

Review

The potential of exosomes in allergy immunotherapy

Paul Engeroff^{1*}, Monique Vogel^{2,3*}¹Sorbonne Université, INSERM, Immunology-Immunopathology-Immunotherapy (i3), F-75005, Paris, France²Department of Immunology, University Hospital for Rheumatology, Immunology, and Allergology, Bern, Switzerland³Department of BioMedical Research, University of Bern, Bern, Switzerland* Correspondence: Monique Vogel, PhD ; monique.vogel@dbmr.unibe.ch
Paul Engeroff, PhD ; paul.engeroff@sorbonne-universite.fr

Abstract: Allergic diseases represent a global health and economic burden of increasing significance. The lack of disease-modifying therapies besides specific allergen immunotherapy (AIT) which is not available for all types of allergies, necessitates the study of novel therapeutic approaches. Exosomes are small endosome-derived vesicles delivering cargo between cells and thus allowing inter-cellular communication. Since immune cells make use of exosomes to boost, deviate, or suppress immune responses, exosomes are intriguing candidates for immunotherapy. Here, we review the role of exosomes in allergic sensitization and inflammation and we discuss the mechanisms by which exosomes could be used in immunotherapeutic approaches for the treatment of allergic diseases. We propose the following approaches: a) Mast cell derived exosomes expressing IgE receptor Fc ϵ RI could absorb IgE and down-regulate systemic IgE levels. b) Tolerogenic exosomes could suppress allergic immune responses via induction of regulatory T cells. c) Exosomes could promote TH1-like responses towards an allergen. d) Exosomes could modulate IgE-facilitated antigen presentation.

Keywords: Type I hypersensitivity; IgE; AIT; SIT; extracellular vesicles; vaccine

1. Allergy and allergy immunotherapy

Allergic diseases are a global issue as more and more people are affected by allergies [1]. Type I hypersensitivity is characterized by abnormal IgE-mediated inflammation in response to harmless antigens called allergens caused by a lack of immune tolerance coupled with expansion of TH2 cells that drive IgE responses from B cells [2], [3]. Allergen-specific IgE sensitizes mast cells and basophils by binding to the high-affinity IgE receptor Fc ϵ RI [4]. Upon secondary contact with the allergen, those cells degranulate and release inflammatory mediators [5]. Symptomatic treatment options for allergies involve down-regulation of the mediators released by mast cells or basophils (e.g anti-histamine) or aim to down-regulate IgE such as the monoclonal anti-IgE antibody Omalizumab [6]. The only disease modifying treatment available for some but not all allergies is allergen-specific immunotherapy (short AIT or SIT). AIT is a repeated immunization approach that aims to re-educate the immune system and generate tolerance towards the allergen [7], [8]. Mechanistically, AIT induces regulatory T cells and B cells that act anti-inflammatory such as IL-10 and TGF- β . This leads to a suppression in TH2 responses but increased IgG4 production [9]–[11]. A novel approach in allergy immunotherapy is to boost immune responses by eliciting a non-allergic, but rather anti-viral/bacterial TH1-like response [12]. In general, it is accepted that IgG antibodies can suppress IgE-mediated effector functions by competing for the allergen epitope thus neutralizing IgE, or by ligation of inhibitory Fc γ RIIb receptors on mast cells/basophils [13]–[15]. Fc γ RIIb receptors contain immunoreceptor tyrosine-based inhibitory motif (ITIM) signaling domains that shut down Fc ϵ RI - dependent effector cell activation [16]–[18]. Additionally, Fc γ Rs and IgG can promote the

internalization of IgE thus preventing IgE-dependent activation of effector cells [19]. However, further research in this area is still required as IgG can also contribute to inflammation, depending on IgG subclass and type of Fc γ R receptor involved [20]–[22].

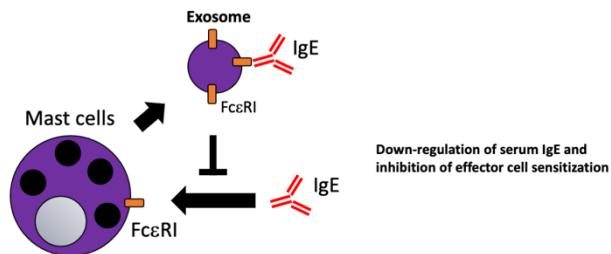
2. The Biology of Exosomes

The biology and biomedical application of exosomes are reviewed by Kalluri & LeBleu [23]. In brief, Extracellular vehicles (EVs) are small membrane blebs with a diameter of approximately 40nm-1 μ m released from cells. Exosomes (40-160nm) are of endosomal origin, which distinguishes them from ectosomes that are budding from the surface of plasma membranes. Because of this endosomal origin exosomes are enriched with endosomal-associated membrane proteins such as major histocompatibility complex (MHC) Class I and II and tetraspanin proteins e.g. CD63, CD81, CD82 which have been shown to be involved in cell activation, proliferation and antigen presentation [24]. To this end, EVs can provide the organisms with molecules such as transferring membrane material between different cells by fusing to target cells without the need of direct cell-cell contact. Furthermore, EVs can be loaded with cargo proteins and RNA [25]. Thus, EVs, specifically exosomes have been a fast-rising topic due to their relevance as communicators and modulators for the immune system. Exosome function is dysregulated in a variety of diseases and thus their therapeutic potential is intriguing [23]. This is also true in allergic diseases as EVs, specifically exosomes seem to play a role in the dysregulated communication in allergy and allergic asthma [5], [6].

3. Exosomes in the regulation of immune responses

The transfer of exosomes between immune cells can have a strong functional effect on immune responses and either promote, deviate or suppress immune responses [26]–[28]. Many studies have shown that dendritic cells modulate CD4+ as well as CD8+ immune responses via exosomes that carry MHC I or MHC II molecules as well as co-stimulatory molecules CD8/CD86 [29]–[31]. Interestingly, extracellular vesicles containing intact p-MHC complexes pre-loaded with antigen-derived peptide can also lead to direct antigen presentation without the need of antigen processing, this mechanism of antigen presentation is referred to as “cross-dressing” [32]–[34]. Besides exosomal transfer of p-MHC II and native antigens, RNA cargo provides a fundamental mechanism for intercellular communication [35]. Donor cells package mRNA or small non-coding micro RNAs (miRNAs) into exosomes. In the exosome-receiving cell, mRNAs can be translated into proteins and miRNAs can post-transcriptionally regulate target mRNAs. The transfer of miRNA exists in immune cells as means for antigen presenting cells (APCs) communication and activation [36]–[38]. Interestingly, viruses can highjack this system as EBV-infected B cells transfer viral miRNAs to DCs that silence immune-stimulatory molecules [39]. Regulatory T cells can suppress CD4+ T cell proliferation and cytokine production by transferring miRNA via exosomes which block gene expression [40], [41]. Mesenchymal stem cells (MSC) are of high interest in the treatment of inflammatory diseases as they produce anti-inflammatory exosomes that can suppress DC maturation, T cell activation and promote regulatory T cells and B cells [42]–[45]. Cancer cells use exosomes carrying tumor antigens or inhibitory molecules can suppress the activation of DCs, T cells and NK cells in the tumor microenvironment [46]–[48]. Due to all those immunomodulatory properties, exosomes have become a promising novel tool in immunotherapy [49]–[51].

