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Abstract: In the past two decades, metaheuristic optimization algorithms (MOAs) have been1

increasingly popular, particularly in logistic, science, and engineering problems. The fundamental2

characteristics of such algorithms are that they are dependent on a parameter or a strategy.3

Some online and offline strategies are employed in order to obtain optimal configurations of4

the algorithms. Adaptive operator selection is one of them, and it determines whether or not5

to update a strategy from the strategy pool during the search process. In the filed of machine6

learning, Reinforcement Learning (RL) refers to goal-oriented algorithms, which learn from the7

environment how to achieve a goal. On MOAs, reinforcement learning has been utilised to control8

the operator selection process. Existing research, however, fails to show that learned information9

may be transferred from one problem-solving procedure to another. The primary goal of the10

proposed research is to determine the impact of transfer learning on RL and MOAs. As a test11

problem, a set union knapsack problem with 30 separate benchmark problem instances is used.12

The results are statistically compared in depth. The learning process, according to the findings,13

improved the convergence speed while significantly reducing the CPU time.14

Keywords: Transfer learning; Reinforcement learning; Adaptive operator selection; Artificial bee15

colony16

1. Introduction17

Adaptive operator selection has been playing a crucial role in heuristic optimisation,18

especially in population-based metaheuristic approaches including swarm intelligence19

algorithms. Since the early 1990s, the concept of Adaptive Operator Selection (AOS) and20

the methods developed for it have been widely known [1,2]. Most recently, AOS has21

been used with artificial bee colony (ABC) algorithms for the first time [3]. The study22

has been extended further with a dynamically built selection scheme with reinforcement23

learning to solve binary and combinatorial optimisation problems [4]. The problem of24

operator selection becomes a sequencing problem in the sense that additional operators25

are added one after the other to make it easier to move solutions to more fruitful regions26

of the search space. Due to the randomness effect and the unknown nature of the27

search space, previously devised schemes may not provide the best or even a better28

option to respond to the current state of the problem. However, stochastic and dynamic29

programming-based approaches sound to work better. The success of an optimisation30

algorithm using a sequence of operators handled with stochastic processes can be seen as31

a Markovien Decision Process due to its nature. As a typical stochastic process and using32

gained experience, Q learning can help in selecting the best operator among several33

in a given search space under specific conditions. Many complex and difficult real-34

world problems, especially combinatorial ones, are thought to be easier to solve once35

the circumstances are effectively mapped to the best operators using experiences. The36

machine learning literature is filled with good examples and state of the art techniques37

for mapping problem states to the expected outcomes. However, since this has been38

done within the boundaries of a single problem domain, significant changes in data39

and domain will necessitate duplication of the same process. Recent machine learning40

studies suggest that learning how to handle case can be transferred across domains and a41
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certain level of success can be achieved using deep learning [5]. This article proposes42

a reinforcement learning-based transfer learning approach to aid search algorithms43

with adaptive operator selection schemes while transferring gained experience from44

one case/run/benchmark to another. Although it is widely acknowledged that deep45

learning approaches facilitate the use of pre-trained tools in solving new problems,46

shallow learning processes, particularly the use of building adaptive operator selection47

schemes within a dynamic and extremely unknown environment, such as metaheuristic48

search processes for problem solving, are less well understood. This is the first attempt,49

to the best of the authors’ knowledge, to apply transfer learning in building adaptive50

operator selection processes designed with reinforcement learning and implemented in51

swarm intelligence algorithms, such as the artificial bee colony algorithm.52

The rest of the paper is organised as follows: Section 2 introduces the approaches on53

which the proposed method developed on, while Section 3 details the proposed transfer54

learning approach. Extensive experimental results are provided in Section 4 and the55

article is concluded in Section 5.56

2. Background and Related Work57

This study brings a number of techniques together for devising an adaptive search58

process embedded in a swarm intelligence algorithm and enhanced with reinforcement59

learning. To keep the article self-contained, this section discusses briefly the necessary60

background followed by a review relevant to the proposed work.61

2.1. Artificial Bee Colony Algorithm62

The outmost optimisation framework used in this study is a swarm intelligence63

algorithm, which is the artificial bee colony algorithm (ABC). It is a population-based64

metaheuristic and evolutionary technique developed inspiring of the foraging behavior65

of honey bees when seeking a quality food source [6]. There is a population of food66

positions in the ABC algorithm, and the artificial bees modify these food positions over67

time. In order to find the optimal solution, the algorithm employs a group of agents68

known as honeybees. It is one of the efficient nature-inspired optimization algorithms for69

solving continuous problems. Other swarm intelligence algorithms include ant colony70

optimisation (ACO) [7], which has been successfully used to solve discrete problems,71

and particle swarm optimisation (PSO) [8], a population-based stochastic optimization72

algorithm that has been successfully used to solve continuous problems. In this study,73

we will focus on using the ABC algorithm, which is widely used in various industries to74

