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 Abstract: The objective was to assess the instrumental validity and the test-retest reliability of a 

low-cost hand-held push dynamometer adapted from a load-cell based hanging scale (tHHD) to 

collect compressive forces in different ranges of compressive forces. Three independent raters ap-

plied 50 pre-established compressions each on the tHHD centered on a force platform in 3 distinct 

ranges: ~70 N, ~160 N, ~250 N. Knee isometric strength was also assessed on 19 subjects in two 

sessions (48h apart) using the tHHD anchored by an inelastic adjustable strap. Knee extension and 

flexion were assessed with the participant seated on a chair with the feet resting on the floor, knees, 

and hips flexed at 90°. The isometric force peaks were recorded and compared. The ICC and the 

Cronbach’s α showed excellent consistency and agreement for both instrumental validity and test-

retest reliability, as the correlation and determination coefficients. The SEM and the MDC analysis 

returned adequate low values with a coefficient of variation less than 5%. The Bland-Altman results 

showed consistency and high levels of agreement. The tHHD is a valid method to assess the knee 

isometric strength, showing portability, cost-effectiveness, and user-friendly interface to provide an 

effective form to assess the knee isometric strength. 
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1. Introduction 

Muscle weakness increases the risk of injuries on different populations [1–3]. The oc-

currence of injuries due to muscle weakness impairs functional independence, sports 

practice, leading to increased costs to public health system [4–7]. As part of physical as-

sessment, the maximal isometric strength is used as an objective parameter to prescribe 

exercise and to evolve the exercise training [8–11]. Additionally, several studies reported 

the isometric strength ability to predict the occurrence of non-contact injuries or even the 

higher incidence of joint pain [12–15]. To perform those objective assessments, the clini-

cian or the coach must use a device that provides the force output in kilogram or in New-

ton. However, the gold-standard equipment (i.e., the isokinetic dynamometer) is expen-

sive, not portable, requires extensive staff training, and it is limited to laboratory environ-

ment. 

Inexpensive, accurate and more affordable devices are then essential to objectively 

assess isometric muscle strength [16]. Thus, hanging scales, load-cell transducers and 

hand-held dynamometers (HHD) have been proposed as valid and reliable alternatives 

[7, 17–20]. Despite their usefulness, portability and the efforts to ensure the relative accu-
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rate measures obtained from those devices, most previous studies only described the over-

all tension or compression force outputs applied on the equipment, not distinguishing the 

acquired precision during different ranges of load [7, 17–19]. The lack of precision from 

those measurements may lead to misinterpretation during softer compared to heavier 

loads applied on the device (i.e., accuracy to differentiate weak vs. strong/normal mus-

cles). Other concerns were raised during a test-retest study using the isokinetic, a fixed 

load-cell type dynamometer, and a portable HHD [20]. Test-retest reliability assessed be-

tween days for knee extension was considered high for the 1st and 2nd devices while fair 

reliability was demonstrated using the HHD. Despite the price of those devices is a frac-

tion of a gold-standard isokinetic, they are still expensive (from USD 1,000 to USD 5,000) 

for most clinicians. 

Due to the above mentioned issues, the objective strength assessment is essential to 

establish prospective evaluation, compare baseline results to other timeline assessments, 

or even as a prognostic measure to predict future outcomes [21, 22]. Thus, the present 

study aimed to assess the instrumental validity and the test-retest reliability of a low-cost 

push hand-held dynamometer (~USD 160) adapted from a load-cell based hanging scale 

to collect compressive forces, emulating a commercially available HHD in different ranges 

of compressive forces. 

2. Materials and Methods 

2.1. Equipment 

All data were collected at the facilities of the Clinic-School of Physical Therapy, Fed-

eral University of Juiz de Fora. The tested dynamometer - tHHD (MED.DOR Ltd., Brazil; 

maximum compression = 2,000 N, 4-digit display [Figure 1]) calibration was checked by 

placing 5 known weights (50-250 N) on the application surface. The maximal tolerated 

difference between the weight and the value on the display was 1 N. The tHHD used in 

the present study was brand new, and the calibration was checked twice before any meas-

urement.  