4. Exosomes in allergic sensitization and inflammation


Exosomes play a role in a number of allergic processes that could potentially be manipulated for allergen specific immunotherapy [52]–[54]. Allergic sensitization is driven by barrier disruption skin or lung where inflammatory signals from epithelial cells, including thymic stromal lymphopoietin (TSLP)/IL-25/IL-33 are thought to activate type 2 innate lymphoid cells (ILC2) and thus a TH2 bias [55], [56]. Interestingly, it was shown that TSLP-activated DCs release OX40L expressing exosomes that drive CD4+ TH2 proliferation and differentiation [57]. In asthma, significant differences in 24 exosomal miRNAs were found

in bronchoalveolar fluids (BAL) of allergic versus asthmatic patients [58]. The miRNA-17-92 cluster (miRNA-17-5p, miRNA-17-3p, miRNA-18a, miRNA-19a, miRNA-19b, miRNA-20a, and miRNA-92-1) was shown to be an important regulator of T cell biology [59] and among the different miRNAs in the cluster, miR-19 is upregulated in CD4+ T cells from asthmatic patients compared to healthy individuals [60]. Like the miR-17-92, the miR-23 cluster plays a role in T cell function and in particular in controlling TH2 differentiation by targeting IL-4 and GATA3 [61]. Upon allergen exposure, exosomes released from epithelial cells induce the proliferation and the chemotaxis of macrophages during asthmatic inflammation [62]. Recently, an interesting study showed that in epithelial exosomes, contactin-1 is involved activation a recruitment of monocyte-derived dendritic cells T-cell responses in allergic asthma [63]. Likewise, eosinophil-derived exosomes promote eosinophil migration, augment adhesion by a specific increase of adhesion molecules such as ICAM-1 and induce reactive oxygen species (ROS) and nitric oxide (NO) production in autocrine fashion [64]. Additionally, this leads to alveolar epithelial cell (AEC) death, to delay wound repair and to increase airway smooth muscle cell proliferation which causes airway obstruction and tissue remodeling [65]. Exosome production is also increased by airway allergen exposure as it was shown that PBMCs from House dust mite (HDM) allergic patients produce higher numbers of exosomes in response to HDM re-stimulation and HDM-induced exosomes were also shown to contain altered cargo/properties than exosomes produced in unstimulated PBMCs [66], [67]. An interesting report showed that DCs are able to package native cat allergen Fel d 1 into exosomes [68]. B cell derived exosomes were reported to carry processed birch allergen Bet V 5 peptide/MHCII complexes that can stimulate proliferation, IL-5, and IL-13 production from BET v 1 specific T cells lines [69].

5. Potential exosome-based therapeutic approaches in allergy immunotherapy

5. 1. The therapeutic potential of Mast cell derived exosomes

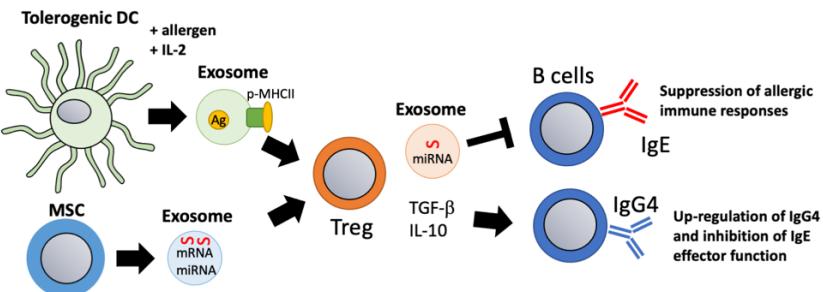

Mast cells (MC) are in many ways the quintessential cell in allergy and thus also of high interest in allergy immunotherapy [70]. MCs are located at barrier sites in skin, lung and gut and are involved in allergic sensitization, inflammation but also resolution and tolerance. MCs express the high affinity receptor for IgE, Fc ϵ RI which upon cross-linking of the Fc ϵ RI-bound IgE by allergen induce a signal pathway leading to release of preformed granules [70]. Likewise, MCs are a source of exosomes from endosomal compartment which are released by exocytosis of the cells and like other immune cells, MCs can shuttle MHC molecules, RNA and chaperones that are able to modulate immune responses [71]. It was reported that mast cell derived exosomes containing MiR103a-3p enhance IL-5 production from ILC2s [72]. Furthermore, MCs can promote TH2 immune responses by OX40L expressing exosomes that interact with OX40 on T cells. An interesting study suggested that MCs regulate their own differentiation via exosomes by communicating with blood CD34+ progenitor cells [74]. It was reported that mast cell derived exosomes can induce functional maturation of DCs for efficient antigen cross-presentation to T cells [73]. A specific interest for allergy immunotherapy is the fact that mast cell derived exosomes express Fc ϵ RI [71]. It was shown in an elegant study that mast cell-derived exosomes can neutralize IgE via surface displayed Fc ϵ RI [75]. As mentioned above, anti-IgE therapy is an established approach in the treatment of allergy [76]. Using IgE-neutralizing mast cell derived exosomes that reduce systemic IgE levels and thus down-regulate systemic allergic sensitization could be a novel approach (Figure 1). Alternatively, Fc ϵ RI could also be engineered to be expressed on exosomes from other cell types than mast cells.

Figure 1: MC-derived exosomes that neutralize serum IgE**Figure 1: Mast cell (MC)-derived exosomes that neutralize serum IgE**

MC-derived exosomes or exosomes engineered to express Fc ϵ RI could be used to down-regulate serum IgE levels and inhibit binding to Fc ϵ RI on MCs or basophils thus reducing allergic sensitization.

