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MicroRNA-202 induces myoblast to myocyte differentiation through 

targeting Rock-1 

 

 

Abstract  

 

The expression patterns of microRNAs (small non-coding RNAs) are altered in many biological 

processes such as myogenesis. In this study, we aimed to investigate the impact of predicted 

miR-202, its target genes Akt2 and Rock-1 as a potential regulators of myoblast in myocyte 

differentiation process using C2C12 cell line. After confirmation of the differentiation process 

induced by 3% horse serum, the expression level of miRNA and its targets were evaluated. In the 

following, luciferase assay was conducted to approve the effect of miRNA on its target. Our 

results indicated that miR-202 and Akt2 were significantly up-regulated during differentiation, 

while Rock-1 was downregulated. Co-transfection of miRNA with psiCHECK2-Rock-1 

significantly presented that Rock-1 was directly targeted by miR-202. On the contrary, miR-202 

has failed to enforce its inhibitory effect on Akt2 expression. In particular, miR-202 seems to be 

a regulator of muscle differentiation pathway thought targeting Rock-1. 
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1. Introduction 

Myogenesis is a specific multi-step differentiation process that is performed in embryonic and 

postnatal stages. This process is regulated by a multitude of external and internal markers which 

activated particular proteins including MyoD and Myf5 and controlled by a diverse group of 

signaling pathways such as PI3K/AKT and Rho family G proteins pathways [1-3]. 

The PI3K/AKT signaling pathway is an essential couple of differentiation process which is 

regulated by IGFs and controls muscle development. Previous data suggest that AKT2 as a down 

steam component of PI3K cascade plays a vital role in myogenic differentiation [4].  AKT2 

motivates MyoD transactivation and consequently increases myogenin transcription [5, 6] or 

inhibits apoptosis during the differentiation process [5-8].   

The Rho family G proteins pathway is the other functional pathway in myogenesis [8, 9]. It has 

been reported that Rho-associated kinase 1(ROCK-1), as a downstream effector of Rho GTPases, 

has a negative regulatory effect on muscle development [10]. Recently, it has been shown that 

ROCK inhibition allows myoblast fusion, therefore, accelerates myogenesis [8, 10, 11].   

Complicated controlling mechanisms of mentioned signaling pathways are applied by various 

factors during muscle development. Seeking to discover the regulatory effects of noncoding 

RNAs, investigators are interested in discovering microRNAs and their function in myogenesis 

[12]. 

MicroRNAs are small, conserved noncoding RNAs with 18-22 nucleotides [13] which are 

known as a new class of gene regulatory factors. They bind to the 3’untranslated region (UTR) 

of targeted mRNA [14, 15]. As a result of complementary binding, translation of their relevant 

protein is inhibited. Accordingly, multiple molecular and cellular mechanisms have been 

reported to be under influence of miRNAs and their aberrant expression could be a major reason 

for cellular dysfunctions [16, 17]. Lately, researchers have determined some of the particular 

miRNAs as an inhibitory factor of differentiation and some others as an activator. However, 

several studies are required to find out about the function of miRNAs in myogenesis. This study 

aims to investigate the impact of microRNA-202 as a regulator of Akt2 and ROCK in 

myogenesis.  
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2. Materials and Methods 

2.1 Bioinformatics analysis 

We used three major algorithms, Target Scan 6.2 [18], miRWalk [19], and RNAhybrid [20] to 

determine the specific targets of miR-202. Selected targets pick out from those sample targets 

which had the top score in at least two prediction lists. 

2.2 Cell culture 

C2C12 cells were grown in growth medium (GM; Dulbecco’s Modified Eagle Medium and 10% 

fetal bovine serum (Gibco, UK)) and when they reach 90% confluency, GM medium was 

replaced with differentiation medium (DM; Dulbecco’s Modified Eagle Medium containing 3% 

horse serum (Gibco, UK)). The differentiation procedure was continued for 72 hours. Similarly, 

our control cells were cultured just in GM for 72 hours. It is notable to mention that all types of 

cell cultures were repeated at least three times. 

2.3 Immunocytochemistry (ICC) 

After the C2C12 differentiation (72 hours), Immunocytochemical detection of specific markers 

was performed by using anti-Pax7 or anti-myosin antibody (Sigma, USA) as previously 

described (data not shown). 

