
• Article 

Enrichment of the information extracted from  

hyperspectral reflectance images for noninvasive phenotyping 

Alexei Solovchenko 1,5*, Boris Shurygin 2, Andrey Kuzin 2, Vitaly Velichko 3, Olga Solovchenko 1, Andrey Krylov4,5 

and Alexandr Nikolenko 3 

1 Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; 

solovchenko@mail.bio.msu.ru (A.S.), olyasov@mail.ru (O.S.) 
2 Michurin Federal Scientific Center, 393766 Michurinsk, Russia; shu_b@mail.ru (B.S.), 

andrey.kuzin1967@yandex.ru (A.K.), alex_nikolenko@mail_ru (A.N.) 
3 Faculty of Agronomy, Stavropol State Agrarian university, 355017 Stavropol, Russia; vit-velichko@mail.ru 

(V.V.) 
4 Faculty of Computational Mathematics & Cybernetics, Lomonosov Moscow State University, 119234 

Moscow, Russia; kryl@cs.msu.ru (A.Kr.) 
5 School "Brain, Cognitive Systems, Artificial Intelligence", Lomonosov Moscow State University, 119234 

Moscow, Russia 

 

* Correspondence: solovchenko@mail.bio.msu.ru; Tel.: +7-495-939-2587 

Simple Summary: Assessment of plant traits (phenotyping) is central to modern methods of 

accelerated breeding of crop plants, including fruit crops, for improving productivity and stress 

resilience. Certain aspects of plant phenotyping are also integrated into advanced practices of 

precision agriculture and orchard management. The need of rapid screening of many parent forms 

and hybrids as well as production orchard monitoring calls for development of automated, ideally non-

invasive express methods for high-throughput plant phenotyping. Hyperspectral reflectance imaging is 

an emerging method allowing to capture a vast amount of the structural, biochemical, and phenological 

information about crop plants. The advent of low-cost hyperspectrometers made this method affordable 

for a broad community of plant scientists, breeders, and growers. However, extracting sensible 

information from hyperspectral images remains a challenge in many cases. Here we report on using 

reflectance indexes developed for remote sensing of vegetation for extraction quantitative information 

on apple fruit ripeness (primary and secondary carotenoid content) and coloration (content of 

anthocyanins and chlorophylls) from hyperspectral images obtained under ambient conditions in the 

field and under controlled conditions in the laboratory. Our results make hyperspectral reflectance 

imaging more accessible for researchers and practitioners who need to employ plant phenotyping in their 

work. 

Abstract: Hyperspectral reflectance imaging is an emerging method for rapid non-invasive 

quantitative screening of plant traits. This method is essential for high-throughput phenotyping and 

hence for accelerated breeding of crop plants as well as for precision agriculture practices. However, 

extraction of sensible information from reflectance images is hindered by the complexity of plant 

optical properties, especially when they are measured in the field. We propose using reflectance 

indices (Plant Senescence Reflectance Index, PSRI; Anthocyanin Reflectance Index, ARI; and 

spectral deconvolution) previously developed for remote sensing of vegetation and point-based 

reflectometers to infer the spatially resolved information on plant development and biochemical 

composition using ripening apple fruit as the model. Specifically, the proposed approach enables 

capturing data on distribution of chlorophylls and primary carotenoids as well as secondary 

carotenoids (both linked with fruit ripening and leaf senescence during plant development) as well 

as the information on spatial distribution of anthocyanins (known as stress pigments) over the plant 

surface. We argue that the proposed approach would enrich the phenotype assessments made on 

the base of reflectance image analysis with valuable information on plant physiological condition, 

stress acclimation state, and the progression of the plant development. 
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1. Introduction 