solve a variety of problems, including combinatorial and binary problems. For the sake75

of brevity, further literature details have not been considered because the major goal of76

the proposed research is to emphasise building adaptive operator selection using one of77

the state-of-the-art machine learning techniques and investigate if transfer learning can78

be achieved in this respect.79

2.2. Reinforcement Learning80

Reinforcement Learning (RL) is a type of machine learning technique for solving81

sequential decision-making problems. In this technique, a learning agent interacts with82

the environment to improve its performance through trial and error [9]. Like any other83

learning techniques, it is all about mapping situations to behaviours in order to optimise84

some rewards. However, unlike other machine learning techniques, the main challenge85

in RL is that the learning agent has to discover by itself the best action to take in a given86

situation. That is, in RL the agent learns by itself without the intervention of a human.87

Dynamic programming is often used in this technique to find the optimum strategy to88

maximise reward in a given situation. The following are some key terms that describe89

the fundamental parts of an RL problem: Environment (E) — the physical world in90

which the agent acts, States (S) — the situations of the agent (what is the agent’s current91

situation in a given state?), Actions (A) - the set of actions available to the agent, Reward92
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(R : S× A 7→ R) — the feedback from the environment (good or bad), Policy (Π) — a93

strategy to map agent’s state to actions (it is a strategy that an agent uses in pursuit of94

goals), and Value (V) — the future reward that an agent will receive by taking an action95

in a particular state. The RL techniques can be implemented using various approaches,96

including Q-learning [9]. In this approach the agent learns an optimal policy based on97

previous experience in the form of sample sequences of states, actions, and rewards.98

Therefore, each learning step consists of a state-transition tuple (si, ai, ri+1, si+1), where99

si ∈ S is the current state of the agent, ai ∈ A denotes the chosen action in the current100

state, ri+1 ∈ R specifies the immediate reward received after transitioning from the101

current state to the next state, and si+1 ∈ S represents the next state.102

There are different ways we can formulate any problem in RL mathematically, one103

of them is Markov Decision Process (MDP). In many applications, it is assumed that the104

agent is unaware of anything in the environment. In some other applications, however,105

it can be assumed that not everything in the environment is unknown to the agent; for106

example, reward calculation is considered to be part of the environment even though107

the agent has some knowledge of how its reward is calculated as a function of its actions108

and states. An MDP can be represented as a tuple (S, A, T, γ, R), where S, A and R are109

defined above, γ ∈ [0, 1] is called the discount factor, and T : S × A × S 7→ [0, 1] is110

called the probabilistic transition relation such that for a given state s and an action a,111

∑s′∈S T(s, a, s′) = 1. The system being modelled is Markovian if the result of an action112

does not depend on the previous actions and visited states (history), but only depends113

on the current state, i.e., P(st+1 | st, at, st−1, at−1, . . .) = P(st+1 | st, at) = T(st, at, st+1).114

This implies that the current state s gives enough information to the agent to make an115

optimal decision. That is, if the agent selects an action a, the probability distribution116

over next states is the same as the last time the agent tried this action in the same state.117

Once an MDP is defined, we can define policies, optimality criteria and value functions118

to compute optimal policies. Solving a given MDP means computing an optimal policy.119

More detailed discussion on this can be found elsewhere [10]. The RL techniques have120

been successfully used to train robotic and/or software agents for a variety of purposes,121

including games, in a variety of situations ranging from simple to complex problems [11].122

In particular, Deep RL has recently been developed and made available for dealing with123

and solving complex, dynamic, online, and real-time problems. As part of the heuristic124

optimisation outlined below, RL approaches can also be employed in operator selection.125

It would be easier to develop more conscious adaptive selection methods that take inputs126

into account while selecting operators and awarding the outcomes of each operation.127

2.3. Adaptive operator Selection128

Many NP-hard problems can be solved using evolutionary search techniques [12].129

These are mostly stochastic optimization algorithms that have already demonstrated130

their effectiveness in a variety of application domains. This is largely due to the parame-131

ters that the user can define based on the problem at hand. However, such algorithms are132

very sensitive to the definition of these parameters. There are no standard principles for133

an effective setting, so researchers from other domains rarely use those algorithms. One134

of the features that search algorithms with multiple alternative operators require is oper-135

ator selection. In this paper we focus on Adaptive Operator Selection (AOS) [1]. Since its136

introduction in 90s, many AOS approaches have been proposed in the literature, varying137

widely in various aspects such as the amount of knowledge to use from the algorithm’s138

previous performance, and whether or not it’s a good idea to use previous quality in139

the learning process. In practice, Credit Assignment (CA) and Operator Selection (OS)140

are the two components that are used during the operator selection process [13,14]. A141

definition based on fitness achievement over a solution is used in the CA component.142