2.4 RNA isolation and quantitative real-time PCR 

RNA extraction was performed using TRIzol reagent (Invitrogen, USA) and cDNA was 

synthesized according to reverse transcription kit (Fermentas, USA) using random hexamer for 

genes and stem-loop primer for miRNAs. Quantitative real-time polymerase chain reaction 

(PCR) was applied as previously described  [21, 22]. Β-actin and Snord 47(U47) were selected as 

the internal control for the targeted gene and miRNA, respectively. The method to clarify gene 

expression level was the 2−ΔΔCt.  

2.5 Comparison of real-time PCR result by a high-throughput method data 

GEO, accession #GSE4694 row data was download from NCBI databank  [23]  and analyzed to 

compare with our real-time PCR results.  
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2.6 Luciferase assay 

The 3`UTR sequence of Rock-1 was cloned into psiCHECK-2 luciferase reporter plasmid. After 

seeding 20× 104 293T cells in 96-well plates, psi-CHECK-Rock-1 and PCDH-miR-202 were co-

transfected using lipofectamine 3000 methods, and Luciferase activity was estimated after 48 

hours using Dual-Luciferase Reporter Assay System (Promega). Renilla luciferase signal was 

standardized to the Firefly luciferase signal activity to control transfection effectiveness. 

2.7 Statistical analysis 

The data are presented as mean ± standard error.  REST analysis and Student’s t-test were 

applied to determine statistical significance and the criterion for significance was set at P<0.05. 

3. Results 

3.1 Bioinformatics analysis 

According to the results of bioinformatics prediction, we selected miR-202 and its targets, Akt2 

and Rock-1 for this study, which in our prediction methods had the best miRNA-mRNA 

interaction (Table 1). 
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Table 1. Characteristics of miR-202 and its predicted targets 

 

 

3.2 Gene expression level 

Quantitative real-time PCR (q-RT PCR) was applied to evaluate miR-202, Akt, and Rock-1 

expression levels in differentiated (myocyte) vs undifferentiated (myoblast) cell lines. As miR-

202 increased in myocytes (Figure 1a), Roke-1 was down-regulated, while Akt2 expression 

level was ascended (Figure 1b). Although bioinformatics described Akt2 as the target of miR-

202, its increase could be due to other molecular pathways that have helped differentiate muscles 

[24, 25].   

 

 

Figure 1: Expression pattern of miR-202 (1a) and its target genes during myoblast differentiation (1b). 

Based on qRT-PCR results, while Rock-1 was down-regulated (1b), Akt2 was up-regulated during the 

differentiation process (P-value≤0.05). Error bars indicate SEM (n=3) (P< 0.05).  

Gene Name Predicted base pair site Position site/Number of paired bases 

Rock-1  

hsa-miR-202 

5'- CAUAGGAA-3' 

3'- GUAUCCUU-5' 

1213-1220/8mer 

   

Akt2 

hsa-miR-202 

5'- UACCUCA-3' 

3'- AUGGAG-5' 

2617-2623/7mer 
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3.3 Comparison of real-time PCR result by a high-throughput method data 

Validation of our q-RT PCR results was achieved by micro-array analysis results. Both analyses 

were tracing the same way in gene`s up/down-regulation (Figure 2).  

 

Figure 2. Comparison of the expression levels of predicted targets during myogenesis based on qRT-PCR 

and microarray analysis. The data were consistent between the two methods. 

3.4 Luciferase assay 

Based on our bioinformatics results, we hypothesized that miR-202 may have a positive effect on 

muscle differentiation through ROCK-1 down-regulation. For evaluating the hypothesis, we 

constructed a Luciferase reporter vector that carries Rock-1 3`UTRs downstream of luciferase 

stop codon psiCheck2. The results have been shown that co-transfection of miR-202 with 

psiCheck2-ROCK-1, significantly down-regulated luciferase expression (approximately 40%). 

The result confirmed that ROCK-1 was directly targeted by miR-202 (Figure 3).  
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Figure 3. miR-202 has complementary sequences in Rock-1 -3`UTRs and targets it. Co-transfection of 

miRNA with psiCheck2-target significantly down-regulated luciferase expression. Error bars indicate 

SEM (n=3). (P< 0.05). 

 

4. Discussion  

MicroRNAs are small biomolecules regulating different cellular and molecular pathways 

including muscle cell differentiation [26]. Several studies claim that miRNAs have a vital role in 

muscle differentiation [1]. Thus we have selected miR-202 as a novel predicted regulator of 

PI3K/AKT and Rho G proteins signaling components, Ak2 and ROCK-1, and evaluated the 

expression level of these molecules before and after myoblast to myocyte differentiation.  

According to our survey, miR-202 had an increased level during muscle development. 