A gold-standard two-axis force platform (37 cm × 37 cm; Pasport PS-2142; PASCO, 

Roseville, CA, USA) collected data using five force beams (sample rate = 1,000 Hz). Four 

beams in the corner were used to measure the vertical force (range: −1,100 N to +4,400 N) 

and a 5th beam measured the force in a parallel axis (range: −1,100 N to +1,100 N). 

 

Figure 1. The push low-cost hand-held dynamometer. 
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2.2. Procedures 

2.2.1. Instrumental validity 

Three independent raters performed fifty 3-s pressure trials each, using the tHHD 

on the force platform with an interval of 3 s. Data were collected and stored using the 

PASCO Capstone Software (Version 1.13.4; PASCO Scientific, 2019), and the tHHD dis-

play readings were recorded using an off-board USB synchronized camera. The rater was 

blinded to the force platform’s results. The tHHD was centered on the force platform and 

the camera was positioned facing the dynamometer’s display to record the peak values. 

Progressive pressures were manually applied on the tHHD until reaching a threshold pre-

viously determined for the rater (1st rater ~ 70 N; 2nd rater ~ 160 N; and 3rd rater ~ 250 

N). The pressure was kept for 3 seconds. The maximal peaks were extracted from each 

trial and the means were used for statistical analysis. 

2.2.2. Test-retest reliability 

A convenience sample of 19 participants (24.21±4.06 years; 1.70±0.07 m; 67.83±14.03 

kg) were recruited by the public invitation through folders and personal contacts. The a 

priori two-tailed point biserial model sample size calculation was performed using the G-

power 3.1 Software (Franz Faul, Univesity Kiel, Germany) considering a coefficient of de-

termination of 0.97 with an effect size of 1.04 obtained from a previous similar study [18], 

with an alpha of 5% and a sampling power (1-β) of 95%. A sample size of 15 subjects was 

returned with an actual power of 0.962. Exclusion criteria included a history of injury on 

the lower extremity during the past six months, a history of hip and knee osteoarthritis, 

previous knee surgery, diagnosed neurologic disorder (e.g., stroke, head trauma), or cur-

rent symptoms related to the hip and knee area. The UFJF ethics committee for human 

investigation approved (number of approval 29238720.7.0000.5147) the procedures em-

ployed in the study. The objectives, benefits and potential risks involved were previously 

explained to all participants. Then, they all signed an informed consent form before par-

ticipation. 

After an initial familiarization session and following a warm-up set of submaximal 

bilateral isometric knee’s flexion-extension, the participants were asked to perform 2 ses-

sions (Day 1 and Day 2) of 3 trials of maximal flexion-extension isometric contractions (3 

min of rest between trials; 48h between sessions). Each subject was asked to refrain from 

strenuous exercise or training 48 hours before assessments and to avoid eating 2 hours 

before testing. During the test, the participants remained seated on a chair with their arm 

crossed on the chest. The knee flexed at 90° with the feet resting on the floor, with hips 

flexed at 90°. All angles were quantified through goniometric measurements. An adjusta-

ble inelastic strap was then anchored on a metallic bar as the dominant lower limb was 

involved by the same strap. The tHHD was positioned between the strap and the posterior 

distal portion of the leg (right above the malleolus line) for flexion and anteriorly for ex-

tension. The volunteer was instructed to perform 3 maximum isometric contractions try-

ing to flex-extend the knee. Verbal encouragement was given to ensure maximal effort 

(push, keep pushing, stop). The peaks from each trial were extracted and the means were 

used for statistical analysis. 
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2.3. Statistical analysis 

 Data were presented as mean and standard deviation. The Shapiro-Wilk’s and the 

Levene’s tests were used to test the data distribution and the homoscedasticity, respec-

tively. The normality and the homogeneity were both accepted. Significance was set at 

p<0.05. Two-way mixed effects model intraclass correlation coefficient (ICC) was calcu-

lated to assess the reliability between results [23]. The Cronbach’s α test was used to assess 

the expected correlation measuring the same construct. ICC and Cronbach’s α values were 

qualitatively classified as poor (<0.50), moderate (0.5-0.75), good (0.75-0.90) or excellent 

(>0.90) [23]. Linear regression estimated the coefficient of correlation (r) and the adjusted 

coefficient of determination (r2). The correlation coefficients were qualitatively classified 

as high (>= 0.70), moderate (0.50-0.70), low (0.30-0.50) and weak (<0.30) [24]. The Bland-

Altman method estimated the measurement bias, with lower and upper limits of agree-

ment between results. Standard error of measurement (SEM), percentage of SEM as a co-

efficient of variation (%SEM = SEM x 100/mean of Day 1 and Day 2), and minimal detect-

able change at a 95% confidence level (MDC = SEM x 1.96 x √2) were calculated. A %SEM 

of 10% or less was set as the level at which a measure was considered reliable [25, 26]. All 

statistics were done using the JAMOVI software. (The JAMOVI project [2021]. Version 1.6. 

