent, the following limit
holds:

lim 2i=1%
n Y
Lemma 6 ([7, 13]). Let p, denote the nth squarefree number with just

k prime factors and g, ), denote the nth number with just k prime factors.
Then the following asymptotic relations hold:

nlog(n)
ke ~ Qo ~ (B —1)l—— o —
Prk ~ Gk ) (loglog(n))k—1

Pui(10g10g(pn))" ™ ~ gn(loglog(gnx))" " ~ (k — 1)lnlog(n).
For k =1, we have p, ~ nlog(n) .
Lemma 7 ([13]). For m,n,k,z € N, we have

2™ (log(x))"
m+1

bl

> " (log(0)" ~
/=1

ZL 0™ (log(€))™ =™ (log(z))™
3 (log(0))" (log(x))

2~ lloglog(®))F ™ (m + 1)(log log(x))F

3 Sums over primes involving generalized alter-

nating hyperharmonic numbers of type H,(Lp 1)

Now we will provide the asymptotic formula for the generalized alternating

hyperharmonic numbers of type HT(LP ),

Lemma 8. Lety,p € N with p > 2, the following asymptotic formulas hold:
1

g oy, B~ L),
H{WD ~ mny_l(—l)n_llog(”),

Y~ — g () = ).

P ~ s ) + C).
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where ((s) denotes the well-known alternating zeta function

_ & (_1)77,—1 1—s ) _
¢(s):= Z = (1 =2""%)¢(s) with ((1)=log2.
n=1

Proof. From Definition 2 and Lemma [4, we have the following identities:
when r = odd,

2r—(—=1)"=3 2r—(=1)"-3
1 1 —-m

P = 3 3 (bl(r,j, m, 2)HP ™™ + b (r, j,m, 3)(—1)"‘1H$fm))nj ,
m=0 j=0
when r = even,
2r7(741)T73 2r7(741)’"—37m B |
HP™ =) > (f“(my m, 0)(~1)" LHE=™) 4 by (r, j,m, 1)H£”_m))"J ‘
m=0 §=0
When r = odd, note that by(r,m,5,3) =0 (m+j = W), we
. (p,r,1) . 2r—(—=1)"—3 (p) 2r—(=1"-3
know that the main term of H, is by(r, =——5—,0,2)Hn"'n 1 .
When r = even and p = 1, we know that the main term of Hr(Ll’r’l) is

2r—(—=1)"-3

by (r, =502 0,0) (=) Hyn” 1
When r = even and p > 2, we know that the main term of Hflp’r’l) is
bl (7“, 21”—(—41)T—3 ’ 0’ 0)(_1)n—1H£Lp—m)+b1 (T', 27‘—(—41)T—3,O’ 1)?53’) 72T_(11) =3

From Definition 2 we can obtain the following recursive formulas:
when r is odd with r > 3,

2 1) — (=1t -3 2r — (—=1)" =3 1
bl(’l”—{—l, (T+ ) 4(1 ) ,O,O)Zbl(r,7a(4:)7072)27
2(r+1) = (=11 -3 2r —(=1)" -3 1
bi(r +1, 1 ,0,1)=b1(r,f—170,3)m’
when r is even,
2(r+1) — (-1)r+1 -3 2r — (=1)" -3 1
b1 (’I” +1, 4 0, 2) =b (Tv 4 0, 0) 2r—(=1)"=3 ’
4 +1
9 1__17"-1-1_ I — (—=1)" —
by (r + 1, (r+1) 4(1 ) 3—1,0,3)=b1(r, T (4) 3—1,0,1)f.
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By using the initial values b1(1,0,0,2) =1, b;(1,0,0,3) =0, and the
above recursive formulas, we can give the following explicit formulas:

For y € N,
1
bl(2y+1ay3072):2yy'7
1
b1(2y+1,y 1 0 3) my
1

by (204 — 1 — b (2, —1,0,1) = —— .
1( Y,y 7070) 1( Yy ’0’ ) 2y(y_1)'

Thus we get the desired results.

Now we will prove our main theorems of this section.