Interestingly, ROCK-1 has shown a reduced level, while Akt2 had an opposite expression 

pattern. To confirm the real-time results, using an Affymetrix cDNA microarray dataset of GEO 

accession #GSE4694, we compared the fold change of Akt2 and ROCK-1 in undifferentiated and 

differentiated C2C12 line. Data analysis revealed that the expression pattern of ROCK-1 and 

Akt2 were the same in both methods (P-value≤0.05), however, the fold change of ROCK-1 was 

shown to be more decreased in microarray analysis comparison with qRT-PCR analysis (Figure 

2).  

 Furthermore, the result of our luciferase assay confirmed that ROCK-1 is directly inhibited 

through miR-202 induction (Figure 3). Recently, it has been shown that preventing ROCK-1 by 

its inhibitor, increased the phosphorylation level of IRS1/2 tyrosine and consequently activated 

myogenesis through PI3K activation, a major differentiation pathway in myogenesis [27, 28].   
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Other studies proved that ROCK-1 is the final inhibitor for differentiating myoblasts to myocyte 

which report distinguished the association between ROCK-1 and mTOR signaling pathway in 

suppressing the muscle-cell differentiating process [29, 30].  

Moreover, it has been claimed that evaluating miRNAs could be a useful marker in various steps 

of the myocyte differentiation pathway  [22]. As a result of this, some researchers have reported 

the utilization of micro RNAs as an inducer of transforming myoblasts to myocytes such as miR-

148a. Zhang et al stated that miR-148a is up-regulated during the differentiation process. They 

have explained this overexpression due to inhibiting ROCK-1 in protein levels [29]. Hence, 

based on our results, it seems that miR-202 may be an effective regulator of myogenesis through 

direct suppression of ROCK- 1 and following indirect activation of PI3K signaling (Figure 4).  

 

Figure 4. miR-202/ Rock-1/ PI3K relationship in the muscle differentiation process  

However, our data has revealed that the other target of miR-202, Akt2, is deregulated during the 

differentiation process and it seems that miR-202 has failed to enforce its inhibitory effect on 

Akt2 expression. Although our bioinformatics prediction showed targeting of Akt2 mRNA by 

miR-202, the unexpected result is also justifiable. 

As mentioned before, several studies have confirmed the positive role of PI3K signaling in 

myoblast differentiation, and the downstream genes of this pathway such as Akt2 were surveyed 

in various studies to differentiate their functions [31-33]. Recent studies have defined the specific 

expression of Akt2 in insulin-responsive tissues specifically skeletal muscle which creates the 

role of Akt2 in the muscle-cell differentiation process [34]. Furthermore, other published data 

has firmed the increased level of Akt2 in 10T1/2-MyoD cells, C2C12 myoblast, and Sol8 
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myoblast, respectively [35-37]. Additionally, Sumitani et al reported Akt2 function due to its 

serine/threonine kinase activity stimulating myogenin [6, 38]. It is also notable that Akt2 could 

induce IGF-II which is an activator for differentiating myoblasts to myotubes [39]. Moreover, 

Rotwein et al results have confirmed that inhibition of Akt2 in myoblasts causes myotube cells 

with the incomplete size of nuclei and the content of them [40]. Furthermore, Vandromme et al 

have suppressed the myogenesis process using Akt2 antibody [41].  

Therefore, Akt-2 is a fundamental part of myogenesis and the cellular configuration is such that 

the expression of this gene increases [42]. Subsequently, do not mind if our examined 

microRNA could not  inhibit Akt2 expression, while in other processes  or cell types, it may be 

down-regulated by mentioned miRNA. 

Since elucidating the molecular settings of cellular signaling helps to better understanding 

myogenesis, non-coding RNA such as miRNA could be a useful marker to identify the 

controlling mechanisms of muscle differentiation [43-45].  

Our results may determine that Rock-1 inhibition through miR-202 could be one of the capable 

procedures involving in myogenesis. Accordingly, down-regulation of miR-202 expression may 

be considered as an aspect of producing induced pluripotent stem cells (iPSCs) from myocytes 

which have therapeutic advantages. 

5. Conclusion 

In this study, we demonstrated that miR-202 is up-regulated during the differentiation process 

which is responsible for ROCK-1 down-regulation. However, there should be multiple 

examinations due to confirmation of miR-202 function. Likewise, this study along with other 

researches could introduce the function and application of miRNAs in muscle development. 

Incorporation of several aspects via miRNAs’ role in signaling pathways and possible treatments 

should be future study approaches.    
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