Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 December 2021 d0i:10.20944/preprints202112.0356.v1

Article
An Extensible Computing Platform for Heavy Quantum Simu-

lation Workloads
Andrés Garcia !, José Ranilla 2, Raul Alonso ?and Luis Meijueiro 4

1 CTIC Centro Tecnoloégico, Parque Cientifico Tecnoldgico de Gijon, Ada Byron 39, 33203 Gijon, Spain; an-
dres.garcia@fundacionctic.org

2 Computer Science Department, Escuela Politécnica de Ingenieria de Gijon, Universidad de Oviedo, Pedro
Puig Adam s/n, 33204 Gijon, Spain; ranilla@uniovi.es

3 CTIC Centro Tecnoldgico, Parque Cientifico Tecnoldgico de Gijon, Ada Byron 39, 33203 Gijon, Spain;
raul.alonso@fundacionctic.org

¢ CTIC Centro Tecnologico, Parque Cientifico Tecnoldgico de Gijon, Ada Byron 39, 33203 Gijon, Spain;

luis.meijueiro@fundacionctic.org

Correspondence: luis.mejjueiro@fundacionctic.org

Abstract: The shortage of quantum computers, and their current state of development, constraints
research in many fields that could benefit from quantum computing. Although the work of a quan-
tum computer can be simulated with classical computing, personal computers take so long to run
quantum experiments that they are not very useful for the progress of research. This manuscript
presents an open quantum computing simulation platform that enables quantum computing re-
searchers to have access to high performance simulations. This platform, called QUTE, relies on a
supercomputer powerful enough to simulate general purpose quantum circuits of up to 38 qubits,
and even more under particular simulations. This manuscript describes in-depth the characteristics
of the QUTE platform and the results achieved in certain classical experiments in this field, which
would give readers an accurate idea of the system capabilities.

Keywords: quantum computing; quantum computing framework; quantum simulator; quantum
technology; quantum theory; quantum mechanics; quantum circuit; quantum algorithm; ibm qiskit;
notebooks jupyter

1. Introduction

In recent years, the quantum computing paradigm has become increasingly popular
in the scientific and technological community at large. While a classical computer operates
with binary digits or bits, a quantum computer uses quantum bits, or qubits, which are
subject to the principles of quantum mechanics, such as superposition and entanglement
[1]. These peculiar properties enable quantum computing to provide an alternative way
of approaching computationally hard problems, offering an asymptotic speedup for cer-
tain tasks, including factoring [2] -with dramatic consequences for widely used crypto-
graphic protocols such as RSA- and searching in unstructured databases [3].

One of the main difficulties that arises when trying to exploit the advantages of quan-
tum computing techniques is the limitation of current quantum hardware due to imper-
fections, noise and restricted scalability. Quantum hardware still seems to be a few years
away from being able to solve practical problems faster than traditional computers. In
addition to their current state of development, there is a shortage of quantum computers,
constraining research in many fields that could benefit from quantum computing.

For these reasons, the use of classical simulators of quantum devices is of paramount
importance for implementing, testing and tuning quantum solutions. This manuscript
presents an open quantum computing simulation platform, called QUTE, that allows
quantum computing researchers to have access to high performance simulations.

© 2021 by the author(s). Distributed under a Creative Commons CC BY license.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.20944/preprints202112.0356.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 December 2021 d0i:10.20944/preprints202112.0356.v1

The platform is installed in a supercomputer powerful enough to simulate general
purpose quantum circuits of up to 38 qubits, and even more under particular simulations.
The frontend of QUTE is based on an isolated Jupyter Notebook [4] for each user. This
environment includes the most common Python modules and the latest Qiskit stack [5]. It
means that any existing vanilla Qiskit Python script should run out of the box on the
frontend. In order for the notebook script to take full advantage of the simulator capabil-
ities, a Qiskit compatible API has been developed. Since many researchers can be using
the platform at the same time, a Job Manager receives and enqueues the requests sent via
QCTIC APL The Job manager then makes sure that the experiments are run in the most
efficient fashion to take full advantage of the hardware capabilities of the simulator.