5.2 "Tolerosomes" for the suppression of allergic TH2 responses

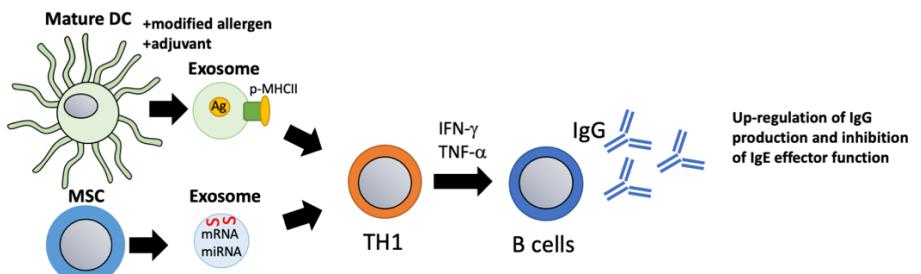

A key concept of allergy immunotherapy is the generation of tolerance towards the allergen [77]. Tolerance-inducing exosomes also referred to as "tolerosomes" can be produced by gut epithelial cells and promote regulatory T cells and can suppress immune responses in MHC dependent fashion [78], [79]. It was demonstrated that OVA-fed mice display elevated levels of serum tolerosomes that suppress allergic sensitization and protect from allergic asthma in a murine model [80]. Another interesting study showed that Exosomes isolated from BAL fluid of tolerized donor mice suppress allergic inflammation in recipient mice by promote allergen-specific regulatory T cells that can suppress immune responses altogether thus limiting the production of IgE and airway inflammation [81]. MSC-derived exosomes have been shown to promote tolerogenic DCs by reducing maturation and production of inflammatory cytokines [45]. This concept was also confirmed in allergy as MSC-derived exosomes suppress allergic rhinitis in a murine model and human MSC-derived exosomes suppress Th2 differentiation via the miR-146a-5p/SERPINB2 axis [44], [82]. In a different study it was shown that MSC-derived exosomes alleviate atopic dermatitis [83]. Interestingly, regulatory DCs stimulated with IL-2 and antigen produce exosomes carrying IL-2 and p-MHCII complexes which promote Tregs and suppress allergic inflammation in a murine model of food allergy [84]. This concept fits into the strategy of expanding of T reg via IL-2, which has been a promising and fast-evolving field, including in allergy immunotherapy [85], [86]. It is generally accepted that T reg released IL-10 and TGF- β is important for the establishment of allergen tolerance [87]. Additionally, Tregs themselves have been reported to suppress immune responses via exosomes which could be applied in similar fashion [40], [41]. Hence, exosomes from tolerogenic DCs, MSCs or T reg could be used for the inductions T reg and tolerance in allergy immunotherapy (Figure 2).

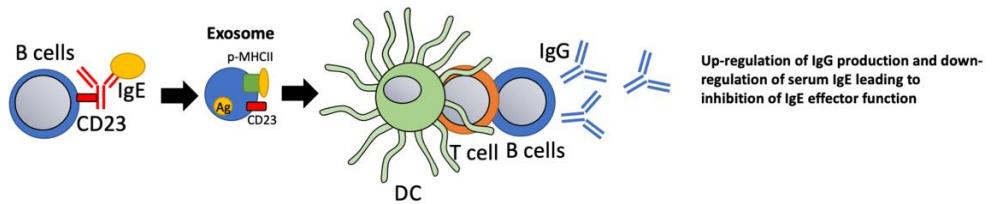
Figure 2: Tolerosomes derived from DCs, IEC or MSC to induce allergen tolerance via Tregs**Figure 2: Tolerosomes derived from DCs, IEC or MSC to induce allergen tolerance via Tregs**

Exosomes derived from IL-2 primed tolerogenic DCs or from MSCs promoting regulatory T cells could be used to suppress TH2 responses. Alternatively, Treg-derived exosomes themselves could be harnessed to suppress TH2 responses.

5.3 Exosomes as a vaccination approach to boost TH1 responses towards allergens

Recent approaches to improve AIT have focused on optimizing high allergen-specific IgG titers without activating sensitized allergic effector cells [88]. The properties of allergens can be changed in a way that they become more immunogenic for example by using adjuvants such as aluminium hydroxide (Al(OH)3), microcrystalline tyrosine (MCT), monophosphoryl lipid A (MPLA) and calcium phosphate (CaP)[88]. At the same time, immunization approaches aim to deliver allergens in way that Fc ϵ RI cannot be cross-linked on allergic effector cells, causing allergic reactions or anaphylaxis. Examples of strategies to reduce allergen reactogenicity while maintaining immunogenicity include peptide immunotherapy or intra-lymphatic injection [89], [90]. A promising novel platform that combines immunogenicity with a lack of reactogenicity are virus-like particles-based vaccines that are able to induce high protective allergen-specific IgG titers while reducing the allergenicity of the allergen [91], [92]. The immunogenicity of exosomes could be harnessed in similar fashion and could represent a physiological nanoparticle. Hence, exosomes packaged with allergens or p-MHC complexes could be loaded with other components such as co-stimulatory molecules or mRNA/miRNA and modified in a way to target specific cells, a concept that has been proven in mature DCs and MSC [45], [49]. Potentially, the goal of inducing TH1-like immune responses, could even be achieved by just packaging native antigens into exosomes [93]. The ability to induce TH1-like responses using exosome-based vaccines has been reported in multiple studies showing that they can induce IFN- γ , TNF- α T cell responses and boost IgG antibody responses [94]–[96]. In conclusion, a vaccination approach based on exosomes that promotes protective IgG responses which inhibit IgE effector function could be an interesting strategy in allergy immunotherapy (Figure 3).

Figure 3: DC-derived exosomes that boost protective IgG responses**Figure 3: DC-derived exosomes as a vaccination approach that boost protective IgG responses**


Exosomes from mature DCs loaded with allergens promote T cell and B cell activation resulting in a classical TH1 type immune response with high IgG titers. This method could be optimized in a number of

ways for example by addition of specific adjuvants or by packaging allergens that are modified to be more immunogenic.