OS, on the other hand, uses CA’s captured knowledge to determine the quality of each143

operator before estimating its likelihood. Finally, based on the probability assigned to144

each operator, a selection strategy is used to choose an operator for evolving a parent. All145
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the parents in an episode are evolved using the same selection strategy. As the algorithm146

learns more about the landscape, it moves the solutions in a specific search direction147

after a number of episodes.148

2.4. Transfer Learning149

Transfer in reinforcement learning is a new field of study that focuses on developing150

strategies for transferring knowledge from a set of source tasks to a target task. When151

the tasks are similar, a learning algorithm can use the transferred knowledge to solve152

the target task and enhance performance significantly [15]. So far, traditional machine153

learning and deep learning algorithms have been intended to work in isolation. These154

algorithms have been designed to solve specific problems. Once the feature-space155

distribution changes, the models must be rebuilt from the scratch. Transfer learning156

techniques have been proposed to overcome the isolated learning paradigm, allowing157

acquired trained knowledge learnt for one problem to be used to address other related158

problems. The following three critical questions must be addressed during the transfer159

learning process: What needs to be transferred, when should it be transferred, and160

how should it be transferred? Depending on the domain, problem at hand, and data161

availability, various transfer learning techniques could be used [16]. This is crucial162

because one of the most difficult aspects of transfer learning for an RL agent running in163

a target problem is figuring out which elements of the target and source problems are164

the same and which parts are different. The majority of transfer learning research has165

been focused on general classical RL problems; however, the purpose of the proposed166

study will be on how to acquire transferable experience in operator selection through167

reinforcement learning.168

2.5. Related Work169

The performance of evolutionary algorithms, like that of the other meta-heuristics,170

is frequently linked to proper design decisions, such as crossover operator selection and171

other factors. The selection of variation operators that are efficient to solve the problem172

at hand is one of the parameters that has the significant impact on the performance of173

such algorithms. The control of these operators can be handled at both the structural and174

behavioural levels when solving the problem. At the behavioural level, adaptive operator175

selection refers to the process of deciding which of the available operators should be176

used at any given time. The adaptive operator selection technique is widely used to177

enhance the search power in many evolutionary algorithms, including in Multi-objective178

Evolutionary Algorithm [14]. In [14], the authors have proposed a bandit-based AOS179

method for selecting appropriate operators in an online manner. Their work proposes180

fitness-rate-rank, a credit assignment that updates the attributes using ranking rather181

than raw fitness progress.182

The decomposition is well-known in traditional multi-objective optimization and183

the technique is used by [17]. The authors of [18] proposed the so-called multi-objective184

evolutionary algorithm with decomposition in 2007, the first time the decomposition185

technique was used in multi-objective optimization. Despite the fact that these research186

have shown significant results, no state-of-the-art studies have taken into account sit-187

uational information such as problem state. For example, while selecting an operator188

to develop new solutions, none of the above discussed approaches took into account189

the problem state and/or the history of past acts. In a slightly different direction, a190

few research in single-objective continuous optimisation have addressed the algorithm191

selection problem in an automated method. In [19], the authors proposed an initial192

approach to combine exploratory landscape analysis (ELA) and algorithm selection,193

concentrating on the BBOB test suite [20].194

The work presented by [21] selects operators using fitness landscape and perfor-195

mance indicators without a structured learning process. The majority of AOS research196

in the literature is based on traditional dynamic programming approaches. There has197
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never been a detailed investigation of a technique that uses reinforcement learning (RL)198

to consider the problem state, i.e. input data, when selecting operators. In [22], au-199

thors present a Markov Decision Process model for selecting crossover operators during200

the evolutionary search. A Q-learning method is used to solve the given model. On201

the benchmark instances of Quadratic Assignment Problem, they have experimentally202

validated the efficacy of the proposed strategy. The work, however, lacks a detailed203

presentation, as well as analysis and discussion. In a more recent work [4], the authors204

proposed an adaptive operator selection approach based on reinforcement learning. In205

their proposed method, the problem states are mapped to operators based on the success206

level per operation. Although these proposed techniques advance the state-of-the art207

on AOP based on RL, however, these are generally centred within the boundaries of208

one problems domain, and if major changes in data and domain occur, the same process209

must be replicated. As a result, new approaches for transferring learnt information210

from one problem-solving procedure to another are required. The proposed research211

addressed this problem by presenting a technique to determine the effect of transfer212

learning using RL and Metaheuristic optimization algorithms, with Adaptive Operator213