Retrieved from https://www.jamovi.org). 

3. Results 

3.1. Validity analysis 

 Descriptive and validity data for all force variables are presented in table 1. The ICC 

and the Cronbach’s α showed excellent consistency and agreement (>0.95). The results 

also showed excellent correlation and determination coefficients between the force plat-

form and the tHDD (>0.97). The SEM ranged from 0.14 to 1.20, with %SEM less than 2%, 

suggesting the tHHD as a reliable measure compared to the force platform. The MDC 

analysis returned a range from 0.38 to 3.32 N. The Bland-Altman results showed high lev-

els of agreement (figure 2).  

Table 1. Validity analysis. 

Outcome tHHD (in N) Force Platform (in N) ICC Cronbach α r r2 SEM %SEM MDC (in N) 

Overall 157.03 ± 79.19 163.19 ± 80.67 0.999 0.999 0.999 0.998 0.14 0.09 0.38 

~70 N 65.92 ± 15.97 70.73 ± 16.48 0.954 0.998 0.997 0.993 0.73 1.07 2.02 

~160 N 154.36 ± 19.29 160.06 ± 19.93 0.953 0.996 0.993 0.987 0.87 0.56 2.42 

~250 N 250.80 ± 31.48 258.79 ± 32.56 0.955 0.992 0.985 0.970 1.20 0.47 3.32 

Legend: tHHD = push hand-held dynamometer; ICC = intraclass correlation coefficient; r = coefficient of correlation; r2 = coefficient 

of determination; SEM = standard error of measurement; MDC = minimal detectable change. 
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Figure 2. Validity analysis - Bland-Altman Plots. (a) ~70 N: Bias = 4.81 (95% confidence interval [CI] = 4.41 to 5.21); lower limit of 

agreement (LLA) = 2.06 (95% CI = 1.37 to 2.74); upper limit of agreement (ULA) = 7.56 (95% CI = 6.88 to 8.25). (b) ~160 N: Bias = 5.70 

(95% CI = 5.03 to 6.38); LLA = 1.07 (95% CI = -0.08 to 2.22); ULA = 10.34 (95% CI = 9.18 to 11.50). (c) ~250 N: Bias = 7.99 (95% CI: 6.38 

to 9.58); LLA = -3.06 (95% CI: -5.81 to -0.30); ULA = 19.03 (95% CI: 16.27 to 21.78). 

 

3.2. Reliability analysis 

 Descriptive and test-retest reliability are presented in table 2. ICC and Cronbach’s α 

showed good to excellent results (range: 0.84-0.97), with high levels of between-day cor-

relation. The SEM and the MDC analysis returned adequate low values with a coefficient 

of variation less than 5%. The Bland-Altman results showed consistency and high levels 

of agreement (figure 3). 

Table 2. Reliability analysis. 

Outcome Day 1 (in N) Day 2 (in N) ICC Cronbach α r r2 SEM %SEM MDC (in N) 

Flexion 219.86 ± 72.05 239.56 ± 88.53 0.880 0.972 0.899 0.808 0.86 3.65 2.37 

Extension 286.63 ± 87.93 295.44 ± 100.70 0.844 0.915 0.852 0.726 1.20 4.06 3.34 

Legend: ICC = intraclass correlation coefficient; r = coefficient of correlation; r2 = coefficient of determination; SEM = standard error 

of measurement; MDC = minimal detectable change. 
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Figure 3. Test-retest reliability analysis - Bland-Altman Plots. (a) Flexion: Bias = -2.01 (95% confidence interval [CI] = -3.95 to -0.06); 

lower limit of agreement (LLA) = -9.90 (95% CI = -13.28 to -6.52); upper limit of agreement (ULA) = 5.89 (95% CI = 2.51 to 9.26). (b) 

Extension: Bias = -0.89 (95% CI = -3.49 to 1.70); LLA = -11.44 (95% CI = -15.96 to -6.93); ULA = 9.65 (95% CI = 5.14 to 14.16). 