An important general task of plant performance monitoring is recording the 

progression of plant development (phenological phases); crucial indicators of the produce 

quality include leaf senescence and fruit ripeness. Monitoring these parameters is 

normally accomplished by visual observations and scoring [1,2], although a trend for 

automation via image analysis with machine learning algorithms becomes increasingly 

evident [3-7]. At the same time, developmental changes in pigment composition as well 

as those induced by  environmental stresses and phytopathogen attacks manifest 

themselves as specific changes in plant reflection properties [8-10] linked with the changes 

in pigment content and composition. A valuable complement to  visual assessments is 

provided by biochemical markers such as content and composition of the photosynthetic 

and photoprotective pigments displaying profound, directional changes during plant 

development, stress acclimation and damages [8,11-14]. That makes spatially resolved 

information an important asset and  proximal sensing of the information on spatial 

variation– a powerful tool in the array of methods of plant phenotyping and crop breeding 

[15-21]. The approaches based on automated proximal sensing are also getting increasing 

usage in precise agriculture [6,7,15-17]. 

Indeed, wet biochemical analyses are laborious, expensive and in some cases even 

not feasible at all (e.g., when continuous monitoring of the same set of objects is required). 

Therefore, non-invasive approaches to retrieval of plant pigment composition on the scale 

of individual organs (leaves and fruits) as well as canopies based on the analysis of 

reflected light spectra have been suggested [18,19]. Unfortunately, despite spectral 

sensing of vegetation having a strong and established foundation,  most of the earlier 

techniques were developed for “point-based” measurements [20]. In such measurements, 

the reflected signal is captured (and hence inevitably averaged) over a sampling area of 

plant surface encircled by the field of view (FOV) of a detector. This is a critical 

disadvantage as the  heterogeneity of traits being monitored is inherent to many, if not  all 

plant objects, and especially pronounced in fruit-bearing crops [21,22]. This limitation can 

be circumvented by applying imaging hyperspectrometers (IH) capable of capturing 

hyperspectral reflectance images (HRIs) of the whole plant or plant organ(s) with a 

sufficient spatial resolution [19,23,24]. 

 Extracting information from HRIs that is not just pertinent to the plant phenotyping 

but also readily interpretable is of a special concern. Currently, machine learning-based 

methods of advanced image analysis as well as other mathematical tools are becoming 

widespread [25-30]. Although quite efficient in many cases, these methods normally do 

not take physiologically relevant information as an input. On the other hand, a significant 

effort has been invested into the development of vegetation indexes (VIs). VIs allow to 

retrieve quantitative information on vegetation conditions, including pigment 

(chlorophylls, Chl, carotenoids, Car, and anthocyanins, AnC) concentration from the 

point-based reflectance measurements as well as from HRIs recorded from satellite and 

UAV-based airborne platforms. That found extensive use in the remote sensing of 

vegetation [8,31]. The most widespread VIs are the VIs for Chl assessment such as NDVI, 

further complemented by the VIs for the assessment of plant development (leaf 

senescence and fruit ripening) [10,32]. However, while overall development of combining 

spectral and spatial features for HRI processing could be described as blooming, these VIs 

have not yet been tested, to the best of our knowledge, for the processing of HRIs of 

singular plant objects and organs. 

In this work, we tested the VIs such as CI700, PSRI, and ARI initially developed for 

the retrieval of the foliar and fruit Chl content, Car/Chl ratio, and AnC [31,33] to extract 

quantitative information from HRIs about the pigment content. In addition, we have 
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tested an earlier developed approach based on the  reflectance spectra deconvolution [12] 

to extract physiologically relevant information on fruit ripeness from HRI. Special 

attention has been paid to the demonstration of the heterogeneity of plant objects 

regarding their pigment composition and its relevance as an additional source of 

information on plant physiological condition. 

 

2. Materials and Methods 

2.1. Plant material 

2.1.1. Lettuce leaves 

Lettuce (Lactuca sativa L.) variety “Revolution” plants were grown from 

commercially available seeds (Bayer, Nunhems) first in a nursery on a turf substrate (for 

15 d) and then in 1.2-L vessels in the same substrate (for 20 d) in vertical greenhouses 

(Panasonic, Japan). The fresh-cut plants were kept in a climatic chamber (Liebherr, 

Germany) at a constant temperature of 15 °C, relative humidity of 45%, and illuminated 

by white fluorescent tubes with PAR photon flux density of 50 µmol quanta m–2 s–1 as 

measured by LI-850 quantum meter (LiCOR, USA) at the leaf surface level. The 

measurements on the plants were conducted at 0, 1, 4, 7, and 11 days of the experiment. 