2. Materials and Methods

This section begins with a description of the QUTE architecture, including all the
distinct components that can be identified in the simulation platform, as well as their in-
teractions. The subsequent part entitled Job Lifecycle provides details of the overall lifecy-
cle process every job goes through. Finally, the Experiments subsection presents the ex-
periments that we have conducted in order to test the performance of the QUTE simulator.

2.1. QUTE Architecture

Figure 1 below provides an overview of these components and shows the typical
workflow for experiments in QUTE.

qctic Python package

®0e > https://qute.ctic.es/user/user@example.com/lab HTTP
Frontend Server 71\ Simulator
14 cores / 128 GB Serialized 256 cores / 8 TB / 2x GPU
giskit.qobj.Qobj
° A. P
v/
- Serialized e
qiskit.result.Result
) \[¥ i

v
(] ® < https://qute.ctic.es/services/dashboard

Experiments Results

QUTE Dashboard
circ = QuantumCircuit(2, 2)
circ.h(@)
circ.cx(®, 1) [{'counts': {'@x1': 1024}}]
circ.measure([@, 1], [0, 1]) o
execute(circ, back) Latest jobs status

Recent activity

Figure 1. QUTE Components and workflow.

The backend simulator installed on the QUTE high-performance computing platform
is the component in charge of executing the simulation jobs, serving as the foundation of
the entire system. To that end, the computing platform is equipped with a CPU formed
by 256 Intel® Xeon cores (Intel Corporation, Mountain View, CA, USA), 8TB of RAM
memory, and has also two GPU NVIDIA Tesla V100 cards (NVIDIA Corporation, Santa
Clara, CA, USA) with 16GB of on-board memory each. The simulator leverages the capa-
bilities of the Docker containerisation platform [6] in order to easily create isolated and
ephemeral execution environments for the simulation jobs.

The frontend server is the entry point to the platform for end users. It is based on
JupyterLab, an application that provides extended functionality to interface with Jupyter
notebooks using the browser. Jupyter notebooks, in turn, are a highly relevant tool in the
scientific community that allows for the combination of interactive code, modern visuali-

https://doi.org/10.20944/preprints202112.0356.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 December 2021 d0i:10.20944/preprints202112.0356.v1

sations and documentation in a single view. All QUTE users have their own isolated Ju-

pyterLab instance that is already provisioned with all the necessary requirements to in-

terface with the simulator, including software packages and environment configuration.

Users may run experiments from the frontend server by using the QCTIC package
[7]. QCTIC is a Python package that mirrors the interface of the Aer Qiskit Provider with
the aim of being transparent and familiar to users with previous Qiskit experience. There
are two relevant differences between QCTIC and Aer:

e QCTIC does not contain any simulation logic, that is, all Aer simulation jobs are
passed to the backend simulator component using the QCTIC HTTP API. The main
purpose of QCTIC is to handle communications between the frontend server and the
backend simulator, serialising the relevant objects and abstracting the user from the
low-level details of the communications between these two entities;

e QCTIC contributes to the Qiskit API by introducing a complementary interface based
on the asynchronous I/O programming model of asyncio (a library built into Python
3 that enables developers to write concurrent code using the async/await syntax).
This single-threaded model uses asynchronous coroutines instead of callbacks or
blocking statements and is especially suited for programs with a heavy component
of network requests, as is the case with QCTIC. It is important to note that this is an
optional interface, and the regular blocking Qiskit interface is still available for users
with that preference, which enables them to run previously existing programs with
minor or no modifications.

As mentioned previously, the backend simulator exposes an HTTP API that serves
as the programmatic interface to the Qiskit Aer simulator installed in the high-perfor-
mance computing platform. The API follows the REST architectural model; although not
in a strict fashion (i.e. it does not fulfil the HATEOAS requirement of guiding the client
along with the responses provided). It is fairly simple and consists of two entities:

e A Job represents a single experiment and is composed of a series of timestamps, a
unique job identifier, the current status of the job, a serialised Qiskit Qobj object that
is a self-contained representation of the experiment, and a serialised Qiskit Result
object if the experiment finished successfully, or an error object otherwise. Jobs are
the main unit of information exchanged by the distinct components of the QUTE
platform;

e A BackendStatus instance represents the current state of the backend simulator, in-
cluding the number of jobs that are waiting in the queue to be executed and a flag
indicating if the service is operational.