Theorem 1. For a,m,q,y € N with ¢ > 2, we have

oy r(12g41) 2T (log(x)) o™
o~ (2Y-yHhm(a+ my + 1)
Z » ( (1,2y41 1)) N xa+my+1
P (20 -y (o + my + 1) (log()) =D+

o @2yl ) vm  C(g) T (log(x))™
H ~
270, S et my + )

)

<z
Z poc(H(q,2y+1,1))m C(q)maotmytl
pe<e o (2v - y!)™ (o + my + 1) (log(z))mv+t’

D (log(a))

Zp e 1H(1 2y71))

(<= 2V (=)™ a+my—-1)+1)"
Z p Z 1H(1 9.1 )) N xa+m(y71)+1
@ (g — Do+ mly — 1) + 1) (log(a))"o-2+1
at+m(y—1)+1(] a+m
o rr(L,2y,1)ym a (1,2y,1)\m x (log(x))
Py (Hy,” ~ D Pe(—H. ~ :
g; E( 20—1 ) g f( 20 ) (2‘(y_1)!)m(a+m(y_1)+1)
ST opg Y N pe(—Hy Py
pe<x pe<w

10
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poatm(y—1)+1
(= D)7 o+ mly — 1)+ D(log()) "0 571
S oy €0+ T o)

~

= 2 - D) a+mly—1+1)
a(gla2yym (C(q) + C(q))maotmly—D+1
p;pe =) (2 (y — Y™ (a + m(y — 1) + 1) (log(x))my-D+1

a (¢,2y,)\m (C(Q)—Z(Q))mwam(y*l)ﬂ(log(x))a
gm(_Hﬂ S - D+ 1)

H (¢(q) = ¢(g))matmu—DH
2 HCHE" (2 (y— Y™ (a+m(y — 1) + 1) (log(z))my—D+1 -

pe<x

Proof. By using Lemmata [5] [6] [7} and [8] we have

o 1,204+1,1)\m potmy log £))etm xa-«—my—i—l 10g(x>)a+m

(<e N AR D 2v-y)m(a+my+1)

The other eleven asymptotic formulas can be proved in a similar manner. [J

Theorem 2. For a,m,k,q,y € N with ¢ > 2, we have

Zpo‘ (H(1’2y+1’1))m N ((k — 1)!)C¥xa+my+1(log(1‘))a+m
e (20 - y)™(a + my + 1) (loglog (x) ) k=D’
) loglog(r)) D

Z D 1,2y+1 1))
e ! (2 - y)y™((k — D)™+ (o + my + 1) (log(z))my—D+1 7
)

N O (11 il o
2 P~ o et my + 1) (log log(a)) 7D

<z

<z
Z D 7.2y+1 1)) N C(q)mxe ™yt (log log(x) ) D (E=1)
0,k ( )m(( _ 1) )my—i—l(a + my + 1)(10g(x))my+1 )

pek<T
> iR (=D L2 ym ((k — DYegetm=D+ (log(x))2+m
<z e (2v - (y — Y™ (a+ m(y — 1) + 1)(loglog(z))*k=1)’

S pi((—) E Dy

Dok <T

xa+m(y_l)+l (log 10g<x))(m(y_l)+l)(k_l)
(20 (y— DY ((k — DD
1

X (o +m(y — 1) + 1) (log(z))my—2)+1"

11
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12, 1,2y,1
S EHO ~ S g (- HY )

= Do <T
~ ((k — 1)nraetm D+ (log(a)) >
2+ (y — D)y (a+ m(y — 1) + 1) (log log(x))o*-D’

1,2y,1 H2
prk 22%) ZPM vym

pep<z pep<z
gotmy=D+ (Jog log(z)) -1 +D (k1)
2+ (y = D)™((k = )Y)m&=D+ (a +m(y — 1) + 1) (log(x)) =417
a2 ym (k= 1)H*(C(g) +{(g) eV + (log(x))

;pek 20—1 (2 X (y _ 1)!)m(a 4 m(y _ 1) + 1)(10g log(a:))a(k—l) s

o @2 m  (C(g) + C(g))ma =D H (log log(x)) M=+ D)
Z pé,k(sz—glJ )™~ (2-(y— D™ ((k— 1)!)m(y71)+1

ek <T

“latmy -1+ ;)(log(x))m(y—l)-f—l )
MR i
S ppa(—myn 09 = Z(i);m(zai“i(;;::(;(lfgllﬁgggy)z (:z_l)+l)(k_l)
(a+m(y—1)+ i)(log(x))m(y—l)—l-l )

Pep<T

X

Proof. By using Lemmata 5, 6, 7, and 8, we have
o 2 1 k — 1))apatmy log f))otm
Zpe,k(Hél v 1)) ~ Z ( . i ( (ag,z_l)
& 22" (27 yly"(log log(0))
((k — 1)hezotmy+l(log(z))atm
(2V -y (a + my + 1)(log log(x))ok—=1 ~

The other eleven asymptotic formulas can be proved in a similar manner. [

12
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4 Sums over primes involving generalized alter-
nating hyperharmonic numbers of type H, (p.r2)

Now we will provide the asymptotic formula for the generalized alternating

hyperharmonic numbers of type Hy (por 2)

Lemma 9. Forr,n,p € N, we have

1 =
]

Proof. By using Lemma we know that the main term of Hy, (pr2) is a(r 0,r—

1)nr_1ﬁ,(lp). It is known that [13] a(r,0,7 — 1) = = ), and H ~ ((p).
Thus we get the desired result. O

Now we will prove our main theorems of this section.