Three experiments, each made in triplicate, have been conducted with this object (n = 9). 

 

2.1.2. Apple fruits and chemical treatments 

Fruit of apple (Malus × domestica Borkh.) (n = 30) variety “Golden Delicious” (yellow-

green-colored) or “Ligol” were grown either at an experimental orchard of Michurin 

Federal Scientific Center (Michurinsk, Tambov region, Russia) or in the experimental 

orchard of the Botanical Garden of Lomonosov Moscow State University. Depending on 

the measurement goal, the fruit were imaged while they attached to the tree or after three 

months of storage at +4 °C in conventional atmosphere. 

Apple fruit ripeness was assessed and expressed in form of Streif Index (SI) 

representing a quotient of the apple fruit firmness divided by the product of starch index 

times Total Soluble Solids concentration (TSS): 

𝑆𝐼 =
𝐹𝑖𝑟𝑚𝑛𝑒𝑠𝑠

(𝑆𝑡𝑎𝑟𝑐ℎ 𝑖𝑛𝑑𝑒𝑥) ∗ 𝑇𝑆𝑆
 

Fruit firmness was determined with a digital penetrometer FHT-05 (FHT, China). TSS 

were determined with a manual refractometer BRIX COK-21 (Aqua-Lab, Russia). 

To perform the starch-iodine test, apples were cut in half across equator, dipped into 

iodine solution (1%) and incubated for the development of color for 3-5 min. The 

coloration intensity was evaluated as starch index score [34]. 

The apple plants were treated during their ripening on tree with Prohydrojasmon, 

PHJ (propyl-3-oxo-2-pentylcyclo-pentylacetate) preparation (stock solution of 10%, 

mass : volume) improving fruit red coloration by enhancing anthocyanin biosynthesis in 

the apple skin [35]. Th following treatments were carried out: control (zero PHJ), treatment 

#1  (1 L ha-1 14 d and 7 d before harvest), treatment #2  (2 L ha-1, 14 d and 7 d before harvest). 

2.2. Spectral reflectance measurements 

2.2.1. Reflectance spectra measurement with a conventional spectrophotometer 

Diffuse reflectance spectra of apple fruits were recorded at a 400–800 nm range with 

an Agilent Cary Bio 300 (Agilent, USA) spectrophotometer equipped with an integrating 

sphere attachment (internal diameter 100 mm) against Spectralon plate as a 100% 

reflectivity standard.  

2.2.2. Hyperspectral reflectance imaging 

The hyperspectral reflectance data-containing images of the lettuce plants and apple 

fruits were captured with a frame-based imaging hyperspectrometer IQ (SPECIM, 

Finland). For each pixel of the hyperspectral image, a reflectance spectrum (spectral range 

400–1000 nm; spectral resolution 1 nm; 512 × 512 pixels/frame) was recorded against a 
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reflectivity standard made of Spectralon. Objects were  illuminated by two 150 W cold 

daylight fluorescent lamps mounted in softboxes,  supplemented with one 100 W 

incandescent lamp. 

2.3. Spectral data processing 

2.3.1. Reflectance indices calculation 

The reflectance indices for hyperspectral datasets were calculated essentially as 

described previously [36,37]. Briefly, for each pixel of the hyperspectral images, two 

indices were computed. The first index, CI700, is a sensitive indicator of Chl content, [Chl]; 

it was defined as follows [11]: 

 
𝐶𝐼700 =

𝑅800

𝑅700

, 
(1) 

where R800 is the reflectance in a band in the near infra-red (NIR) region unaffected by the 

pigment absorption of light and R700 is the reflectance in the Red Edge region of the red 

Chl absorption maximum [31]. 

