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Abstract: In this paper the D3 dihedral logistic map of fractional order is introduced. The map1

presents a dihedral symmetry D3. It is numerically shown that the construction and interpretation2

of the bifurcation diagram versus the fractional order require special attention. The system stability3

is determined and the problem of hidden attractors is analyzed. Also, analytical and numerical4

results show that the chaotic attractor of integer order, with D3 symmetries, looses its symmetry5

in the fractional-order variant.6

Keywords: Discrete fractional-order system; Caputo delta fractional difference; Golubitsky system7

of fractional order; Hidden attractor; Dihedral symmetry D38

0. Introduction9

Fractional calculus, a branch of mathematical analysis, is used to model many10

processes for which the standard integer-order derivatives do not work adequately. The11

derivative of non-integer order dates back to the beginning of the theory of differential12

calculus (letter of Gottfried Wilhelm Leibniz, 1695). The rapid development of the theory13

of fractional calculus started from the work of Euler, Liouville, Riemann, Letnikov, and14

so on [31,32].15

As mentioned in [11], it is well known that the classical derivative of a continuous-16

time periodic function is a periodic function with the same period. However, with respect17

to derivative of fractional order, this is different because the periodicity is not necessarily18

maintained by fractional derivative of periodic functions [2,20,26,27,36,38,39,43]. The19

non-periodicity of solutions in continuous systems of fractional order (FO) was first20

discovered by engineers (see e.g. [39]), and then proved by mathematicians (see e.g.21

[2,26]). Just like for continuous FO systems, the periodicity aspects in discrete FO systems22

became an important issue [4,17–20,25,33].23

In this paper, the numerically orbits which apparently indicate some regular behav-24

ior are called periodic-like orbits. It is also well known that in the theory of dynamical25

systems, every emerging abrupt period-doubling is considered as bifurcation. Therefore,26

in this paper the term bifurcation or bifurcation diagram is understood in the above sense27

of a periodic-like phenomenon.28

From a computational point of view, and based on the complexity or simplicity in29

finding a basin of attraction in the phase space, it is natural to consider the following30

classification of attractors: self-excited attractors, which can be revealed numerically by31

integrating the systems with initial conditions within small neighborhoods of unstable32

equilibria, and hidden attractors, which have the basins of attraction not connected33

with any equilibria [13,28–30]. Examples of hidden attractors in continuous-time FO34
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systems exist in systems such as Hopfield neuronal system [8], economic system [15],35

hyperchaotic discontinuous system [12], and so on [24]. Problems of discrete systems36

of FO, such as hidden attractors and chaos control are analyzed in [11] and [9,10,14]37

respectively.38

On the other side, as known, a dihedral group is a group of symmetries of a regular39

polygon (a plane closed polygonal curve with all line segments with the same length and40

interior angles with same measure) including rotations and reflections [42]. In geometry41

by Dm one denote the symmetries of a regular m-gon, which form a group of order42

2m. The dihedral group is generated by two elements: reflection S in the symmetry43

axes and rotation R about the center of the polygon with an angle θ = 3600/m in the44

counterclockwise direction. This group can be considered as generated by combining45

rotations and mirror reflections several times. For m = 3 the group is called the symmetry46

group of the equilateral triangle. An example of a D3 group is the Mercedes-Benz symbol.47

The operation within the group is the composition of symmetries S and R. For a map48

f : C→ C with symmetry Dm one have49

f [S(z)] = S[ f (z)]

f [R(z)] = R[ f (z)]
. (1)

In this paper is presented a FO variant of one of D3 dihedral maps, called D350

dihedral logistic map. Integer order (IO) variants have been introduced by Golubitsky’s51

[7,21,22] (see also [35]). Parameters are fixed and the fractional order is varied to study52

the underlying dynamics.53

The structure of the paper is as follows: In Section 1 the dihedral logistic map of54

IO is presented; In Section 2 the FO variant of the system is deduced; Section 3 deals55

with the numerical integration of the FO variant; In Section 4 the problems related to56

the bifurcation diagrams are analyzed; Section 5 deals with the hidden attractors and57

in Section 6 the symmetry breaking is analyzed, while the paper is ended with the58

Conclusion section.59

1. D3 dihedral logistic map of IO60

The beauty of the symmetry groups can be unveiled better in the complex plane61

that in the cartesian plane as it is simplest to work with complex numbers. Consider a62

map f : C→ C, z = x + iy ∈ C and the iteration63

zn = f (zn−1), z0 = x0 + iy0 ∈ C, n ≥ 1. (2)

One of the Dihedral Logistic Maps (DLMs) [7,21,22] (see also [35]), is defined as

f (z) = (α + βzz̄ + γ<(zm))z + δz̄m−1,

with α, β, γ, δ as real parameters. Due to particular symmetries, this systems belongs to64

the maps with Dm symmetries and is also called the Dm dihedral logistic map.65

Consider the case of m = 3. After some calculations one obtains the following form66

for f67

f (x, y) :=
(

f1(x, y)
f2(x, y)

)
=

(
αx + (x3 + xy2)β + (x4 − 3x2y2)γ + δ(x2 − y2)

αy + (x2y + y3)β + (x3y− 3xy3)γ− 2δxy

)
. (3)

Thus, in the cartesian parametric form , the iteration (2) defining the DLM of IO is68
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xn =αxn−1 + (x3
n−1 + xn−1y2

n−1)β + (x4
n−1 − 3x2

n−1y2
n−1)γ + δ(x2

n−1 − y2
n−1),

yn =αyn−1 + (x2
n−1yn−1 + y3

n−1)β + (x3
n−1yn−1 − 3xn−1y3

n−1)γ− 2δxn−1yn−1,

n = 1, x0, y0 ∈ R.