Selection method being used to choose between different available operators.214

3. Proposed Approach for transfer learning with RL215

It is well known that the transferability of knowledge and gained experience on216

how to solve problems optimally is quite limited. This is due to the uniqueness of217

the search spaces and the characteristics of the problem domain and data. However,218

transfer learning in deep learning context has facilitated better performance, which can219

be investigated to see whether any particular level can be achieved. Given that the220

problem data and set of parameters make each problem unique and distinct, making221

it difficult to apply gained experience from one problem to another. The aim of this222

research is to investigate how to achieve some degree of transferability. In this context, it223

is envisaged that knowledge and experience gained through prior searches be carried224

out into three levels: (i) transferring experience across the runs of the same problem225

subject to different circumstances, but with the same configuration and settings; (ii)226

different problems with the same size and context; and (iii) different problems of various227

sizes and contexts.228

The proposed research investigates if experience could be transferred between runs229

of the same problem.230

Figure 1. Reinforcement learning-based adaptive operator selection scheme

In this case, the idea of transferring learning and experience is implemented using231

reinforcement learning. This is achieved using a dynamic and online learning strategy232

to facilitate with utilisation of the gained experience in different circumstances. More233
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specifically, this is achieved with dynamically operator sequencing in an optimal way.234

This is because, at the end of a problem-solving process, a sequence of operators is235

produced, which is generated using a set of criteria such as operator selection schemes.236

As depicted in Figure 1, a swarm intelligence algorithm (ABC works here) takes the role237

of search framework while operators are selected from a pool subject to preferred AOS238

scheme. A reinforcement learning algorithm (Q learning embedded with a distance-239

based clustering algorithm preferred here) is placed in the search framework to work240

alongside the search to learn how best the operators can work subject to given circum-241

stances. The RL algorithm continuously monitors the operator selection and the search242

processes to gain experience and process it accordingly to support the online operator243

selection scheme. The search algorithm selects an operator from the pool applying the244

rule of selection scheme ( here is the best Q value calculated is the rule used). Once an245

operator is selected, it helps to produce a new solution that is evaluated whether to take246

it on board for the next generation or not. Depending on the success attained by the247

selected operator, a Q learning algorithm updates the measure for the corresponding248

selected operator. This is repeated until a new generation is completely built. Note that249

ABC algorithm works generation-by-generation as a population-based algorithm. The250

complete algorithm is outlined in Algorithm 1.251

Algorithm 1 General overview of RL-AOS

1: Initial Phase
2: if learning is not activated or first run then
3: Initial credit and C cluster values
4: end if
5: Operator Selection
6: Assign probabilities
7: Choose operator using Roulette-Wheel selection
8: Operator Evaluation
9: Execute operator and get reward

10: if positive reward and learning is activated then
11: Update cluster of operator
12: Update operator total reward
13: end if
14: At the end of iteration
15: if learning is activated then
16: Update credit values using Eq. 2
17: end if

We present below the above discussed concepts more formally. Let X be a pop-
ulation of solutions that makes up a bee colony handled by the ABC implemented in
this study, where X = {xi|i = 1 . . . |X |}. Each solution xi is defined as a D dimensional
binary set, xi = {xi,j ∈ [0, 1]|j = 1 . . . D} and its quality of solution is measured with
F(xi). The ABC implemented uses a pool of actions A = {ak|k = 1 . . . |A|}, where each
ak is a function defined as ak(xi)

xi−→ yi, where yi ∈ X . Meanwhile, a set of clusters,
C = {ca|a = 1 . . . |A|}, is defined to represent the set of actions, A, where each cluster
center is the centeroid measure of D dimensional data set, ca = {ca,j|j = 1 . . . |D|} and
calculated using the following equation:

ca,j =
∑t

i=0 xi,jba,i

∑t
i=0 ba,i

∀j ∈ D (1)

where t is the number of iterations done so far, ba,i ∈ [0, 1] is a binary value indicating252

if the action is successful, (i.e., if the operator a helped produce a better fitness), where253

it take value 1 if successful and 0 otherwise. The centroids are optimised online with254

Q learning algorithm collecting the rewards, ra,i, based on the fitness values, F(xi) as255
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detailed in [4]. All ca values are initialised with 0, while random values are allocated256

to Q(x, a). Earlier iterations impose a random selection of operators, a ∈ A, whereas257

subsequent stages enforce the selections through fine-tuned Q values throughout the258

experience-gaining process. The Q(xi, a) values are updated immediately after an action259

is taken, (i.e., operator a is chosen and applied to xi) using the following rule:260

Q(xi, a) = Q(xi, a) + β(ra,i + γ(E(yi)−Q(xi, a)) (2)

where β is the learning coefficient, γ is the discounting factor, and E(yi) is the expected Q261

value for the new problem’s state, i.e., a solution. The expected value is calculated with262

d = |xi − ca| as the Euclidean distance between xi and ca as the current solution and the263

centroid for operator a, respectively. The algorithm runs repeating this procedure until a264

stopping criterion is satisfied. More opportunities to experience would be required to265

build a wide range of experience across the search space, necessitating the adoption of266

an exploration policy alongside the exploitation of learned cases. This study employs a267