The second spectral index calculated was PSRI, an index tightly related with 

[Car]/[Chl] ratio in the samples and, ultimately, indicative of the rate and stage of 

senescence of plant objects [11,32,33]: 

 
𝑃𝑆𝑅𝐼 =

𝑅678 − 𝑅480

𝑅800

, 
(2) 

where R800 is the reflectance in a band in the near infra-red (NIR) region unaffected by 

pigment absorption of light, R480 is the reflectance in a band affected by both [Car] and 

[Chl], and R678 is the reflectance in the band of the red Chl absorption maximum. 

For the processing of HRI, the point-based PSRI index was adapted as described in 

[27] and transformed to the Hyperspectral image PSRI (HPSRI) as follows: 

 𝐻𝑃𝑆𝑅𝐼 = ∫ 𝑃𝑆𝑅𝐼
0.5

0.2

(∫ 𝑃𝑆𝑅𝐼
0.1

0

)

−1

 (3) 

 

2.3.2. Deconvolution of reflectance spectra 

An alternative approach to the extraction of sensible information from the 

hyperspectral reflectance images was based on a previously developed technique for 

spectral reconstruction of the spectral reflectivity of plant objects such as apple fruits [12]. 

This technique involves calculation of the best (in the sense of L2 norm) approximation to 

the reflection spectrum as a linear combination of the known spectra of the following 

pigment pools: thylakoid-bound chlorophylls and carotenoids, RC(λ), cuticular/vacuolar 

phenolics, RP(λ), extrathylakoid carotenoids, RX(λ), and vacuolar anthocyanins, RA(λ), as 

well as a featureless scattering background. These known spectra are denoted below as 

fiducial spectra [12]. This model allows to simulate reflection spectra of plant objects 

widely differing in pigment content and composition: 

𝑅′−1(𝜆) =  a ·  𝑅C
−1(𝜆) +  b ·  𝑅𝑃

−1(𝜆) +  c ·  𝑅𝑋
−1(𝜆) +  d ·  𝑅𝐴

−1(𝜆); a, b, c, d ≥ 0 (4) 

where R´(λ) is the reconstructed reflectance spectrum; RC(λ), RP(λ), RX(λ), and RA(λ) — 

the fiducial spectra, and a–d are on-negative fitting coefficients. The fitting coefficients 

were adjusted by the least squares approach (implemented in Microsoft Excel spreadsheet 

using the Solver tool) to minimize 𝜌, the sum of squares of the residuals in the spectral 

range 400–750 nm (if not stated otherwise):  

𝜌 = ∑ [𝑅(𝜆𝑖) − 𝑅´(𝜆𝑖)]2𝑛
𝑖 , (5) 

where 𝜌  is the sum of squared residuals; 𝑅(𝜆𝑖)  and 𝑅´(𝜆𝑖)  are the measured and 

reconstructed reflectance coefficients at the wavelength λi.  

Relative contributions by the different pigment pools into the total reflection as 

quantified by the fitting coefficients are shown to be sensitive indicators of apple fruit 

ripening and accumulation of secondary carotenoids under stress conditions [12]. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 December 2021                   doi:10.20944/preprints202112.0325.v1

https://doi.org/10.20944/preprints202112.0325.v1


 

3. Results and discussion 

We tested the feasibility of HRI processing with the approaches previously 

developed for processing of  “point-based” reflectance spectra of plants using the models 

of vegetable and fruit crops comprised by fresh-cut lettuce leaves and apple fruits, both 

stored and attached to a tree. Below, we present the results of our attempts to extract 

quantitative information on different aspects of plant development and functioning from 

HRI data. 

3.1. Leaf senescence 

Higher plants contain in their chloroplasts two types of chlorophylls and several 

carotenoids as principal pigments involved in light harvesting and photochemical 

reactions. Under  stress conditions and/or in a course of senescence an induction of the 

carotenoid and phenolic biosynthesis frequently takes place. The absorption bands of leaf 

pigments span over the visible and UV parts of the solar spectrum and there is a 

considerable overlap between the absorption bands of different pigments. Chlorophylls 

are the primary photosynthetic pigments capturing and transforming light energy during 

photosynthesis; carotenoids (Car) are important both for light harvesting and 

photoprotection [38].  

