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Abstract: Studies have shown that STK11 mutation plays a critical role in affecting the lung adeno-

carcinoma (LUAD) tumor immune environment. By training an Inception-Resnet-v2 deep convolu-

tional neural network model, we were able to classify STK11-mutated and wild type LUAD tumor 

histopathology images with a promising accuracy (per slide AUROC=0.795). Dimensional reduction 

of the activation maps before the output layer of the test set images revealed that fewer immune 

cells were accumulated around cancer cells in STK11-mutation cases. Our study demonstrated that 

deep convolutional network model can automatically identify STK11 mutations based on histo-

pathology slides and confirmed that the immune cell density was the main feature used by the 

model to distinguish STK11-mutated cases. 
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1. Introduction 

 Non-small cell lung cancer is the most common type of lung cancer accounting for 

more than 80% of lung tumor malignancy cases, among which 50% are adenocarcinoma 

(LUAD) [1]. STK11 is a critical cancer related gene that provides instructions for making 

a tumor suppressor, serine/threonine kinase 11 [2]. About 24% of all adenocarcinoma 

cases are STK11-mutated, and molecular studies have shown that STK11-mutation plays 

an important role in influencing the tumor immune environment including the intra-

tumoral immune cell densities [1]. As a result, many researchers suggested that preci-

sion immuno-therapy approaches should take STK11 status of individual tumors into 

consideration [3–5]. In recent years, deep-learning-based methods have been proved to 

be able to capture morphological features on tumor images that are associated with mo-

lecular features such as mutations, subtypes, and immune infiltration. For example, a 

customized multi-resolution CNN model showed its power in classifying molecular sub-

types in endometrial cancer [6]. An InceptionV3-based model was able to identify BRAF 

mutation in malignant melanoma tissue [7]. A similar architected model was also capa-

ble of predicting non-small-cell lung cancer subtypes with high accuracy [8]. In other 

cancer types that are more heterogeneous such as glioblastoma and colon cancer, CNN-

based imaging model also showed its power in predicting critical morphological and 

molecular features such as G-CIMP and MSI [9,10]. Here, we trained a deep learning 

model that can determine LUAD patients’ STK11 mutation status based on histopathol-

ogy slides with high performance. Visualization of the key features learned by the model 

confirmed that STK11 mutation is associated with the density of immune cells near can-

cer cells. Practically, this model is capable of providing guidance to immunotherapy in a 

faster, more convenient, and less expensive way by examining histopathology images 

without doing sequencing analyses.  
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2. Materials and Methods 

 Inception-Renet-v2, a modified version of Inception-v4 with residual connection 

derived from the original InceptionNet, was used as the architecture of the deep learn-

ing model for this project [11–13]. Figure 1 shows the general workflow. 541 scanned 

diagnostic histopathology slides from 478 patients with STK11 mutation status were 

downloaded from Genomic Data Commons (GDC) of National Cancer Institute (NCI). 

The data were then separated into training (80%), validation (10%), and testing (10%) 

sets at per-patient level. Due to the large size of the slides, they were cut into 299-by-299-

pixel tiles at 20X magnification level and background was omitted. The model was 

trained from scratch at per-tile level with batch size of 64 and dropout keep rate of 0.3. 

The training process stopped when either training or validation loss did not decrease for 

more than 10000 iterations to avoid overfitting. When training loss reached minimum at 

some point, a 100-iteration validation was performed. The model was saved as the best 

performing one only when both training and validation losses were at minimum. The 

training time took about 3 days while the testing for 1 slide took less than 15 minutes. 

We used the NYU Langone Health Bigpurple high performance computing (HPC) plat-

form with a NVIDIA Tesla V100 GPU and the model is also possible to be trained and 

tested on other platforms such as google colab. 

 

Figure 1. The general workflow of data preprocessing, model training and evaluation, and feature 

visualization.  

3. Results 

 The model achieved per-slide level area under ROC curve of 0.795 (95% CI: 0.601-

0.988) and 0.696 (95% CI: 0.692-0.7) at per-tile level (Figure 2). The top-1 accuracy with 

cutoff at 0.5 was 0.855 (95% CI: 0.742-0.931) at per-slide level and 0.837 (95% CI: 0.835-

0.839) at per-tile level. In addition, we also tried an InceptionV3-based model, but the 

performance was lower with a per-slide level area under ROC curve of 0.64. Considering 

this is a molecular feature prediction task and the labels are at per-slide level only, we 

believe that these results are quite decent and successful. 

Figure 2. Per-slide level ROC curve (left) and per-tile level ROC curve (right) of the trained Incep-

tion-Resnet-v2 model applying to the test set. 
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 The activation maps before the last fully-connected layer of 30000 randomly se-

lected tiles in test set were recorded. These activation maps were then projected onto a 

tSNE plot (Figure 3). To have a more straightforward visualization of the features, we 

put thresholds on prediction scores and randomly selected tiles to represent their corre-

sponding local binned areas on the tSNE space (Figure 4). An experienced pathologist 

with no previous knowledge in machine learning interpreted patterns in Figure 4 that 

tiles in the positively predicted clusters (STK11-mutated) generally showing plenty of 

cancer cells with very few immune cells while a large number of immune cells were pre-

sent around the cancer cells in the negatively predicted areas (wild type). In addition, 

most cancer cells were observed in the areas with high positive or negative prediction 

scores, suggesting that cancer cells were the main focus of the model in making deci-

sions. These findings validated the molecular studies that STK11 mutation decreases the 

immune response in LUAD patients. 

 

Figure 3. 30000 tiles were randomly sampled from the test set. The activation maps before the last 

fully connected layer of these tiles were represented in the tSNE plot. The color of labels indicating 

the positive prediction scores of the tiles. Clusters of predicted STK11-mutated and wild type tiles 

can be observed. 
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Figure 4. Randomly selected tiles represent binned areas on tSNE space (full resolution figure in 

supplement). Examples of STK11 mutated and wild type tiles are shown. Cancer cells are the main 

focuses in these tiles. Predicted STK11 mutated tiles show no immune cells (smaller and darker 

cells) around cancer cells (larger, lighter, and irregular shape cells) while plenty of immune cells 

are present in predicted wild type tiles. 

4. Discussion 

 The model we trained showed capability in predicting STK11 mutation in LUAD 

patients based on histopathology images. It has a great potential in providing guidance to 

immunotherapies in a faster, cheaper, and more convenient way without any sequencing 

analyses. Scientifically, it confirms the molecular level findings that STK11 mutation leads 

to less immune response in LUAD tumor from histopathology perspective and links a 

critical lung cancer molecular feature to a previously unknown morphological pattern. 

Moving forward, we will continue working on building the connection between cancer 

molecular features and morphological features using deep learning techniques. 

 

Supplementary Materials: The following supporting information can be downloaded at: 

www.mdpi.com/xxx/s1, Figure S1: general workflow 
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