Finally, the QUTE Dashboard is a web application that is separate from the Ju-
pyterLab service and provides a view of the state of the QUTE service from the point of
view of the user. This includes the latest jobs for which the user is the owner, and high-
level statistics of the usage of the computational resources. Please, see Figure 2 below for
a screenshot of this dashboard.

https://doi.org/10.20944/preprints202112.0356.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 December 2021 d0i:10.20944/preprints202112.0356.v1

Backend status

@ Status OK ¥= Pending jobs O

Backend activity Jobs Execution time

6 -
55 -
5
45 -

Jobs
@

DONE

jeleY-rd
10022
108

Most recent jobs

~ 9cdd274e-bcd9-442f-blcc-29f442ddedod EERE

Submitted 5 minutes ago

Submitted Oct 28, 2021 10:23:37 AM & Copy code to clipboard
Entered queue Oct 28, 2021 10:23:38 AM

Started execution Oct 28, 2021 10:23:46 AM

Figure 2. Example of QUTE Dashboard interface.

2.2. Job Lifecycle

QUTE simulation jobs use the same life cycle model as Qiskit, that is, the possible
statuses of QUTE jobs at any given stage are the same as those defined by the JobStatus
enumeration in Qiskit. Firstly, the user writes the experiment on top of Qiskit using the
QCTIC provider —this provider exposes a proxy backend for each one of the backends
included in Aer. A Job will be initialised for each distinct Qiskit execution (i.e. call to the
execute function).

Then, jobs will be appended to the execution queue in a strict FIFO fashion. It should
be noted that currently there is no parallelism, that is, only one job can be executed at any
given time. The rationale behind this design decision is that one of the main contributions
of the QUTE platform is the ability to run quantum simulation experiments with a number
of qubits that far exceeds the capabilities of a regular workstation, thus, an experiment
needs to be able to utilise the full capabilities of the hardware. Anyway, further optimisa-
tions towards enabling higher levels of parallelism would be possible, especially in the
context of distributing workloads between the GPUs and the CPUs.

Jobs are executed in an isolated environment by leveraging the Docker platform and
the NVIDIA container toolkit, which is a requirement to enable NVIDIA GPU support.
When jobs are created, they first go through an initialisation process (i.e. INITIALIZING
stage) before being enqueued in the job queue and updated to the QUEUED state. Jobs
can then evolve to one of two states: if a job finishes successfully, its serialised Qiskit result
will be persisted in the data store and its status will be updated to DONE,; if a job fails, the
exception will be logged and the status will be updated to ERROR. In both cases, a notifi-
cation will be pushed to the user, which will then have the option to retrieve the job in-
stance using its unique ID for further processing. Please see Figure 3 for a diagram repre-
senting a simplified view of the life cycle of a job.

https://doi.org/10.20944/preprints202112.0356.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 December 2021 d0i:10.20944/preprints202112.0356.v1

Simulator Container

Job Queue .
Qiskit Aer

QUEUED QUEUED QUEUED
RUNNING

[\

Result Exception

INITIALIZING ¥ X

DONE ERROR

QCTIC HTTP API
execute

Frontend Server

N e @
Writes

() experiment
£

Figure 3. QUTE Job Life Cycle.

2.3. Experiments

In this section are presented the settings of the experiments we have conducted in
order to test the performance of the QUTE simulator.

The experiments were designed in such a way as to compare our system to other
online available Qiskit-based simulators, as well as to other high-performance computing
clusters not specifically designed for quantum circuit simulation.