In the experiments with lettuce, we followed  changes in the reflective properties 

accompanying the transformation of the pigments, Chl and Car, during 11-day storage of 

fresh-cut leaves (Figures 1 and S1; for more details, see Methods and [37]). Towards this 

end, we have measured the distribution of foliar Chl over the leaf surface using the 

Chlorophyll Index (CI) based on the reflectance in the Red Edge band (700 nm), CI700, 

featuring a wide dynamic range and high linearity in a broad range of Chl contents (see 

e.g. [31]). 

The CI700 index images  manifested  high heterogeneity of the studied leaves 

regarding their Chl content, which was evident throughout the observation period. This 

heterogeneity was apparent as a broad peak in the histogram reflecting the distribution of 

Chl contents over the leaf surface as captured by the HRI (Figure 1a). This heterogeneity 

was apparent on the spectral index images as well (see the false-colored images in Figure 

1a): the regions adjacent to the leaf veins tended to have lower CI700 and the regions 

between the veins displayed higher CI700 values and hence higher Chl content. 

The incubation of the fresh-cut plants for 11 days resulted in a gradual change of the 

shape of distribution: specifically, additional modes appeared on the histogram and the 

overall modal value shifted towards lower CI700 values (see the histograms in Figure 1a). 

Overall, the observed changes are consistent with degradation of Chl normally occurring 

during the senescence of leaves.  

In addition to the monitoring of plant condition based solely on changes in Chl 

content, we have further investigated the approach to gauging plant senescence and fruit 

ripening based on the Plant Senescence Reflectance Index (Figure 1b; [32]). The 

applicability of PSRI for HRI processing, particularly to the HRIs of salad, has been 

established recently [37]. Here, we have analyzed the connection between heterogeneity 

and changes in distribution of  PSRI values over the leaf surface (Figure 1b). In the 

beginning of the experiment (day 0),  PSRI values calculated for the most of the leaf surface 

were uniformly low. Later, the distribution of the PSRI values changed to a bimodal one 

suggesting (i) co-existence of physiologically disparate leaf parts at different stages of 

senescence and (ii) gradual expansion of more senescent regions. 

The analysis of the HRIs of fresh-cut lettuce leaves supports the possibility of 

assessing the stage of senescence in plants by registering changes in their optical 

properties, i.e. non-destructively.  This approach also allows for the visualization of  

heterogeneity hidden within an individual plant, which hardly can be detected visually. 
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(a) (b) 

Figure 1. Non-invasive monitoring of lettuce leaf senescence for 11 days with hyperspectral reflectance imaging. (a) The 

changes in the distribution of foliar Chl content (assessed via CI700) over the leaf surface. Note (i) the shift of the global 

mode towards lower Chl contents and (ii) the appearance of bi- or multimodal distributions; (b) Expansion of  senescent 

areas ( as evinced by high PSRI  values) over the leaf surface. Note that even at the 11th day of observation, different regions 

of leaf surface exhibit considerable heterogeneity regarding their stage of senescence. In the inserts at the top of the figure, 

false colored images of the same plant taken in the beginning and at the end of the experiment are shown; pixel colors 

reflect the values of corresponding indices (CI700 or PSRI). 

3.2. Fruit ripening 

Due to its relatively low pigment content and high reflectance, apple fruit represents 

a simple natural system in which general plant developmental and/or stress-induced 

pigment dynamics could be followed non-destructively, quantitatively and in detail 

[11,13,39-44]. Similarly to leaves, fruit optics is determined by the overall content of 

pigments, their local concentration, interactions and distribution within cell structures, as 

well as by the role played by scattering in defining internal optical properties. Numerous 

studies have shown remarkable and specific changes of the whole-fruit spectral reflection 

during ripening, adaptation to excessive solar radiation, photo-oxidative damage and 

development of physiological disorders [11,13,39-44]. 