5.4 Using exosomes to modulate IgE-facilitated antigen presentation

IgE in complex with antigen (Ag) forms IgE-Ag immune complexes that are highly immunogenic and lead to a CD4+ T cell and antibody responses in a process that has been termed IgE-facilitated antigen presentation IgE-FAP [97]–[99]. The mechanism of IgE-FAP involves the low-affinity receptor CD23 expressed in B cells that shuttle IgE-Ag complexes to the follicles where they transfer antigen to dendritic cells [100], [101]. The ligation of CD23 by IgE-Ag immune complexes has functional consequences in allergy in that it negatively regulates IgE levels in the serum in negative feedback fashion by inhibition of IgE responses and down-regulation of serum IgE levels [102]–[107]. There are two CD23 isoforms that differ in their intracellular signaling sequence. CD23a internalizes IgE-Ag complexes via endocytosis whereas CD23b is expressed by a was shown to lead to phagocytic uptake [108]. DCs expressing CD23b degrade antigens while in B cells that mainly express CD23a, the antigen is protected and co-recycled with MHCII to the cell surface [109], [110]. Independently, a study showed that in B cells, CD23-mediated internalization results in ADAM-10 dependent sorting into exosomes [111]. ADAM-10 is the principle sheddase of CD23 and highly expressed in Golgi-derived vesicles, suggesting that CD23 shedding and/or release in exosomes requires endocytosis to allow ADAM10 to bind and to cleave CD23 [112]–[115]. Furthermore, it was shown that in B cells, exosome sorting of CD23 is co-regulated by engagement of the adrenergic receptor β 2AR which controls ADAM-10 expression as well as protein expression of CD23 which localize to exosomes [116]. We and others proposed a model in which B cell-expressed CD23 recycles IgE-Ag complexes into exosomes that carry IgE, allergen, MHCII and CD23 which are able to induce T cell proliferation and antibody responses [109], [117], [118]. In conclusion, exosomes derived from CD23-activated B cells could be used to manipulate IgE-facilitated antigen presentation to boost T cell and antibody responses while simultaneously down-regulating serum IgE levels (Figure 4).

Figure 4: B cell-derived exosomes that modulate IgE-Facilitated Antigen Presentation

Figure 4: B cell-derived exosomes that modulate IgE-Facilitated Antigen Presentation

B cell mediated sorting of IgE-allergen complexes into exosomes via CD23 could be harnessed to promote protective allergen-specific IgG responses. Targeting CD23 could have the additional effect of down-regulating IgE levels.

8. Conclusion

The general importance of exosomes in the modulation of immune responses as well as their therapeutic value in immunopathology is widely accepted including in allergic diseases which are a major global health burden. AIT, the only disease-modifying therapy for allergic diseases is far from optimized, as it is not available for all allergies, displays strong variations in success rate, requires patients to undergo repeated treatment over long time periods, and often bears risks of side effects. Exosomes driving tolerance or deviating immune responses could represent a future tool for the optimization of allergy immunotherapy. The ability of exosomes to carry p-MHCII complexes and/or native antigens can facilitate strong simultaneous stimulation of T cells and B cells. Additionally, engineering of receptor surface expression such as Fc ϵ RI and packaging of mRNA and

miRNA allow endless possibilities in optimizing potential therapeutic candidates. Even though more research in this area is required, we believe that there are multiple intriguing mechanisms by which exosomes could be engineered as therapeutic agents in allergy immunotherapy.

Funding

This work was supported by the Swiss National Science Foundation (SNF) grant 310030_179165/1 to Monique Vogel and SNF grant P2BEP3_188262 to Paul Engeroff.

Conflicts of Interest

The authors declare no conflict of interest

References

- [1] G. Devereux, "The increase in the prevalence of asthma and allergy: food for thought.," *Nat. Rev. Immunol.*, vol. 6, no. 11, pp. 869–874, 2006.
- [2] L. C. Wu and A. A. Zarrin, "The production and regulation of IgE by the immune system," *Nat. Rev. Immunol.*, vol. 14, no. 4, pp. 247–259, 2014.
- [3] W. E. Paul and J. Zhu, "How are T(H)2-type immune responses initiated and amplified?," *Nat. Rev. Immunol.*, vol. 10, no. 4, pp. 225–235, 2010.
- [4] S. J. Galli, M. Tsai, and A. M. Piliponsky, "The development of allergic inflammation.," *Nature*, vol. 454, no. 7203, pp. 445–454, 2008.
- [5] S. Wernersson and G. Pejler, "Mast cell secretory granules: armed for battle.," *Nat. Rev. Immunol.*, vol. 14, no. 7, pp. 478–494, Jul. 2014.
- [6] R. C. Strunk and G. R. Bloomberg, "Omalizumab for Asthma," *N. Engl. J. Med.*, vol. 354, no. 25, pp. 2689–2695, Jun. 2006.
- [7] M. Jutel *et al.*, "International consensus on allergy immunotherapy," *J. Allergy Clin. Immunol.*, vol. 136, no. 3, pp. 556–568, 2015.
- [8] M. Jutel *et al.*, "International Consensus on Allergen Immunotherapy II: Mechanisms, standardization, and pharmacoconomics," *J. Allergy Clin. Immunol.*, vol. 137, no. 2, pp. 358–368, 2016.
- [9] W. van de Veen and M. Akdis, "Role of IgG 4 in IgE-mediated allergic responses," *J. Allergy Clin. Immunol.*, vol. 138, no. 5, pp. 1434–1435, 2016.
- [10] C. A. Akdis and M. Akdis, "Mechanisms of allergen-specific immunotherapy," *J. Allergy Clin. Immunol.*, vol. 127, no. 1, pp. 18–27, 2011.
- [11] M. Jutel and C. A. Akdis, "Immunological mechanisms of allergen-specific immunotherapy," *Nat. Rev. Immunol.*, vol. 66, no. 6, pp. 725–732, 2011.
- [12] M. F. Bachmann and T. M. Kündig, "Allergen specific immunotherapy: is it vaccination against toxins after all?," *Allergy*, vol. 72, no. 1, pp. 13–23, 2017.
- [13] M. F. Bachmann, M. O. Mohsen, M. F. Kramer, and M. D. Heath, "Vaccination against Allergy: A Paradigm Shift?," *Trends Mol. Med.*, 2020.
- [14] C. Möbs *et al.*, "Birch pollen immunotherapy results in long-term loss of Bet v 1-specific TH2 responses, transient TR1 activation, and synthesis of IgE-blocking antibodies.," *J. Allergy Clin. Immunol.*, vol. 130, no. 5, pp. 1108-1116.e6, Nov. 2012.
- [15] N. Schmitz *et al.*, "Displaying Fel d1 on virus-like particles prevents reactogenicity despite greatly enhanced immunogenicity: a novel therapy for cat allergy.," *J. Exp. Med.*, vol. 206, no. 9, pp. 1941–55, 2009.
- [16] P. Bruhns, S. Frémont, and M. Daëron, "Regulation of allergy by Fc receptors," *Curr. Opin. Immunol.*, vol. 17, no. 6, pp. 662–669, 2005.