For the experiments, several systems to test against QUTE were selected:

e The first one is the quantum simulator provided as a part of IBM Quantum [8] (IBM
Corporation, Armonk, NY, USA) which supports up to 32 qubits (to the best of our
knowledge, this is the highest number of qubits of any quantum simulator publicly
available online). The details of the simulator hardware architecture are not known,
but it runs Qiskit out-of-the-box;

e As another online, publicly available alternative, we have considered Google Colab
[9] (Google, Mountain View, CA, USA), especially because it allows the use of GPUs,
something not provided by the IBM Quantum simulator;

e In addition, we have used local clusters located at the University of Oviedo Com-
puter Science Department [10]. The first one has 20 cores at 2.2 Ghz and 256 MB of
RAM. The second one has 16 cores at 1.6 Ghz and 1TB of RAM, as well as a NVIDIA
Tesla P100 GPU.

The benchmarks have been run on random quantum circuits of 20 to 38 qubits (or the
maximum number of qubits supported by each simulator) with a number of layers rang-
ing from 10 to 50. The circuits were generated using Qiskit’s function random_circuit (Fig-
ure 4 shows an example of a circuit of 5 qubits and 10 layers generated with that method)
and the same seed was used in all the systems to guarantee a fair comparison. We generate
50 circuits of each size and number of layers (for the highest number of qubits we reduced
this to 10, or even 5 circuits, in order to obtain reasonable execution times) and compute
the average and standard deviation of their running times. Throughout all the experi-
ments, we use Qiskit version 0.25.3.

https://doi.org/10.20944/preprints202112.0356.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 December 2021 d0i:10.20944/preprints202112.0356.v1

—_— Us = Us — Ry —_— U
Go . 013,084,077 264,0719, 161 0857 fr A
P — — Ry

o— .

— Rz __ Us Uy Rx
o -
. r o R @

02 0885 0073 Fi]

— st — Rz Ry Rz ___

s =80 —om 200 r a7
5 4 0 1 2 3

Figure 4. Example of a 5-qubit quantum circuit with 10 layers.

The choice of random circuits for testing the performance of the simulators follows
the common practice of using this type of circuits for benchmarking quantum processors
(see [11,12]). The simulation of random circuits is considered to be computationally hard
[13] and is the base of the famous quantum supremacy experiments [14,15].

Notice, however, that since we are running the experiments on quantum simulators,
we are not interested in computing fidelities [16] (which will be 1, by definition) but only
on studying the way in which the running times scale and compare to each other in the
different systems considered in this paper.

3. Results

In this section, the results obtained after executing the set of experiments are pre-
sented. Finally, we discuss its significance.

Figure 5 below shows the average running time of random circuits of 20 to 38 qubits
with 10 layers. As expected, the scaling of the running time is exponential in the number
of qubits (notice that the vertical axis is in logarithmic scale). The only system that sup-
ported circuits with more than 32 qubits was QUTE, which also consistently showed the
lowest running times from 26 qubits onwards, with only small differences to the best sys-
tem for 20, 22 and 24 qubits.

CPU running times for circuits of 10 layers

== QUTE == |IBMQuantum Google Colab == Local Cluster1 == Local Cluster 2
1000
100
©
[0
£ 10
=
1
0.1
20 25 30 35
Qubits

Figure 5. CPU running times for circuits of 10 layers.

The detailed results for circuits with 10, 20, 30, 40 and 50 layers when run on CPUs
are shown in Table 1. Notice that, again, the average time grows exponentially with the
number of qubits but only linearly with the number of layers. This is consistent with what
is theoretically expected (see [13]).

https://doi.org/10.20944/preprints202112.0356.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 December 2021 d0i:10.20944/preprints202112.0356.v1

Table 1. QUTE results (in seconds) when using CPUs.