4. Discussion 

 The present findings showed the validity of tHHD, not only considering the overall 

applied force output, but also the different ranges to differentiate weak from strong mus-

cles during knee isometric flexion and extension. This is particularly important consider-

ing the price range of the commercial HHD compared to tHHD, and the fact that, to our 

knowledge, this is the first study to consider those distinct ranges. Strength improvements 

should be measured along training to fulfill the subject's needs and to assure adequate 

training adjustments [18]. Isometric strength re-assessments are valid and effective to 

evaluate the strength-training adaptations, as the torque production measured at a con-

stant angle is more sensitive to influences produced by muscle fiber type rather than an-

gle-independent peak torque during dynamic contractions [16]. For rehabilitation rou-

tines the validity in distinct ranges of force constitutes an essential component to consider 

during prospective assessments, as musculoskeletal injuries/diseases often provoke mus-

cle weakness and deficits on the force output, while training promotes the recovery of 

strength and consequent changes on the isometric maximal force. For the clinician, the 

precision of each assessment is crucial to decide whether to evolve (or not) the load levels 

along with the training session. Additional to the validity, the present test-retest reliability 

showed optimal results to prospectively assess the isometric knee strength.  

The current results are consistent with previous studies that assessed hanging scales 

as cost-effective alternatives to ensure accuracy and safe performance for muscle strength 

assessments during isometric knee movements [7, 18]. Those studies showed excellent 

ICC (>0.90) in every assessed movement comparing the tested device to isokinetic dyna-

mometer or laboratorial load-cells. Intra and inter-tester reliability was also good for all 

the movements assessed (ICC>0.75). Those hanging scales were also validated to assess 

other joint isometric strength, such as shoulder, elbow, hip and ankle, during distinct 

ranges of force loads [7, 17–19]. To collect force data, the hanging scales have consistently 

shown accuracy and reliability. However, all studies considered only the devices’ tension 

function during movements exerted in traction, without any adaptation to handle the de-

vice. This may impair the usefulness in daily routine due to time to set-up the device and 

adjust the anchoring while positioning the patient. The present tHHD terminals were 

adapted to be used with a common adjustable inelastic strap, minimizing the time to an-

chor and to set the device up. The tHHD might also be useful to detect asymmetries dur-

ing the assessments, between limbs and also monitor the muscle strength while the train-

ing protocol evolves, collaborating to decrease the risk of injuries and reduce the costs 

associated to musculoskeletal weaknesses. [1, 27] Additionally, and based on another 
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study [4], the authors emphasize the importance of limb positioning to perform strength 

tests, as changes on positioning the joint might influence the joint’s ability to develop mus-

cle force. The present results showed excellent validity and reliability for knee movements 

on seated position. Thus, we recommend the maintenance of the described participant’s 

body positioning, and the tHHD anchoring to ensure the same results. 

The tHHD validity to assess knee isometric strength would allow health profession-

als and coaches to objectively evaluate strength with less complexity, as no training is 

required to use the device. Minimal investment is also an advantage, as the device is not 

expensive compared to other equipment, such as isokinetic, and laboratorial load-cells. 

However, some limitations must be acknowledged. The present study included only 

healthy and young participants. The results may differ in the presence of pathology. Nev-

ertheless, to avoid any adverse outcome due to repeated trials, the safety of the procedure 

should be firstly assessed with non-pathological subjects, as we did. Another limitation is 

that the tHHD provides only the peak force, while other devices would allow the extrac-

tion of other measures such as rate of force development and time to peak force, that can’t 

be measured using the tHHD. The participants’ movements were assessed in specific po-

sitions. Of note, the positioning is an essential factor that may affect the joint’s ability to 

produce force. The present results may vary accordingly. 

5. Conclusions 

The results suggest the tHHD as a valid and reliable method to assess the knee iso-

metric strength. The portability, the cost-effectiveness, and the user-friendly interface pro-

vide an effective form to assess the knee isometric strength. 
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