ε-greedy policy to accomplish this goal. It requires randomising a value and performing268

a random selection if the random number is less than a ε threshold, and Q-values-based269

selection otherwise. More details can be found in [23] and [4].270

The transfer learning can be adopted into a data model M(D) = {mi(d)|i =271

0 . . . |M|}, where each component of the model comprises of mi(d) = αi(d)
⊕

βi(d).272

The model combines the terms α and β with the implementation of a union operator273

represented by
⊕

, where α and β represent the experience gained previously and274

the experience to be gained over upcoming attempts, respectively. The model can be275

implemented as mi(d) = (1− δ)αi(d) + δβi(d), where δ is the learning co-efficient that276

manages the contribution of previous and next experiences. For example, it switches277

training ON if δ > 0, switches OFF otherwise. This approach adopts transfer learning278

into problem solving, the data model is considered as the cluster, M(D) ←− C(D),279

trained with solving an instance of the problem including the components as follows:280

mi(d) ←− ca(d), α represents the learned components, β is the changed to be imposed281

from upcoming activities and δ is to be decided if the past experience would be used.282

The algorithm is set up to run once to solve a specific problem instance, with online283

learning switched ON to train the cluster centres and then switched OFF to repeat the284

experiments with the same problem instance but with new random number sequences.285

Since the exploration activities are pruned, this is expected to solve the problem with286

better or slightly better solution qualities in a lot shorter period. This is the stage at287

which the proposed algorithm transfers previously gained experience, which is still the288

most common method of transfer learning.289

4. Experimental Results290

This section introduces experimental results of the proposed approach to handle291

transfer learning across different runs of the same problem instances. We demonstrate292

how reinforcement learning-based experience transfer assists towards solving the prob-293

lem in high efficiency with respect to computational time. The experiments have been294

carried out in high performance computing cluster machine with 8 core CPU 27.2 GB295

RAM and CentOS 7.9 operating system specs.296

4.1. The Problem and Data Sets297

This study has been conducted to demonstrate the gain/benefit of transfer learning298

using an adaptive operator selection schemes built with an implementation of Q learning299

algorithm. Both the selection scheme and the RL (i.e., Q learning) are embedded within300

a standard ABC algorithm equipped with 3 recent state-of-the-art binary operators;301

binABC [24], ibinABC [25] and disABC [26] to solve set union knapsack problem (SUKP).302

The family of knapsack problems includes renown combinatorial optimisation prob-303

lem sets used to test the efficiency and performance of problem solving algorithms. They304

are known as NP-Hard problems with respect to complexity and are very instrumental305
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Table 1: The SUKP benchmark instances

Set1 Set2 Set3
ID m n w y ID m n w y ID m n w y
1_1 100 85 0.10 0.75 2_1 100 100 0.10 0.75 3_1 85 100 0.10 0.75
1_2 100 85 0.15 0.85 2_2 100 100 0.15 0.85 3_2 85 100 0.15 0.85
1_3 200 185 0.10 0.75 2_3 200 200 0.10 0.75 3_3 185 200 0.10 0.75
1_4 200 185 0.15 0.85 2_4 200 200 0.15 0.85 3_4 185 200 0.15 0.85
1_5 300 285 0.10 0.75 2_5 300 300 0.10 0.75 3_5 285 300 0.10 0.75
1_6 300 285 0.15 0.85 2_6 300 300 0.15 0.85 3_6 285 300 0.15 0.85
1_7 400 385 0.10 0.75 2_7 400 400 0.10 0.75 3_7 385 400 0.10 0.75
1_8 400 385 0.15 0.85 2_8 400 400 0.15 0.85 3_8 385 400 0.15 0.85
1_9 500 485 0.10 0.75 2_9 500 500 0.10 0.75 3_9 485 500 0.10 0.75
1_10 500 485 0.15 0.85 2_10 500 500 0.15 0.85 3_10 485 500 0.15 0.85

in modeling and solving real-world industrial problems. SUKP is a special form of306

knapsack problem, which holds NP-Hard complexity level [27]. This problem is chosen307

as the test-bed in this study to demonstrate the success of proposed approach. It re-308

quires a set of items to be optimally composed in subsets so as to gain the maximum309

benefit. Given a set of n elements, U = {ui|i = 1, . . . , n} with a non-negative weight310

set, W = {wi|i = 1, . . . , n} and a set of m items, S = {Uj|j = 1, . . . , m} with a profit311

set, P = {pj > 0|j = 1, . . . , m}, a subset of A ⊆ S is sought to be found such that it312

maximises the profit subject to that the sum of the weights of selected items is not to313

exceed the capacity constraint, C. The formal structure of the problems is as follows:314

max P(A) = ∑
j∈A

pj (3)

s.t. W(A) = ∑
i∈⋃j∈A Uj

wi ≤ C, A ⊆ S (4)

The problem is represented in real numbers and needs to be represented in binary form315

to enable binary operators in search algorithms such as binary ABC [3]. Following the316

details of the problem and the approach introduced by [28], a binary vector, B = {bj|j =317

1, .., m} ∈ {0, 1}, is defined to be used as the set of decision variables, where bj = 1 if318

an item is selected, bj = 0, otherwise. The model of the problem can be reformulated as319

follows:320

max f (B) =
m

∑
j=1

bj pj (5)

s.t. W(AB) = ∑
i∈⋃j∈AB

Uj

wi ≤ C (6)