10 Layers 20 Layers 30 Layers 40 Layers 50 Layers
Qubits Avg Std Avg Std Avg Std Avg Std Avg Std

20 0.08 0.01 014 0.01 020 0.01 026 0.01 0.32 0.01
22 0.19 0.02 036 0.03 053 0.04 070 0.04 0.87 0.05
24 0.68 0.07 1.29 0.10 1.89 0.14 251 0.15 3.12 0.16
26 1.16 0.07 2.03 0.11 283 012 359 025 4.54 0.21
28 4.61 0.25 811 045 11.78 1.06 1530 1.07 18.86 1.51
30 21.94 1.20 3942 144 54.71 1.91 7119 2.67 89.41 3.65
32 91.91 6.03 163.67 6.22 23221 898 307.14 10.02 378.17 14.47
34 384.32 33.72 678.66 30.82 962.07 44.51 126094 59.49 1553.28 56.41
36 1579.48 110.88 267439 41.10 3915.18 139.16

38 6151.70 407.82 11080.19 452.63 16184.75 201.01

Figure 6 presents the average running times of random circuits when using GPUs for
the simulation. Two of the systems (IBM Quantum and Local Cluster 1) do not have GPUs
and, consequently, were not considered for this set of experiments. On the other hand,
Google Colab (randomly) assigns different GPUs when the user starts a session, so we
present the results with two NVIDIA GPU models: the Tesla T4 and the Tesla K80.

Notice that these average running times (again, shown in logarithmic scale) are lower
than those obtained when using CPUs, but the limited amount of RAM available on these
devices prevents us from running circuits with more than 28 qubits. QUTE shows, again,
the lowest running times across all the systems under study.

GPU running times for circuits of 10 layers

== QUTE == Local Cluster2 Google Colab (Tesla T4) == Google Colab (Tesla K80)

5.00

1.00
0.50

Time (s)

0.10
0.05

20 22 24 26 28

Qubits

Figure 6. GPU running times for circuits of 10 layers.

Table 2 shows the detailed results of the experiments on GPUs. The trend is similar
to the one found when using CPUs: exponential growth with the number of qubits and
linear increase in time with the number of layers.

https://doi.org/10.20944/preprints202112.0356.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 December 2021 d0i:10.20944/preprints202112.0356.v1

Notice that not only are the average times much lower than in the CPU case (when-
ever it is possible to run the circuit in the GPU), but also the standard deviations are much
smaller.

Table 2. QUTE results (in seconds) when using GPUs.

10 Layers 20 Layers 30 Layers 40 Layers 50 Layers
Qubits Avg Std Avg Std Avg Std Avg Std Avg Std
20 0.01 0.00 0.02 0.00 0.02 0.00 0.02 0.00 0.03 0.00
22 0.02 0.00 0.03 0.00 0.04 0.00 0.05 0.00 0.06 0.00
24 0.05 0.00 0.09 0.00 012 0.00 0.16 0.00 0.20 0.00
26 0.17 0.01 033 0.01 0.48 0.01 0.64 0.01 0.80 0.02
28 0.71 0.03 1.37 0.04 2.04 005 270 0.06 3.36 0.07

For circuits of up to 28 qubits, where using GPUs is the fastest method, QUTE clearly
outperforms all the other systems. For 30 and 32 qubits, when using CPUs, QUTE is again
the fastest system (in fact, it is the fastest from 26 qubits, and for smaller circuits the dif-
ferences are negligible). Moreover, we were only able to simulate circuits with 34 or more
qubits by using QUTE, so it is the system of choice for the biggest circuits among those
considered in these experiments.

The performance of the system scales as expected when increasing the number of
qubits (roughly a factor of 2 when a new qubit is added) and when increasing the number
of layers (with a linear increment in time when adding new layers).

4. Conclusions

QUTE shows the best overall performance among the systems under study through-
out all the experiments we have run. It is also worth mentioning that QUTE seems to be
the most stable of all the systems, with a standard deviation that is, in general, smaller
than that obtained with the other simulators.

The successful development of the QUTE platform showed that there was still room
for improvement in the performance of classic systems used for quantum computing sim-
ulation. A thoughtful design of the architecture and the optimisation of its components
expand the real possibilities of using quantum computing simulators among the scientific
community.

Furthermore, the architecture of the platform opens the possibility to future exten-
sions for other quantum computing frameworks (e.g. ProjectQ [17]) while reusing a sig-
nificant portion of the basic building blocks.