Ripening apple fruit detached from a tree (see Materials and methods) served as an 

another model of pigment transformation manifesting plant developmental changes [45]. 

Previously we have found that changes in the content of both chlorophylls and 

carotenoids rather than tracking either of these pigments singularly should be used to 

follow both on- and off-tree ripening in apple fruit. Then, in the course of off-tree ripening, 

chlorophyll degradation was found to be strongly tied with the accumulation of 

carotenoids. Acordingly, carotenoid-to-chlorophyll ratio being biologically significant 

regardless of the harvest date and pigment content of fruit [11,13,42]. For this experiment, 

a single batch of fruits with different maturity (as assessed by the destructive tests) have 

been selected. Apart from the conventional color (RGB) images, hyperspectral images  of 

the same fruit differing in their maturity were taken. Then, vegetation index images have 

been calculated from the spectra contained in these HRIs. 

The RGB images of the apples of different maturity were visually similar, so it was 

very difficult to determine the maturity stage from them with any degree of confidence 

(Figures 2a–c). Further analysis has been conducted on the HRIs taken from the same fruit. 

4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5

0.00

0.01

0.02

0.03

0.04

0.05

leaf senescence

d.1

d.4

d.4

d.7

d.7

d.11

R
e

la
ti
v
e
 l
e

a
f 

a
re

a

CI700 value (Chl content)

d.0

0.0 0.1 0.2 0.3 0.4 0.5

0.00

0.03

0.06

0.09

0.12

leaf senescence

d.1 d.4

d.1

d.7

d.7

d.11

R
e

la
ti
v
e
 l
e

a
f 

a
re

a

PSRI value (Car/Chl ratio)

d.0

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 21 December 2021                   doi:10.20944/preprints202112.0325.v1

https://doi.org/10.20944/preprints202112.0325.v1


 

The first part of the analysis involved the calculation of  PSRI index images (Figures 2d–

f). The second part included pixel-wise deconvolution of the reflectance spectra 

comprising the HRIs of the apple fruits according to the previously developed algorithm 

(see the Methods and [12]). As a result, spectral contributions of the pigments typical of 

unripe fruit, e.g. chlorophyll and primary (photosynthetic) carotenoids, were estimated 

for each pixel constituting the HRIs of corresponding fruits (Figures 2g-i). 

 

   

 

(a) (b) (с) 

    

(d) (e) (f) 

 
   

(g) (h) (i)  

Figure 2. Comparison of changes in the visual appearance of ripening apple fruit (a–b) with the results of monitoring of 

fruit ripeness with different approaches to hyperspectral reflectance imaging (c–i). (a–c) RGB images of the fruit; (d–f) 

images representing the PSRI index values; (g–i) images representing the spectral contributions of chlorophylls and 

primary carotenoids to light reflection by the fruit. 

The comparison of the resulting index images has shown that the fruits at more 

advanced stages of ripening were characterized by larger areas of the fruit surface with 

increased PSRI values (Figures 2d–f) and by dwindling areas characterized by a large 

content of the photosynthetic pigments.  

To obtain a quantitative understanding of the changes observed on the calculated 

index images, we have analyzed  histograms of the corresponding spectral parameters 

(Figures 3 and 4). The histograms reflecting the distribution of the PSRI index values in 

the  index images are presented in Figure 2. Apples of different maturity have exhibited 
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different positions of the normalized PSRI distribution maxima, which were tightly 

correlated with the Streif index (r > 0.7, Figure 3a).  

The values of the PSRI index version adapted to HRI analysis, HPSRI [22], computed 

on the basis of the corresponding HRI [10], correlated with the corresponding values of 

the Streif index; the destructive assay of apple fruit maturity served as the “ground truth” 

for this analysis (see Materials and Methods). The close relationship between  parameters 

derived from the HRI with  fruit maturity evaluated destructively supports the possibility 

of the non-invasive ripening assessment using the indices correlated with the Car/Chl 

ratio. Another important outcome of this analysis is finding a plausible approach to the 

visualization of the inherent heterogeneity of fruit tissues regarding its ripeness. This 

finding is compatible with our previous finding of ripening kinetics of sunlit and shaded 

sides of a single apple fruit being different [13]. 