The main goal is to find the best binary vector, B, which provides the subset of321

items with the maximum profit.322

The problem instances of SUKP chosen in this study are collected from recently323

published literature. He et al. [29] have introduced 30 benchmarking problem instances324

of SUKP as tabulated in Table 1 with all configuration details, where 3 different config-325

urations presented varying with comparative status of m and n; (i) m > n, (ii) m < n,326

and (iii) m = n), while w ∈ {0.10, 0.15} and y ∈ {0.75, 0.85} representing the density327

of elements and the rate between the capacities and the sum of weights of elements,328

respectively. As seen, each set of problem instances includes 10 instances varying with329

m, n, w and y values. More details can be found in [29,30].330

4.2. Experimental Settings331

The experimental study reported in this article is conducted to demonstrate that332

transfer learning helps improve the efficiency of swarm intelligence algorithms in solving333

combinatorial optimisation problems. For this purposes, three algorithms have been set334

up; (i) RLABC taken from [4] is the baseline algorithm solves the problems with ABC335
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embedded with a Q learning-based adaptive operators selection scheme, (ii) RLABC-336

T extends RLABC with a static transfer learning that switches off gain experience in337

upcoming runs, and (iii) RLABC-TC keeps online learning while solving new problems338

and executes new runs. This means δ = 0 for RLABC-T, while δ > 0 for RLABC-TC.339

The parametric settings for all algorithms have been taken from previous works340

[3,4] rolling over the fine-tuned set of parameters accordingly. The configuration applied341

to all three algorithms includes the following settings: γ is 0.3, window size W is 25342

iterations, reward is chosen as extreme (r̂i,t), ε is 0.1 and α is 0.5. The termination criteria343

is used as maximum number of iterations which is determined as problem size. For the344

algorithm parameters, population size is 20 and maximum trial number is 100.345

4.3. Results and Discussions346

Table 2,3 and 4 show comparisons among three variants in terms of solution quality.347

The column of best determined as the maximum value of best solutions of thirty different348

runs. Mean and Std values are average and standard deviation of them, respectively. R is349

the rank and S is the sign of Wilcoxon signed sum rank test. The algorithms are ranking350

in terms of Mean values.351

As can be seen from Table 2, RLABC provides the best place, (i.e., the first place)352

only for two instances 1_1 and 1_4. The average rank of RLABC over the set of problem353

is 2.2 and it has the worst ranking among three approaches. RLABC-TC is second-354

best algorithm because the average of rank values is 2, it has left behind RLABC-T.355

RLABC-T which shows better performance than the others reaching the mean rank value356

of 1.8. When the statistical results are examined, RLABC-T has produced statistically357

meaningful result for less than half of instances. Whereas the results of RLABC-TC are358

statistically meaningful only for one instance.359

Table 3 presents comparative statistical performance of the three variants in terms360

of solution quality on Set2 benchmark instances. Clearly RLABC-T remains in the first361

position among the variants similar to the case of Set1, where it achieves first place on the362

half of benchmark instances. It is observed that both RLABC-T and RLABC-TC perform363

better than RLABC with respect to Best values while RLABC takes first position in only364

two instances, 2_6 and 2_10.365

Table 4 shows comparative statistical performance of three variants on Set3 bench-366

mark instances. The algorithms look more competitive on this set in comparison to367

the previous two sets. In fact, the average rank calculated for each is 2, 1.9 and 2.1 for368

RLABC, RLABC-T and RLABC-TC, respectively. The comparative results suggest that369

the algorithms produce slightly different in quality of solution.370

Figure 2 shows comparative results of the algorithms with respect to CPU time371

while Table 5 tabulates the statistical analysis of the results, where both, the table and372

the figure, demonstrate clear improvement by RLABC-T and RLABC-TC except the373

cases of 1_1 and 1_2 instances, which are smaller in size. Growing size of the instances374

ascertains further that RLABC could not compete with the other variants. This suggests375

that when the problem dimension increases , RLABC has shown worse performance in376

terms of computational time. The results also indicate that RLABC-T and RLABC-TC377

remain competitive, but RLABC-TC has done slightly better than RLABC-T. Almost for378

all benchmarks except two instances, improvements on time performance are statistically379

meaningful. Similar situation applies to Figure 3,4 and Table 6, 7, where the results by380

the algorithms applied to Set 2 and Set 3 are plotted and tabulated accordingly. These381

indicate that the comparisons with respect to the CPU time for all methods look similar382

to the cases of Set 1.383

Figure 5 presents the convergence graphs of methods through search process; Figure384

5a shows the algorithms’ behavior on 400-dimensional problem, 2_7 and Figure 5b plots385

the performances on a 500-dimensional problem, 2_9. As can be seen in both figures,386