In our view, the adoption of QUTE platform could be very beneficial for researchers,
as it provides the following advantages:

e Makes it possible to run quantum simulation experiments with high-qubit-count cir-
cuits, far exceeding the quantum simulation capabilities of high-end desktop com-
puters, and even other current cloud-based simulation platforms;

e It gives the user a secure and private working environment, with the necessary tools
to design from scratch or import their quantum experiments, as well as monitoring
their execution;

e The modular design of the system allows for multiple configurations that facilitate
the extension and optimisation of the system according to the current and future
needs of the research community who use the platform.

Finally, we would like to remark that when these lines are written the use of QUTE
platform is spreading among the scientific community, and the first results that make use
of this platform are being published [18].

https://doi.org/10.20944/preprints202112.0356.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 December 2021 d0i:10.20944/preprints202112.0356.v1

Author Contributions: Conceptualisation, A.G.,].R., R.A.; methodology J.R.; hardware and soft-
ware, A.G., R.A,; writing, A.G.,].R.,, L.M,; supervision, L.M. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The authors confirm that the data is contained within the article or
supplementary material.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Nielsen, M. A, & Chuang, L. (2002). Quantum computation and quantum information. American Journal of Physics 70,
558-559 (2002) https://doi.org/10.1119/1.1463744

2. P.W. Shor. Algorithms for quantum computation: discrete logarithms and factoring. Proc. 35th Annual Symposium on
Foundations of Computer Science, 1994. https://doi.org/10.1109/SFCS.1994.365700

3. L.K. Grover. A fast quantum mechanical algorithm for database search. https://doi.org/10.1145/237814.237866

4. Project Jupyter. Available online: https://jupyter.org (accessed on 25 October 2021)

5. Qiskit open source SDK. Available online: https://qiskit.org URL (accessed on 25 October 2021)

6. Docker. Available online: https://www.docker.com (accessed on 25 October 2021)

7. QCTIC Qiskit Provider. Available online: https://pypi.org/project/qctic/ (accessed on 25 October 2021)

8. IBM Quantum. Available online: https://quantum-computing.ibm.com (accessed on 25 October 2021)

9. Google Colab. Available online: https://colab.research.google.com (accessed on 25 October 2021)

10. University of Oviedo - Computer Sciences Available online: https://www.uniovi.es/en/departamentos/di (accessed on 25
October 2021)

11. LiuY, Otten M, Bassirianjahromi R, Jiang L, Fefferman B. Benchmarking near-term quantum computers via random cir-
cuit sampling. arXiv preprint arXiv:2105.05232. 2021

12. Wootton JR. Benchmarking of quantum processors with random circuits. arXiv preprint arXiv:1806.02736. 2018

13. Boixo S, Isakov SV, Smelyanskiy VN, Babbush R, Ding N, Jiang Z, Bremner MJ, Martinis JM, Neven H. Characterizing
quantum supremacy in near-term devices. Nature Physics. 2018 Jun;14(6):595-600.

14. AruteF, Arya K, Babbush R, Bacon D, Bardin JC, Barends R, Biswas R, Boixo S, Brandao FG, Buell DA, Burkett B. Quan-
tum supremacy using a programmable superconducting processor. Nature. 2019 Oct;574(7779):505-10.

15. WuY, Bao WS, Cao S, Chen F, Chen MC, Chen X, Chung TH, Deng H, Du Y, Fan D, Gong M. Strong quantum computa-
tional advantage using a superconducting quantum processor. arXiv preprint arXiv:2106.14734. 2021

16. Wilde, Mark M. Quantum information theory. Cambridge University Press, 2013.
https://doi.org/10.1017/CBO9781139525343

17. ProjectQ, an open-source software framework for quantum computing. Available online: https://projectq.ch/ (accessed on
25 October 2021)

18. Selomit R., Andrés E. R., German R., German S., Luiz V. Quantum algorithm for Feynman loop integrals.

arXiv:2105.08703 2021

https://doi.org/10.20944/preprints202112.0356.v1