 

   

 

(a) (b) 

Figure 3. Non-invasive assessment of apple fruit ripening with hyperspectral reflectance imaging. (a) The changes in the 

distribution of PSRI index value indicative of Car/Chl ratio over the surface of representative fruits from the studied 

batches (see Methods). Note (i) the shift of the modal value towards lower Chl contents and (ii) appearance of bi- or 

multimodal distributions; (b) relationship of the hPSRI index value calculated using the hyperspectral reflectance images 

of the same fruits with the destructive assessment of ripeness (the Streif index). The numbers of apple fruit batches 

featuring different actual ripeness are indicated near the data points. 

An alternative approach to the analysis of the reflectance spectra extracted from the 

hyperspectral images involved their deconvolution using a set of fiducial spectra (see 

Materials and Methods and [12,46]). This approach is based on an approximation to the 

whole apple fruit reflection spectrum, which could be achieved with known spectral 

properties of basic pigment pools and a simple assumption on the shape of the featureless 

non-selective scattering spectrum. The shapes of the fiducial spectra are also assumed to 

remain essentially the same at different stages of fruit development. It allows to estimate 

relative spectral contribution by individual pigment pools such as Chl and associated with 

them Car. 

As a result, sets of coefficients characterizing the contribution of each pigment group 

represented by the corresponding fiducial spectrum into the measured spectrum from 

each pixel of the hyperspectral image. The set corresponding to the spectral contribution 

of photosynthetic (primary) carotenoids declining in the progress of fruit ripening (Figure 

4a; see also [13,14,47]), has been selected for further analysis. The analysis of distribution 

of the coefficient’s values revealed the characteristic shift of the maximum (modal value) 

of the distribution to lower values of the corresponding coefficient (Figure 4b). These 

changes correspond to the increase in the relative proportion of the fruit with significant 

accumulation of the esterified forms of secondary carotenoids typical of apple ripening at 

the expense of primary (photosynthetic) Car and Chl [13,46,47]. Some lines of evidence 

suggest that these changes proceed along with the induction of carotenogenesis in apples 
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that involves the buildup of xanthophylls (mainly violaxanthin and its fatty acid esters) 

occurring in chloroplast/chromoplast plastoglobuli [47]. Collectively, these results as well 

as the experiments with long-term fruit storage suggest that relative contribution of Chl 

and Car into whole fruit spectral reflection could serve as a sensitive indicator of apple 

ripening. 

 

   

 

(a) (b) 

Figure 4. Non-invasive assessment of apple fruit ripening with hyperspectral reflectance deconvolution (for further 

details, see Methods and [12]). (a) The changes in the distribution of the spectral contribution of chlorophylls and 

associated with them primary carotenoids to overall reflectance of the representative fruits from the studied batches. Note 

the shift of the modal value towards lower Chl and primary Car contents; (b) relationship of the contribution the 

photosynthetic pigments (inversely related with fruit ripeness) estimated through hyperspectral reflectance 

deconvolution with the destructive assessment of ripeness (the Streif index). The numbers of apple fruit batches featuring 

different actual ripeness are indicated near the data points. 

 

3.3. Anthocyanic coloration 

An important phenotypic manifestation in plants is red coloration of their leaves 

and/or fruits determined by the presence of anthocyanin pigments [48-51]. It frequently 

manifests acclimatory responses to diverse stresses and hence increased resilience of 

plants, including crop plants, to these stresses [49,52]. The formation of anthocyanins in 

apples (mainly cyaninidin-3-galactoside) is genetically determined but may be influenced 

by various factors, including high irradiance. The red coloration of fruit is also of practical 

significance since red coloration increases fruit acceptance by customers [53]. 

The approach to quantitative monitoring of anthocyanin content in plant tissues 

suggested in this work is based on the previously developed Anthocyanin Reflectance 

Index. ARI [56]. We tested it using red apple fruit as the model and the results of a field 

experiment aimed at the modulation of apple red coloration with the PHJ treatment 

(Figure 5; see also Methods). 