RLABC-T converges quicker than the other two but sticks in local optima at around387

iteration 200. Meanwhile, RLABC-TC escapes that local optima in iterations such as388
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Figure 2. Time performance comparison on Set 1
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Figure 3. Time performance comparison on Set 2
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Figure 4. Time performance comparison on Set 3
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Table 2: Comparative results in solution quality for Set 1 benchmarks

RLABC RLABC-T RLABC-TC
Best Mean Std R Best Mean Std R S Best Mean Std R S

1_1 13251 13071.4 53.5 1 13283 13070.5 61.80 2 - 13167 13054.9 38.1 3 -
1_2 12274 12143.2 73.1 2 12238 12090.8 80.25 3 + 12272 12153.9 62.5 1 -
1_3 13402 13271.7 100.2 2 13405 13283 67.74 1 - 13405 13262.8 88.2 3 -
1_4 14215 13680.6 251.4 1 13777 13451.8 201.02 3 + 14215 13674.8 232.0 2 -
1_5 11065 10717.5 141.1 2 10900 10661.5 110.45 3 - 11073 10777.1 166.0 1 -
1_6 12245 11672.6 269.3 3 12245 11734.5 285.05 1 - 12245 11722.8 272.0 2 -
1_7 11289 10742.4 252.1 3 11244 10812.7 250.80 1 - 11294 10755.3 216.8 2 -
1_8 10168 10027.1 145.2 3 10175 10123.9 84.43 1 + 10175 10103.8 82.4 2 +
1_9 11427 11188.1 140.5 3 11490 11196.1 134.66 2 - 11490 11230.6 151.2 1 -
1_10 9734 9359.3 195.2 2 9817 9475.3 154.50 1 + 10022 9355.3 208.8 3 -

Mean: 2.2 Mean: 1.8 Mean: 2

Table 3: Comparative results in solution quality for Set 2 benchmarks

RLABC RLABC-T RLABC-TC
Best Mean Std R Best Mean Std R S Best Mean Std R S

2_1 14044 13949 85.05 1 14044 13943.2 86.3631 2 - 14044 13938.5 92.7598 3 -
2_2 13508 13442.1 88.2756 2 13508 13465.9 48.2438 1 - 13508 13414 99.4093 3 -
2_3 12211 11833.3 178.218 3 12328 11944.3 201.902 1 - 12328 11845.8 212.621 2 -
2_4 12019 11652 163.042 2 11821 11627.4 201.362 3 - 12187 11697.1 222.437 1 -
2_5 12646 12535 167.639 3 12695 12623.3 72.6071 1 + 12655 12595.2 114.05 2 -
2_6 11410 10679.6 176.845 3 11054 10759.6 144.579 1 + 11251 10725.8 137.088 2 +
2_7 11193 10855.3 132.626 3 11310 10924.2 170.308 1 - 11249 10889.6 156.932 2 -
2_8 10355 9882.63 234.754 2 10382 9871.07 233.87 3 - 10382 9947.37 214.996 1 -
2_9 10770 10647.2 65.2152 3 10885 10688.7 60.1216 2 + 10885 10694.9 73.2702 1 +
2_10 10194 9851.07 209.2 1 10176 9845.03 186.539 2 - 10176 9798.8 229.578 3 -

Mean: 2.3 Mean: 1.7 Mean: 2

Table 4: Comparative results in solution quality for Set 3 benchmarks

RLABC RLABC-T RLABC-TC
Best Mean Std R Best Mean Std R S Best Mean Std R S

3_1 12045 11632 191.489 3 12020 11697.3 148.956 1 - 12020 11651.9 152.747 2 -
3_2 12369 12205.2 149.614 1 12369 12101 263.167 3 - 12369 12196.8 201.196 2 -
3_3 13609 13352.2 130.039 2 13609 13399 99.6629 1 - 13609 13334.8 127.075 3 -
3_4 10973 10856.3 105.533 2 11021 10852.4 86.8795 3 - 11298 10859.1 140.543 1 -
3_5 11538 11240 169.691 3 11538 11308.8 210.61 1 - 11538 11287.8 194.904 2 -
3_6 11377 11077.2 189.324 1 11377 11017.5 178.618 2 - 11377 10997.4 202.552 3 +
3_7 10181 9951.63 80.973 1 10069 9932.27 67.0159 3 - 10087 9946.9 76.4209 2 -
3_8 10075 9403.8 177.593 3 10077 9517.33 193.699 1 + 9749 9445.77 146.641 2 -
3_9 10877 10647.3 101.085 2 10831 10626.4 90.5375 3 - 10987 10668.8 122.98 1 -
3_10 9745 9426.57 136.45 2 10220 9433.83 234.262 1 - 9649 9421.17 117.068 3 -

Mean: 2 Mean: 1.9 Mean: 2.1

200, 300 and 350 in Figure 5a and in iterations around 80 and 250 in Figure 5b. On the389

other hand, RLABC gradually converges, but stops after iteration 300 in both Figure390