[17] J.-P. Kinet, "The high-affinity IgE receptor (Fc ϵ RI): From Physiology to Pathology," *Annu. Rev. Immunol.*, vol. 17, no. 1, pp. 931–972, 1999.

[18] C. Uermösi *et al.*, "Mechanisms of allergen-specific desensitization," *J. Allergy Clin. Immunol.*, vol. 126, no. 2, pp. 375–383, 2010.

[19] C. Uermösi *et al.*, "IgG-mediated down-regulation of IgE bound to mast cells: a potential novel mechanism of allergen-specific desensitization," *Allergy*, vol. 69, no. 3, pp. 338–347, Mar. 2014.

[20] F. Nimmerjahn and J. V. Ravetch, "Fc γ receptors as regulators of immune responses," *Nat. Rev. Immunol.*, vol. 8, no. 1, pp. 34–47, 2008.

[21] P. Bruhns, B. Iannascoli, P. England, D. a Mancardi, N. Fernandez, and S. Jorieux, "Specificity and affinity of human Fc γ receptors and their polymorphic variants for human IgG subclasses," *Blood*, vol. 113, no. 16, pp. 3716–3725, 2009.

[22] C. M. Gillis *et al.*, "Mechanisms of anaphylaxis in human low-affinity IgG receptor locus knock-in mice," *J. Allergy Clin. Immunol.*, vol. 139, no. 4, pp. 1253–1265.e14, Apr. 2017.

[23] R. Kalluri and V. S. LeBleu, "The biology, function, and biomedical applications of exosomes," *Science (80-.).*, vol. 367, no. 6478, 2020.

[24] C. Théry, L. Zitvogel, and S. Amigorena, "Exosomes: composition, biogenesis and function," *Nature reviews. Immunology*, vol. 2, no. 8. England, pp. 569–579, Aug-2002.

[25] K. O'Brien, K. Breyne, S. Ughetto, L. C. Laurent, and X. O. Breakefield, "RNA delivery by extracellular vesicles in mammalian cells and its applications," *Nat. Rev. Mol. Cell Biol.*, vol. 21, no. 10, pp. 585–606, 2020.

[26] R. Wubbolts *et al.*, "Proteomic and biochemical analyses of human B cell-derived exosomes: Potential implications for their function and multivesicular body formation," *J. Biol. Chem.*, vol. 278, no. 13, pp. 10963–10972, 2003.

[27] P. D. Robbins and A. E. Morelli, "Regulation of immune responses by extracellular vesicles," *Nat. Rev. Immunol.*, vol. 14, no. 3, pp. 195–208, Mar. 2014.

[28] C. Gutiérrez-Vázquez, C. Villarroya-Beltri, M. Mittelbrunn, and F. Sánchez-Madrid, "Transfer of extracellular vesicles during immune cell-cell interactions," *Immunol. Rev.*, vol. 251, no. 1, pp. 125–142, Jan. 2013.

[29] M. F. S. Lindenbergh and W. Stoorvogel, "Antigen Presentation by Extracellular Vesicles from Professional Antigen-Presenting Cells," *Annu. Rev. Immunol.*, vol. 36, pp. 435–459, Apr. 2018.

[30] C. Théry, L. Duban, E. Segura, P. Véron, O. Lantz, and S. Amigorena, "Indirect activation of naïve CD4+ T cells by dendritic cell-derived exosomes," *Nat. Immunol.*, vol. 3, no. 12, pp. 1156–1162, Dec. 2002.

[31] C. Fu *et al.*, "Plasmacytoid dendritic cells cross-prime naive CD8 T cells by transferring antigen to conventional dendritic cells through exosomes," *Proc. Natl. Acad. Sci.*, vol. 117, no. 38, pp. 23730 LP – 23741, Sep. 2020.

[32] L. M. Wakim and M. J. Bevan, "Cross-dressed dendritic cells drive memory CD8+ T-cell activation after viral infection," *Nature*, vol. 471, no. 7340, pp. 629–632, 2011.

[33] B. P. Dolan, K. D. Gibbs, and S. Ostrand-Rosenberg, "Dendritic Cells Cross-Dressed with Peptide MHC Class I Complexes Prime CD8⁺ T Cells," *J. Immunol.*, vol. 177, no. 9, pp. 6018 LP – 6024, Nov. 2006.

[34] S. Campana, C. De Pasquale, P. Carrega, G. Ferlazzo, and I. Bonaccorsi, "Cross-dressing: An alternative mechanism for antigen presentation," *Immunol. Lett.*, vol. 168, no. 2, pp. 349–354, 2015.

[35] K. O'Brien, K. Breyne, S. Ughetto, L. C. Laurent, and X. O. Breakefield, "RNA delivery by extracellular vesicles in mammalian cells and its applications," *Nat. Rev. Mol. Cell Biol.*, vol. 21, no. 10, pp. 585–606, 2020.

[36] M. Mittelbrunn *et al.*, "Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells," *Nat. Commun.*, vol. 2, no. 1, p. 282, 2011.

[37] V. Salvi *et al.*, "Exosome-delivered microRNAs promote IFN- α secretion by human plasmacytoid DCs via TLR7,"

JCI insight, vol. 3, no. 10, p. e98204, May 2018.

[38] A. Montecalvo *et al.*, "Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes," *Blood*, vol. 119, no. 3, pp. 756–766, Jan. 2012.

[39] A. Nanbo, E. Kawanishi, R. Yoshida, and H. Yoshiyama, "Exosomes derived from Epstein-Barr virus-infected cells are internalized via caveola-dependent endocytosis and promote phenotypic modulation in target cells," *J. Virol.*, vol. 87, no. 18, pp. 10334–10347, Sep. 2013.

[40] I. S. Okoye *et al.*, "MicroRNA-containing T-regulatory-cell-derived exosomes suppress pathogenic T helper 1 cells," *Immunity*, vol. 41, no. 1, pp. 89–103, Jul. 2014.

[41] A. Agarwal *et al.*, "Regulatory T cell-derived exosomes: possible therapeutic and diagnostic tools in transplantation," *Front. Immunol.*, vol. 5, p. 555, Nov. 2014.

[42] M. Shahir *et al.*, "Effect of mesenchymal stem cell-derived exosomes on the induction of mouse tolerogenic dendritic cells," *J. Cell. Physiol.*, vol. 235, no. 10, pp. 7043–7055, Oct. 2020.

[43] M. Reis, E. Mavin, L. Nicholson, K. Green, A. M. Dickinson, and X. Wang, "Mesenchymal Stromal Cell-Derived Extracellular Vesicles Attenuate Dendritic Cell Maturation and Function," *Frontiers in Immunology*, vol. 9, p. 2538, 2018.

