On a problem of infinite divisibility

Lev B. Klebanov a

Abstract

Let f(t) be a characteristic function. The question on infinite divisibility of $g_{2k}(t) = f^{(2k)}(t)/f^{(2k)}(0)$ is considered. There are given the condition for that function not to be infinite divisible. Some examples of infinite divisibility of $g_{2k}(t)$ are given.

Key words: characteristic function; infinite divisibility; singularities

1 Introduction

Suppose that X is a random variable possessing finite moment of even order 2k and f(t) is its characteristic function. Then $g_{2k}(t) = f^{(2k)}(t)/f^{(2k)}(0)$ is a characteristic function again. In the case when X is positive (or negative) random variable it is possible consider $g_k(t) = f^{(k)}(t)/f^{(k)}(0)$ when the k^{th} moment exists. An easy question arises. Under what conditions $g_{2k}(t)$ is infinite divisible characteristic function? Clearly, it is possible to consider similar question not for a fixed k only but for a finite or infinite set of such numbers. The aim of this publication is to consider these questions in some details and propose hypothetical answers.

2 Negative results

Let us start with a negative result.

^aDepartment of Probability and Mathematical Statistics, Charles University, Prague, Czech Republic. e-mail: levbkl@gmail.com

Theorem 2.1. Let f(t) be a characteristic function of a random variable X having a symmetric (around origin) distribution. Suppose that $\mathbb{E}X^{2m} < \infty$ for an integer $m \geq 1$. Then the characteristic functions $g_{2k}(t) = f^{(2k)}(t)/f^{(2k)}(0)$ (k = 1, ..., m) are not infinite divisible.

Proof. Consider the case m=1. Suppose the opposite. If $g_2(t)$ is infinite divisible it must be positive over the whole real line. Therefore, f(t) must be concave on the whole real line. In this situation its graph should be under a tangent drawn to it at an arbitrary point $(t_o, f(t_0))$. However, it contradicts to the boundness of f(t). Therefore, g_2 has zeros and cannot be infinite divisible.

The similar arguments are applicable to each pair $g_{2k-2}(t)$, $g_{2k}(t)$ for $k = 1, \ldots, m$.

Obviously, the proof essentially uses the reality of symmetric characteristic function on the real line. However, the fact remains true for entire characteristic functions¹. More precisely, the following result holds.

Theorem 2.2. Let f(t) be entire characteristic function of non-degenerate distribution. No pair of the functions $g_{2k}(t)$, $g_{2s}(t)$ ($0 \le k < s \le m$) may consists of infinitely divisible characteristic functions.

Proof. The statement is a simple consequence of the result by Tumura and Clunie (see [2]). Really, if f(t) is entire characteristic function then all g_{2k} are entire functions. It is known (see, for example, [1]) the entire infinite divisible characteristic function has no zeros on the whole complex plain. From Theorem 3.8 [2] it follows that $f(t) = \exp(At + B)$ in contradiction with non-degenerate character of the corresponding distribution.

From Theorem 2.2 it follows that characteristic functions of the normal and Poisson distributions do not possess the property of infinite divisibility of $g_{2k}(t)$.

3 Positive examples

Here we give some examples of infinite divisible characteristic functions f(t) for which one or more functions $g_{2k}(t)$ (k > 0) are infinite divisible too.

¹For the definitions and properties see [1]

Example 3.1. The main positive example is characteristic function of Gamma-distribution

$$f(t) = \frac{1}{(1 - iat)^{\gamma}}, \quad a > 0, \quad \gamma > 0,$$
 (3.1)

which is infinite divisible for all values of the parameters. It is clear that $g_k(t)$ is also characteristic function of the Gamma-distribution with different parameter γ and therefore is infinite divisible. Note that k is not supposed to be even number.

It is obvious that f(t) is an analytic function in the strip |Imt| < 1/a and can be analytically prolonged outside of it, but is not a meromorphic for non-integer γ . The function f(-t) possesses the same property as well.

The adding of a location parameter into the distribution with characteristic function f(t) has no impact on its infinite divisibility, but it will change the form of $g_{2k}(t)$.

Example 3.2. Suppose now that

$$f(t) = \frac{\exp\{ibt\}}{1 - it}, \quad (b > 0)$$
 (3.2)

is a characteristics of shifted exponential distribution (a particular case of shifted gamma-distribution). Then both f(t) and $g_2(t)$ are infinite divisible.