5a and 5b. This suggests that it is able to escape local optima at that points, but cannot391

converge as RLABC-TC does. Both figures clarify that RLABC is outperformed by the392

other algorithms while RLABC-TC converges better among all.393

Figure 6 has shown the credit values for three operator through iterations. As394

shown in the figure, all methods has slightly similar characteristic. ibinABC has obtain395

more credit from start to 200th iteration. The difference of methods is started from there.396

In the RLABC, ibinABC always has the most credited operator, while RLABC and RLABC397

has changed to DisABC and binABC.398

In overall comparison, RLABC is a powerful algorithm that shows good perfor-399

mance than the most of state-of-art methods which are applied to the same problem as400

in [4]. However, it does not allow transfer learning in problem solving. RLABC-T and401

RLABC-TC have improved the results not only in terms of solution quality but also the402

algorithm’s CPU time demonstrating that the score with quality of solution is slightly403

better while both RLABC-T and RLABC-TC are significantly solve the problems much404

faster than RLABC. This experimentally approves the contribution of transfer learning405

in dynamically building adaptive operator selection scheme. It is important to note that406

RLABC-T stops learn from new problems solving runs while RLABC-TC keeps updating407

the relevant centeroids of the corresponding clusters with upcoming new cases learned.408
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Table 5: The results of statistical analysis on computational for Set 1 with respect to computational
time

RLABC RLABC-T RLABC-TC
Instance No Rank Rank Sign Rank Sign

1_1 2 3 + 1 -
1_2 2 1 + 3 -
1_3 3 2 + 1 +
1_4 3 1 + 2 +
1_5 3 1 + 2 +
1_6 3 1 + 2 +
1_7 3 2 + 1 +
1_8 3 2 + 1 +
1_9 3 2 + 1 +
1_10 3 2 + 1 +

Mean: 2.8 1.7 1.5

Table 6: The results of statistical analysis for Set 2 with respect to computational time

RLABC RLABC-T RLABC-TC
Rank Rank Sign Rank Sign

2_1 2 3 + 1 +
2_2 1 3 - 2 -
2_3 3 2 + 1 +
2_4 3 2 + 1 +
2_5 3 1 + 2 +
2_6 3 1 + 2 +
2_7 3 2 + 1 +
2_8 3 2 + 1 +
2_9 3 2 + 1 +
2_10 3 2 + 1 +
Mean: 2.7 2 1.3

Table 7: The results of statistical analysis for Set 3 with respect to computational time

RLABC RLABC-T RLABC-TC
Rank Rank Sign Rank Sign

3_1 1 3 + 2 -
3_2 3 1 + 2 -
3_3 3 2 + 1 +
3_4 1 3 + 2 -
3_5 3 1 + 2 +
3_6 3 1 + 2 +
3_7 3 2 + 1 +
3_8 3 2 + 1 +
3_9 3 2 + 1 +
3_10 3 2 + 1 +
Mean: 2.6 1.9 1.5

(a) 2_7 Problem Instance (b) 2_9 Problem Instance
Figure 5. Convergence graphs on some benchmarks

(a) RLABC (b) RLABC-T (c) RLABC-TC
Figure 6. Credit graphs on some benchmarks

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 December 2021                   doi:10.20944/preprints202112.0337.v1

https://doi.org/10.20944/preprints202112.0337.v1


13 of 14

The past experience jointly with undergoing learning remains beneficial in solving the409

problems faster without compromising the solution quality.410

5. Conclusions and Future Work411

This article described how transfer learning was used in a reinforcement learning-412

based adaptive operator selection scheme incorporated in an ABC algorithm to tackle413

SUKP as a combinatorial optimisation problem. The ABC algorithm uses a pool of414

operators from which the adaptive operator selection scheme identifies the best fitting415

operator for the current state of the problem and the search conditions. This helps416

search through the problem space in an efficient way. The operator selection scheme is417

developed and fine-tuned with Q learning algorithm embedded and empowered with418

"Hard-C-Means" clustering algorithm. The knowledge and experience gained through419

this process is transferred into the next runs to be utilised for faster approximation and420

better quality solutions. The experimental results demonstrated that the transferred421

experience across runs helped achieve slightly better solution quality, but significantly422

faster convergence. Both scenarios of keeping learning ON and OFF are tested, and it is423

observed that each has its own set of advantages and disadvantages. It is clearly observed424

that learning through a single run helps in solving problem instances in subsequent runs425

in a much shorter time. This is because the gained experience is used to select more426

complementary operators one after another, cutting the computational time while the427

quality of the solution improves slightly or at least remains the same.428

This study has considered the first level of experience and knowledge transfer in429

solving combinatorial optimisation problems, which is training the agents in one run430

and utilise its gained experiences in the next runs. The next two levels, transfer across431

problem instances and problem types remain as the future study, which is expected to432

achieve a significant breakthrough in building generic problem solvers.433
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