[44] J. Zhou, Y. Lu, W. Wu, and Y. Feng, "HMSC-Derived Exosome Inhibited Th2 Cell Differentiation via Regulating miR-146a-5p/SERPINB2 Pathway," *J. Immunol. Res.*, vol. 2021, 2021.

[45] S. Nikfarjam, J. Rezaie, N. M. Zolbanin, and R. Jafari, "Mesenchymal stem cell derived-exosomes: a modern approach in translational medicine," *J. Transl. Med.*, vol. 18, no. 1, pp. 1–21, 2020.

[46] Y. Ning *et al.*, "Tumor exosomes block dendritic cells maturation to decrease the T cell immune response," *Immunol. Lett.*, vol. 199, pp. 36–43, Jul. 2018.

[47] P. Sharma, B. Diergaarde, S. Ferrone, J. M. Kirkwood, and T. L. Whiteside, "Melanoma cell-derived exosomes in plasma of melanoma patients suppress functions of immune effector cells," *Sci. Rep.*, vol. 10, no. 1, p. 92, 2020.

[48] G. Berchem *et al.*, "Hypoxic tumor-derived microvesicles negatively regulate NK cell function by a mechanism involving TGF- β and miR23a transfer," *Oncoimmunology*, vol. 5, no. 4, p. e1062968, Apr. 2016.

[49] J. M. Pitt *et al.*, "Dendritic Cell-Derived Exosomes as Immunotherapies in the Fight against Cancer," *J. Immunol.*, vol. 193, no. 3, pp. 1006 LP – 1011, Aug. 2014.

[50] J. Dai *et al.*, "Exosomes: key players in cancer and potential therapeutic strategy," *Signal Transduct. Target. Ther.*, vol. 5, no. 1, p. 145, 2020.

[51] L. Zitvogel *et al.*, "Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes," *Nat. Med.*, vol. 4, no. 5, pp. 594–600, May 1998.

[52] B. A. Alhamwe *et al.*, "Extracellular vesicles and asthma—more than just a co-existence," *Int. J. Mol. Sci.*, vol. 22, no. 9, 2021.

[53] C. Admyre *et al.*, "Exosomes - Nanovesicles with possible roles in allergic inflammation," *Allergy Eur. J. Allergy Clin. Immunol.*, vol. 63, no. 4, pp. 404–408, 2008.

[54] K. Hough, D. Chanda, S. Duncan, V. J. Thannickal, and J. S. Deshane, "Exosomes in Immunoregulation of Chronic Lung Diseases," *Allergy*, vol. 1, pp. 534–544, 2016.

[55] S. C. Dharmage, A. J. Lowe, M. C. Matheson, J. A. Burgess, K. J. Allen, and M. J. Abramson, "Atopic dermatitis and the atopic march revisited," *Allergy Eur. J. Allergy Clin. Immunol.*, vol. 69, no. 1, pp. 17–27, 2014.

[56] H. A. Brough *et al.*, "Epicutaneous sensitization in the development of food allergy: What is the evidence and how can this be prevented?," *Allergy*, vol. 75, no. 9, pp. 2185–2205, Sep. 2020.

[57] L. Huang *et al.*, "Exosomes from Thymic Stromal Lymphopoietin-Activated Dendritic Cells Promote Th2 Differentiation through the OX40 Ligand," *Pathobiology*, vol. 86, no. 2–3, pp. 111–117, 2019.

[58] B. Levänen *et al.*, "Altered microRNA profiles in bronchoalveolar lavage fluid exosomes in asthmatic patients,"

J. Allergy Clin. Immunol., vol. 131, no. 3, pp. 894–903.e8, Mar. 2013.

[59] D. Baumjohann, “Diverse functions of miR-17-92 cluster microRNAs in T helper cells,” *Cancer Lett.*, vol. 423, pp. 147–152, Jun. 2018.

[60] L. J. Simpson *et al.*, “A microRNA upregulated in asthma airway T cells promotes TH2 cytokine production,” *Nat. Immunol.*, vol. 15, no. 12, pp. 1162–1170, 2014.

[61] S. Cho *et al.*, “miR-23~27~24 clusters control effector T cell differentiation and function,” *J. Exp. Med.*, vol. 213, no. 2, pp. 235–249, Feb. 2016.

[62] A. Kulshreshtha, T. Ahmad, A. Agrawal, and B. Ghosh, “Proinflammatory role of epithelial cell-derived exosomes in allergic airway inflammation,” *J. Allergy Clin. Immunol.*, vol. 131, no. 4, pp. 1194–203, 1203.e1–14, Apr. 2013.

[63] M. Zhang *et al.*, “Epithelial exosomal contactin-1 promotes monocyte-derived dendritic cell–dominant T-cell responses in asthma,” *J. Allergy Clin. Immunol.*, Nov. 2021.

[64] J. A. Cañas *et al.*, “Exosomes from eosinophils autoregulate and promote eosinophil functions,” *J. Leukoc. Biol.*, vol. 101, no. 5, pp. 1191–1199, May 2017.

[65] J. A. Cañas *et al.*, “Eosinophil-derived exosomes contribute to asthma remodelling by activating structural lung cells,” *Clin. Exp. allergy J. Br. Soc. Allergy Clin. Immunol.*, vol. 48, no. 9, pp. 1173–1185, Sep. 2018.

[66] J. P. Choi, S. G. Jeon, Y. K. Kim, and Y. S. Cho, “Role of house dust mite-derived extracellular vesicles in a murine model of airway inflammation,” *Clin. Exp. Allergy*, vol. 49, no. 2, pp. 227–238, 2019.

[67] Y. Gon *et al.*, “Selective release of miRNAs via extracellular vesicles is associated with house-dust mite allergen-induced airway inflammation,” *Clin. Exp. Allergy*, vol. 47, no. 12, pp. 1586–1598, 2017.

[68] H. Vallhov, C. Gutzeit, K. Hultenby, R. Valenta, H. Gr??nlund, and A. Scheynius, “Dendritic cell-derived exosomes carry the major cat allergen Fel d 1 and induce an allergic immune response,” *Allergy Eur. J. Allergy Clin. Immunol.*, vol. 70, no. 12, pp. 1651–1655, 2015.

[69] C. Admyre *et al.*, “B cell-derived exosomes can present allergen peptides and activate allergen-specific T cells to proliferate and produce TH2-like cytokines,” *J. Allergy Clin. Immunol.*, vol. 120, no. 6, pp. 1418–1424, 2007.