The HRI with the images of fruit have been processed by calculating ARI index for 

each pixel comprising images of the apple fruits. The resulting datasets were integrated 

and recalculated using a model previously developed for non-invasive estimation of 

anthocyanin content in apple fruit peel [11]. As a result, we obtained false-colored images 

highlighting the distribution of AnC over fruit surface (Figure 5b) as well as integral 

estimations of the average AnC content expressed per unit fruit surface (Figure 5c). These 

results allow one to visually estimate the abundance and heterogeneity of fruits regarding 

their AnC content. More systematic, quantitative estimations that represent AnC content 

in the whole plant organs or individual plants can be obtained this way. 
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(a) 

 

   

 

(b) (c) 

Figure 5. Non-invasive assessment of anthocyanin (red) coloration of apple fruits with hyperspectral reflectance imaging. 

(a) visual appearance of representative apple fruits in an orchard; (b) false-colored image representing the distribution of 

the values of the ARI index over the scene shown in panel (a); the estimation of the effect of the PHJ treatments (see 

Methods) on the average anthocyanin content per unit fruit surface area (see the text for explanation). 

 

4. Conclusions 

This study is an extension of our previous effort aimed at deepening of current 

understanding of in vivo optical properties of principal pigment pools responsible for 

light absorption. Towards this end, we have leveraged the previously developed 

vegetation indices for inferring quantitative information on pigment content and 

distribution over plant surface from their hyperspectral reflectance images [10,22]. The 

analysis of the cases presented above supports the applicability of the approaches 

developed for quantitative interpretation of conventional “point-based” reflectance 

measurements for extracting of spatially resolved information on pigment composition of 

plants. An added benefit of the proposed approach to the refining of HRI with the VIs 

developed for remote sensing applications is comprised by sensitivity and selectivity 

ensuring the enrichment of the resulting images with information on plant trait in 

question. 

Processing of the HRI of the model plant objects employed in this work with 

reflectance indexes CI700, PSRI, hPSRI, and ARI allowed to capture the complex patterns 

of pigment transformation during leaf senescence and fruit ripening. Images rendered 

from the HRI with the reflectance indexes mentioned above revealed the inherent 

heterogeneity of physiological and biochemical traits such as pigment content and 

composition. This kind of heterogeneity normally cannot be revealed with conventional 

point-based spectral measurements and “wet” analytical methods.  

However, the application of the VIs to HRI analysis should be done with caution. 

Although many VIs employ an internal normalization to cope with diverse interferences, 

a routine quality-control of the reflectance spectra should be used to exclude the spectra 

distorted from under- or overexposure of plant object and/or the reflectivity standard. 

Another important issue is comprised by the choice of suitable post-processing of the HRI 
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processing results. Arguably, more advanced analysis of the VI values calculated on the 

basis of HRI is necessary beyond simple averaging. Thus, confident interpretation of plant 

optical properties, also in the context of HRI analysis requires knowledge of spectral 

features of pigment absorption in vivo. Here, we demonstrated that the basic models 

developed with such knowledge in mind can be applied to HRI of leaves and fruits with 

a wide variation in pigment content and composition, at different stages of their 

development.  

To conclude, the HRI processing with the VI developed for remote sensing of 

vegetation can potentially yield a plethora of information useful for automated non-

invasive phenotyping of crop plants. This information would be a welcome complement 

to currently widespread methods of morphological analysis of plant images with machine 

learning algorithms enriching their results with quantitative information on plant 

physiological condition and biochemical composition. This approach would find a broad 

application also in precision agriculture e.g. in gauging of fruit quality and ripening. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1: 

Previously obtained evidence including the record of the changes in average values of the indicative 

of leaf tissue senescence index PSRI during (a) storage of and (b) decline of [Chl] (indicative of leaf 

discoloration) in the stored non-sealed (closed symbols) and sealed (open symbols) fresh-cut lettuce 

leaves. 
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