Theorem 3. For a,m,q,k,r € N, we have

) ((g)maetmr=D+ (log(x))
D _piH T =D)(atmr—1)+1)’

<z
arr(ar2) ~ Z(q)mxa+m(r71)+1
Z py (H, ) ((r —)Y)™(a+m(r — 1) + 1)(log(x))mr=1+1~

- HOrDym ((k — 1)NC(g) ™z ™~V (log ()
Z;p T (r = 1))@+ m(r — 1) + 1)(loglog(x))**=1
HOTDym C(q)mae ™=+ (log log(x)) (mr—D+D(k—1)
p;xpg 7 (k= DY ((r = D)) (ot m(r — 1) + 1) (log())m0 D+

Proof. By using Lemmata 5, 6, 7, and [0} we have

e (0= DT log(0)°
2P ~ ) T g gD

N ((k — 1)) (q)maotmr=DH (log(z))~
((r — )NYm(a +m(r — 1) + 1)(log log(z))k-1 °

The other three asymptotic formulas can be proved in a similar manner. [

13
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Theorem 4. For qi,qs, o, 5, m, k,s,n,r1,r9 € N with ¢ > 2, we have

o ¢ pplarym gy (vng pare2ns (K =1)N%C(g1)™(g2)" (log(x))* ™

o (H h H ~

2P O ) (s = D — P
xa+m(r171)+n(sfl)+ﬂ(r271)+1

X )

(a+m(r1 —1)+n(s —1) + B(ra — 1) + 1)(log log(x))*k—1)

me B
o (pplar)ym o (yn( a6 ¢(q1)"C(a2)
pz;a:pe’k( ‘ SRS, ) (a+m(ri—1)+n(s—1)+B(ra —1)+1)
ma—i—m(rl—1)+n(s—1)+5(r2—1)+1(log log(m))(m(rl—1)+n(s—1)+5(r2—1)+1)(k—1)
((r1 = )™ ((s — D)) ((ra — 1)NB((k — 1))ymlr—DFn(s—D B -1+
1

X (log () )i —D+n(s—2)+A(ra—1)+1

X

Proof. By using Lemmata[I] 2] 5, 6, 7, and 9, we have

S Py ) ()
<z
N Z ((k‘ _ 1)!)ac(ql)mZ(qQ),Bgaer(rl71)+n(371)+5(1~271)(log(e))cwrn
= (= DH™((s = DY ((ra = DYP (loglog(£)) >+
((k = 1)H)*¢(g1)"C(g2)” (log(x))* "

T (=1 ((s = D)™ ((r2 — 1)) (log log(a))o )
potm(ri—1)+n(s—1)+B(r2—1)+1

(a+m(ri—1) +n(s 1)+ B(ra —1) + 1)

X

The other asymptotic formula can be proved in a similar manner. O

5 Sums over primes involving generalized alter-
nating hyperharmonic numbers of type gy

Now we will provide the asymptotic formula for the generalized alternating

hyperharmonic numbers of type H,sp ).

Lemma 10. Let y,p € N, the following asymptotic formulas hold:

(p2y+1,3) ye
e o).
1
(1,29,3) ., y—1
H) (= 1)!71 log(n),
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Y~ s ) ~ T . 2,

1 _
2 ~ o W)+ X))y p 2.

Proof. From Definition 2 and Lemma 4, we have the following identities:
when r = odd,

2r—(=1)"-3 2r—(-1)"-3
1 1 m

H7(zp7T73) _ Z Z (bl (7‘, 7,m, 2)F£1p—m) + b (7'7 J,m, 3)(_1)n—1H7(1p—m)> nj ’
m=0 Jj=0
when r = even,
2ro(-17-3 2ro(c1"-8
H’r(LpJ:,l) _ Z Z (bl (’]",j, m, 0)(_1)71—1?217—"1) 4 bl (r7j7 m, 1)H7(1p_m)> ’I’L] .
m=0 Jj=0

When r = odd, note that by(r,m,j,3) =0 (m+j = W), we
know that the main term of H,Sp’r’?’) is by (r, W, 0, Q)ﬁilp)nW.