[70] S. J. Galli and M. Tsai, “IgE and mast cells in allergic disease,” *Nat. Med.*, vol. 18, no. 5, pp. 693–704, 2012.

[71] A. Carroll-Portillo, Z. Surviladze, A. Cambi, D. Lidke, and B. S. Wilson, “Mast Cell Synapses and Exosomes: Membrane Contacts for Information Exchange ,” *Frontiers in Immunology* , vol. 3. p. 46, 2012.

[72] S. Toyoshima *et al.*, “miR103a-3p in extracellular vesicles from FcεRI-aggregated human mast cells enhances IL-5 production by group 2 innate lymphoid cells,” *J. Allergy Clin. Immunol.*, vol. 147, no. 5, pp. 1878–1891, 2021.

[73] D. Skokos *et al.*, “Mast Cell-Derived Exosomes Induce Phenotypic and Functional Maturation of Dendritic Cells and Elicit Specific Immune Responses In Vivo,” *J. Immunol.*, vol. 170, no. 6, pp. 3037 LP – 3045, Mar. 2003.

[74] K. Ekström *et al.*, “Characterization of mRNA and microRNA in human mast cell-derived exosomes and their transfer to other mast cells and blood CD34 progenitor cells,” *J. Extracell. vesicles*, vol. 1, p. 10.3402/jev.v1i0.18389, Apr. 2012.

[75] G. Xie *et al.*, “Mast cell exosomes can suppress allergic reactions by binding to IgE,” *J. Allergy Clin. Immunol.*, vol. 141, no. 2, pp. 788–791, 2018.

[76] P. Gasser and A. Eggel, “Targeting IgE in allergic disease,” *Curr. Opin. Immunol.*, vol. 54, pp. 86–92, 2018.

[77] W. Yu, D. M. H. Freeland, and K. C. Nadeau, “Food allergy: Immune mechanisms, diagnosis and immunotherapy,” *Nat. Rev. Immunol.*, vol. 16, no. 12, pp. 751–765, 2016.

[78] M. Karlsson, S. Lundin, U. Dahlgren, H. Kahu, I. Pettersson, and E. Telemo, “‘Tolerosomes’ are produced by intestinal epithelial cells,” *Eur. J. Immunol.*, vol. 31, no. 10, pp. 2892–2900, Oct. 2001.

[79] S. Ostman, M. Taube, and E. Telemo, “Tolerosome-induced oral tolerance is MHC dependent,” *Immunology*, vol. 116, no. 4, pp. 464–476, Dec. 2005.

[80] N. Almqvist, A. Lönnqvist, S. Hultkrantz, C. Rask, and E. Telemo, "Serum-derived exosomes from antigen-fed mice prevent allergic sensitization in a model of allergic asthma," *Immunology*, vol. 125, no. 1, pp. 21–27, 2008.

[81] N. Prado *et al.*, "Exosomes from Bronchoalveolar Fluid of Tolerized Mice Prevent Allergic Reaction," *J. Immunol.*, vol. 181, no. 2, pp. 1519 LP – 1525, Jul. 2008.

[82] H. Li, Y. Tian, L. Xie, X. Liu, Z. Huang, and W. Su, "Mesenchymal stem cells in allergic diseases: Current status," *Allergol. Int.*, vol. 69, no. 1, pp. 35–45, 2020.

[83] B. S. Cho, J. O. Kim, D. H. Ha, and Y. W. Yi, "Exosomes derived from human adipose tissue-derived mesenchymal stem cells alleviate atopic dermatitis," *Stem cell research & therapy*, vol. 9, no. 1. p. 187, Jul-2018.

[84] D. Yu *et al.*, "Specific antigen-guiding exosomes inhibit food allergies by inducing regulatory T cells," *Immunol. Cell Biol.*, vol. 98, no. 8, pp. 639–649, 2020.

[85] B. Bonnet *et al.*, "Low-Dose IL-2 Induces Regulatory T Cell–Mediated Control of Experimental Food Allergy," *J. Immunol.*, vol. 197, no. 1, pp. 188 LP – 198, Jul. 2016.

[86] D. Klatzmann and A. K. Abbas, "The promise of low-dose interleukin-2 therapy for autoimmune and inflammatory diseases," *Nat. Rev. Immunol.*, vol. 15, no. 5, pp. 283–294, 2015.

[87] M. Akdis, K. Blaser, and C. A. Akdis, "T regulatory cells in allergy: Novel concepts in the pathogenesis, prevention, and treatment of allergic diseases," *J. Allergy Clin. Immunol.*, vol. 116, no. 5, pp. 961–969, 2005.

[88] E. Jensen-Jarolim *et al.*, "State-of-the-art in marketed adjuvants and formulations in Allergen Immunotherapy: A position paper of the European Academy of Allergy and Clinical Immunology (EAACI)," *Allergy*, vol. 75, no. 4, pp. 746–760, Apr. 2020.

[89] R. Selb *et al.*, "CD23 surface density on B cells is associated with IgE levels and determines IgE-facilitated allergen uptake, as well as activation of allergen-specific T cells," *J. Allergy Clin. Immunol.*, vol. 139, no. 1, pp. 290–299, 2015.

[90] H. J. Hoffmann *et al.*, "Novel approaches and perspectives in allergen immunotherapy," *Allergy*, vol. 72, no. 7, pp. 1022–1034, Jul. 2017.

[91] P. Engeroff, F. Caviezel, F. Storni, F. Thoms, M. Vogel, and M. F. Bachmann, "Allergens displayed on virus-like particles are highly immunogenic but fail to activate human mast cells," *Allergy*, vol. 73, no. 2, pp. 341–349, 2018.

[92] F. Storni *et al.*, "Vaccine against peanut allergy based on engineered virus-like particles displaying single major peanut allergens," *J. Allergy Clin. Immunol.*, vol. 145, no. 4, pp. 1240-1253.e3, 2020.

[93] K. R. Qazi, U. Gehrmann, E. Domange Jordö, M. C. I. Karlsson, and S. Gabrielsson, "Antigen-loaded exosomes alone induce Th1-type memory through a B cell–dependent mechanism," *Blood*, vol. 113, no. 12, pp. 2673–2683, Mar. 2009.

[94] S. Jesus, E. Soares, M. T. Cruz, and O. Borges, "Exosomes as adjuvants for the recombinant hepatitis B antigen: First report," *Eur. J. Pharm. Biopharm. Off. J. Arbeitsgemeinschaft fur Pharm. Verfahrenstechnik e.V.*, vol. 133, pp. 1–11, Dec. 2018.