Proof. To (3.2) corresponds characteristic function

$$g_2(t) = \frac{e^{ibt}(2 - 2ib(i+t) - b^2(i+t)^2)}{(2 + 2b + b^2)(1 - it)^3}.$$
 (3.3)

We need to show (3.3) represent infinite divisible characteristic function. For the first glance it is not so because $g_2(t)$ has complex zeros. However, these zeros are outside of the strip of analyticity of $g_2(t)$, i.e. outside of the strip |Im(t)| < 1. The distributions with characteristic function g_2 is concentrated on semi-axis x > b. To verify infinite divisibility of g_2 let us use A.N. Kolmogorov representation of logarithm of the corresponding characteristic function:

$$\log g_2(t) = ict + \int_{-\infty}^{\infty} (e^{itu} - 1 - itu) \frac{dK(u)}{u^2},$$

where c is a constant and K(u) is a non-decreasing bounded function, $K(-\infty) = 0$. The finding of K(u) is based on the inversion of the Fourier transform

$$-\frac{d^2}{dt^2}\log g_2(t) = \int_{-\infty}^{\infty} e^{itu} dK(u).$$

However,

$$-\frac{d^2}{dt^2}\log g_2(t) = -\frac{3}{(i+t)^2} + b^2\left(\frac{1}{(-1+i+b(i+t))^2} + \frac{1}{(1+i+b(i+t))^2}\right).$$

Inverting Fourier transform we find

$$dK(x) = e^{-x} (3 - 2e^{-x/b}\cos(x/b))$$
 for $x > 0$

and 0 otherwise. The statement follows now from Kolmogorov representation.

Although we considered the case of shifted exponential distribution it is likely the similar hold for Gamma-distribution in general case.

The next example is connected to characteristic function of the negative binomial distribution

$$f(t, r, p) = \left(\frac{p}{1 - (1 - p)e^{it}}\right)^r, \quad 0 0.$$
 (3.4)

However, not all values of the parameters give suitable condition. Let us give a special example.

Example 3.3. Consider the function (3.4) for the case p = 1/2. It has form

$$f(t,r) = (2 - e^{it})^{-r}, \quad r > 0.$$
 (3.5)

Corresponding $g_2(t,r)$ is

$$g_2(t,r) = \frac{e^{it}}{(r+1)(2-e^{it})^{r+1}} + \frac{e^{2it}}{(2-e^{it})^{r+2}}$$

For the use of A.N. Kolmogorov representation we need its second logarithmic derivative:

$$-\frac{d^2}{dt^2}\log g_2(t,r) = \frac{2e^{it}(1+r)(8+4re^{it}+r(1+r)e^{2it})}{(-2+e^{it})^2(2+re^{it})^2} =$$
(3.6)

$$= \sum_{k=1}^{\infty} \frac{k(2+r-(-r)^k)}{2^k} e^{ikt}$$

If all the coefficients of the last series are non-negative then its sum corresponds to non-decreasing function K. In the opposite case g_2 is not infinite divisible. It is clear that all the coefficients are non-negative if and only if $0 < r \le 1$.

Probably, the fact remains true for more general case of arbitrary $p \in (0,1)$ and g_{2k} .

Let us give one more example.

Example 3.4. Define

$$f(t) = \exp\{\frac{1}{1-it} - 1\} = \exp\{\frac{it}{1-it}\}.$$

Obviously, f(t) is infinite divisible characteristic function. Corresponding $g_2(t)$ has the following form

$$g_2(t) = \frac{e^{-t/(i+t)}(2it-3)}{(i+t)^4}.$$

 $g_2(t)$ is infinite divisible function.

Proof. Apply A.N. Kolmogorov representation again. As it was mentioned above, it is sufficient to define corresponding function K(x) by its Fourier transform:

$$\int_{-\infty}^{\infty} e^{itx} K(x) = -\frac{d^2}{dt^2} \log g_2(t).$$

We have

$$-\frac{d^2}{dt^2}\log g_2(t) = -\frac{2i}{(i+t)^3} - \frac{4}{(i+t)^2} + \frac{4}{(3i+2t)^2}$$

Applying inverse Fourier transform we obtain

$$\frac{dK}{dx} = xe^{-3x/2}((4+x)e^{x/2} - 1)$$
 for $x \ge 0$

and 0 for x < 0.

Given Examples shows that for g_{2k} to be infinite divisible f(t) must have singularities. The types of them may be essentially different. The problem of full description corresponding functions remain open.

Acknowledgment

The work was partially supported by Grant GAČR 19-04412S.

References

- [1] Ju. V. Linnik and I. V. Ostrovskii (1977). Decomposition of Random Variables and Vectors. American Mathematical Society Providence, Rhode Island.
- [2] W. K. Hayman (1968) Meromorphic Functions. Oxford University Press, Ely House, London.