When r = even and p = 1, we know that the main term of HS’T’?)) is
2r—(—=1)"-3

by (r, %, 0,1)H,n 3
When r = even and p > 2, we know that the main term of H,(LP’T’?’) is
by (r, 22E0=3 0, 0)(— 1) VTP oy (r, Z2ED 0 1) P )G

From the proof of Lemma 8, we have the following explicit formulas:

For y € N,
b1(2 1,9,0,2 —71
1(y+ y Y, U, )_2yy‘)
1
bi(2 1,y—-1,0,3) = ———+
1(y+ Y 7?) 2y+1'(y_1)!7
1

b1(2 —1 =b1(2 -1,0,1)= ——.
1( Y,y 7070) 1( Y,y 707) 2y(y_1)|

Thus we get the desired results.

Now we will prove our main theorems of this section.

15
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Theorem 5. For a,m,p,q,y € N with ¢ > 2, we have

o/ r7(0:2y+1,3) \m Z(p)m a+my+1(10g( )
Zpe(Hz Y )"~ v - ym(a+ my 4 1)

=
2 ET" - T

o HI) fyiml(?w:;(i%)j -
p;p?(flél’zy’?’))m ~ e :(m(i—llij B
S~ D)

3 UL ~ e e e et e
S~ D)
p;cp?(H%Zy’g))m T2 - 1)!552 :rig?z)/)fiimﬁzlzg(;))m(y1)+1 '

Proof. By using Lemmata 5, 6, 7, and [I0] we have

S (HP2 ) ZC m€“+my(10g(€)) _ Spymaetmytt (log(x))®

! :
= = (2v-y!) (2v-yhm(a+my +1)

The other seven asymptotic formulas can be proved in a similar manner. [

Theorem 6. For a,m,k,p,q,y € N with ¢ > 2, we have

o (P2 ym ((k = )H*¢(p)"a ™ (log(x))”
pr,k‘( Y/ ) ~ (2y T m( na 1 a(k—1)°
1<z yh)™(a +my + 1)(loglog(z))

o (P2y+1,1)\m C(p)mzt™v+ (loglog(z ))(my+1)(k—1)
p;wpé,k<ng Y ) ( y|) (( - 1)')my+1(a +my + 1)(10g(x))my+1 s
Zp 1 24,3) ((k — DY)egetmu—D+1(Jog(z))otm
<z el T @0 (y - DY)(a+mly — 1) + 1)(log log(z))e®-1)
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3 HO23ym | zotmy=1+1(Joglog(z))mu—D+1(k-1)
il (@ (y— DY™((k — DD+

Dok <T

1
g (a+m(y—1)+ 1)(10g(x))m(y—2)+1 J

S p (HE Dy ((k = 1)H)*(¢(q) +¢(g) ™~V (log(a))*

i<z ! (2 (y—1)))™(a+m(y — 1)+ 1)(loglog(x))**-1’

a2 m _ (C(@) +C(g)" a0V +L (loglog(x)) (- D+
Z P 24 1 ~ (2 (y — DY™((k — 1)ymy—D+1
1
“ o+ mly — 1) + 1)(log(a)) D1

H2) ((k = 1)H*(¢(g) — C(@)ma* ™=+ (log(x))*
2Pl T2 (y - DYm(a+ mly — 1) + 1)(loglog(x))ae=D

Pep<T

<z
Z p?k(H(q’Zy 3)) ~ (C(q) = C(g))maetmy=D+1(Jog log(z))my-D+D(k=1)
pox<x 7 x (2-(y—1DHm((k — 1)!)m(y71)+1

1
(@ +m(y — 1) + 1)(log(x)) =1+t

X

Proof. By using Lemmata 5, 6, 7, and 10, we have

o (77(p.2u+13)\m ((k = D¢ (p)™ e+ (log (£))”
;pe,k(Hep " ) N% (24 - y1)™ (log log(¢)) k1)

(k= DY (p)mat ™yt (log(z))™
(29 - y)m (o + my + 1)(log log(x))k-1) *

The other seven asymptotic formulas can be proved in a similar manner. [J

6 Data availability

The datasets generated during and/or analysed during the current study are
available from the corresponding author on reasonable request.
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