[95] C. J. E. Wahlund, G. Güclüler, S. Hiltbrunner, R. E. Veerman, T. I. Näslund, and S. Gabrielsson, "Exosomes from antigen-pulsed dendritic cells induce stronger antigen-specific immune responses than microvesicles in vivo," *Sci. Rep.*, vol. 7, no. 1, p. 17095, 2017.

[96] J. Colino and C. M. Snapper, "Exosomes from Bone Marrow Dendritic Cells Pulsed with Diphtheria Toxoid Preferentially Induce Type 1 Antigen-Specific IgG Responses in Naive Recipients in the Absence of Free Antigen," *J. Immunol.*, vol. 177, no. 6, pp. 3757 LP – 3762, Sep. 2006.

[97] F. Hjelm, M. C. I. Karlsson, and B. Heyman, "A novel B cell-mediated transport of IgE-immune complexes to the follicle of the spleen," *J. Immunol.*, vol. 180, no. 10, pp. 6604–6610, 2008.

[98] A. Getahun, F. Hjelm, and B. Heyman, "IgE enhances antibody and T cell responses in vivo via CD23+ B cells," *J. Immunol.*, vol. 175, no. 3, pp. 1473–1482, 2005.

[99] J. Eckl-Dorna *et al.*, "Allergen-specific antibodies regulate secondary allergen-specific immune responses," *Front. Immunol.*, vol. 10, no. JAN, pp. 1–15, 2019.

[100] P. Engeroff and M. Vogel, "The role of CD23 in the regulation of allergic responses," *Allergy*, vol. 76, no. 7, pp. 1981–1989, Jul. 2021.

[101] F. Hennigsson *et al.*, "IgE-Mediated Enhancement of CD4+ T Cell Responses in Mice Requires Antigen Presentation by CD11c+ Cells and Not by B Cells," *PLoS One*, vol. 6, no. 7, p. e21760, Jul. 2011.

[102] C. Liu, K. Richard, M. Wiggins, X. Zhu, D. H. Conrad, and W. Song, "CD23 can negatively regulate B-cell receptor signaling," *Sci. Rep.*, vol. 6, no. May, p. 25629, 2016.

[103] P. Yu, M. Kosco-Vilbois, M. Richards, G. Köhler, and M. C. Lamers, "Negative feedback regulation of IgE synthesis by murine CD23," *Nature*, vol. 369, no. 6483, pp. 753–756, 1994.

[104] L. Flores-Romo *et al.*, "Inhibition of an in vivo antigen-specific IgE response by antibodies to CD23," *Science* (80-.), vol. 261, no. 5124, pp. 1038 LP – 1041, Aug. 1993.

[105] P. Engeroff *et al.*, "Glycan-specific IgG anti-IgE autoantibodies are protective against allergic anaphylaxis in a murine model," *J. Allergy Clin. Immunol.*, vol. 147, no. 4, pp. 1430–1441, Apr. 2021.

[106] P. Engeroff, F. Caviezel, D. Mueller, F. Thoms, M. F. Bachmann, and M. Vogel, "CD23 provides a noninflammatory pathway for IgE-allergen complexes," *J. Allergy Clin. Immunol.*, vol. 145, no. 1, pp. 301-311.e4, Jan. 2020.

[107] M. Fellmann, M., Buschor, P., Röthlisberger, S., Zellweger, F. Vogel, M. Fellmann, P. Buschor, S. Röthlisberger, F. Zellweger, and M. Vogel, "High affinity targeting of CD23 inhibits IgE synthesis in human B cells," *Immunity, Inflamm. Dis.*, vol. 3, no. 4, pp. 339–49, 2015.

[108] A. Yokota *et al.*, "Two forms of the low-affinity Fc receptor for IgE differentially mediate endocytosis and phagocytosis: identification of the critical cytoplasmic domains," *Proc. Natl. Acad. Sci. U. S. A.*, vol. 89, no. 11, pp. 5030–5034, 1992.

[109] P. Engeroff, M. Fellmann, D. Yerly, M. F. Bachmann, and M. Vogel, "A novel recycling mechanism of native IgE-antigen complexes in human B cells facilitates transfer of antigen to dendritic cells for antigen presentation," *J. Allergy Clin. Immunol.*, vol. 142, no. 2, pp. 557–568, 2018.

[110] S. N. Karagiannis *et al.*, "Endocytosis and recycling of the complex between CD23 and HLA-DR in human B cells," *Immunology*, vol. 103, no. 3, pp. 319–31, Jul. 2001.

[111] J. A. Mathews, D. R. Gibb, B.-H. Chen, P. Scherle, and D. H. Conrad, "CD23 Sheddase A disintegrin and metalloproteinase 10 (ADAM10) is also required for CD23 sorting into B cell-derived exosomes," *J. Biol. Chem.*, vol. 285, no. 48, pp. 37531–41, Nov. 2010.

[112] G. Weskamp *et al.*, "ADAM10 is a principal 'sheddase' of the low-affinity immunoglobulin E receptor CD23," *Nat. Immunol.*, vol. 7, no. 12, pp. 1293–1298, 2006.

[113] G. A. Lemieux *et al.*, "The low affinity IgE receptor (CD23) is cleaved by the metalloproteinase ADAM10," *J. Biol. Chem.*, vol. 282, no. 20, pp. 14836–14844, May 2007.

[114] C. Saraceno *et al.*, "SAP97-mediated ADAM10 trafficking from Golgi outposts depends on PKC phosphorylation," *Cell Death Dis.*, vol. 5, no. 11, pp. e1547–e1547, 2014.

[115] P. Gutwein *et al.*, "ADAM10-mediated cleavage of L1 adhesion molecule at the cell surface and in released membrane vesicles," *FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol.*, vol. 17, no. 2, pp. 292–294, Feb. 2003.

[116] C. J. Padro, T. M. Shawler, M. G. Gormley, and V. M. Sanders, "Adrenergic regulation of IgE involves modulation of CD23 and ADAM10 expression on exosomes," *J. Immunol.*, vol. 191, no. 11, pp. 5383–97, Dec. 2013.

[117] R. K. Martin, K. B. Brooks, F. Hennigsson, B. Heyman, and D. H. Conrad, "Antigen Transfer from Exosomes to Dendritic Cells as an Explanation for the Immune Enhancement Seen by IgE Immune Complexes," *PLoS One*, vol. 9, no. 10, p. e110609, Oct. 2014.

[118] Z. Ding *et al.*, "IgE-mediated enhancement of CD4+ T cell responses requires antigen presentation by CD8 α -conventional dendritic cells," *Sci. Rep.*, vol. 6, no. February, p. 28290, 2016.