(4)

In this paper one chose for (4) the particular case: α = −1.8040, β = 1, γ = 0 and69

δ = 0.5, values for which the system becomes70

xn =− 1.8040 xn−1 + x3
n−1 + xn−1y2

n−1 + 0.5 x2
n−1 − 0.5 y2

n−1,

yn =− 1.8040 yn−1 + yn−1x2
n−1 + y3

n−1 − xn−1yn−1,

n = 1, 2, ..., x0, y0 ∈ R.

(5)

The image of the attractor obtained after 10000 iterations is presented in Fig. 1.71

2. Dihedral logistic map of FO72

Consider the Caputo’s like discrete Initial Value Problem of FO with q ∈ (0, 1) and
starting point 0:

∆q
∗u(t) = f (t + q− 1), u(t + q− 1)), t ∈ N1−q, u(0) = u0, (6)

where Na = {a, a + 1, a + 2, . . .} and ∆q
∗ stands as the q-th Caputo-like discrete fractional73

difference. Then, with f given by (3) in the scalar form (5), the DLM of FO (called74

DLMFO hereafter) is expressed as follows75

∆q
∗x(t) =αx(t + q− 1) + (x3(t + q− 1) + x(t + q− 1)y2(t + q− 1))β+

(x4(t + q− 1)− 3x2(t + q− 1)y2(t + q− 1))γ + δ(x2(t + q− 1)−
y2(t + q− 1)),

∆q
∗y(t) =αy(t + q− 1) + (x2(t + q− 1)y(t + q− 1) + y3(t + q− 1))β+

(x3(t + q− 1)y(t + q− 1)− 3x(t + q− 1)y3(t + q− 1))γ−
2δx(t + q− 1)y(t + q− 1)

t ∈ N1−q, x(0) = x0, y(0) = y0.

(7)

The solution of (6) is the following integral [1,3,6]

u(t) = u0 +
1

Γ(q)

t−q

∑
s=1−q

(t− s− 1)(q−1) f (u(s + q− 1)). (8)

A convenable numerical form of (8) can be obtained with the following substitution:
s + q = i. Then, (t− s− 1)(q−1) becomes

(t− s− 1)(q−1) =
Γ(t− s)

Γ(t− s− q)
=

Γ(t− 1 + q)
Γ(t− s− q + 1)

=
Γ(t− i + q)
Γ(t− i + 1)

,

and, because t ∈ N1 = {1, 2, ...}, by replacing t ∈ N with the usual index n ∈ N, a
convenient iterative numerical form of the integral (8) is

u(n) = u(0) +
1

Γ(q)

n

∑
i=1

Γ(n− i + q)
Γ(n− i + 1)

f (u(i− 1)), u(0) = u0, n ∈ N . (9)

Adapting (9) to the system (7), with the particularization of parameters α, β, γ, δ men-76

tioned before, one obtains the following integral77
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x(n) = x(0) +
1

Γ(q)

n

∑
i=1

Γ(n− i + q)
Γ(n− i + 1)

(−1.804 x(i− 1) + x(i− 1)3+

x(i− 1)y(i− 1)2 + 0.5 x(i− 1)2 − 0.5 y(i− 1)2),

y(n) = y(0) +
1

Γ(q)

n

∑
i=1

Γ(n− i + q)
Γ(n− i + 1)

(−1.804 y(i− 1) + y(i− 1)x(i− 1)2+

y(i− 1)3 − x(i− 1)y(i− 1)), [x(0), y(0)]t = [x0, y0]
t, n ∈ N,

or

xn =x0 +
1

Γ(q)

n

∑
i=1

Γ(n− i + q)
Γ(n− i + 1)

(−1.804 xi−1 + x3
i−1 + xi−1y2

i−1 + 0.5 x2
i−1 − 0.5 y2

i−1),

yn =y0 +
1

Γ(q)

n

∑
i=1

Γ(n− i + q)
Γ(n− i + 1)

(−1.804 yi−1 + yi−1x2
i−1 + y3

i−1 − xi−1yi−1),

n ∈ N, x0, y0 ∈ R.

(10)

Remark 1. Because the uniqueness of a explicit sequence as (10) is automatic, following [37,78

Definition 1.1.1], equations (10) define a discrete dynamical system of FO, whose behavior fully79

represents the dynamics of the DLMFO (7).80

3. Stability of fixed points81

The study of hidden attractors is based on the stability of the fixed points. Compared
to IO counterparts, fixed points of the system (9) are not obtained by solving the equation
f (u) = u, but solving the equation f (u) = 0. Therefore, for the DLMFO system modeled
by (10), one obtain the following seven equilibria

X∗0 = (0, 0), X∗1 = (−1.6162, 0), X∗2 = (1.1162, 0),

X∗3,4 = (−0.5581,±0.9667), and X∗5,6 = (0.8081,±1.3996).

The Jacobian is82

J(x, y) =
(

3x2 + x + y2 − 1.804 2xy− y
2xy− y x2 − x + 3y2 − 1.804

)
.

which will be evaluated at the fixed points X∗.83

Conform to [5, Theorem 1.4], a fixed point of a discrete FO system is asymptotically
stable if all its eigenvalues belongs to the set Sq:

Sq =

{
z ∈ C : |z| <

(
2 cos

|λ| − π

2− q

)q

and |λ| > qπ

2

}
,

where λ denotes the argument of the eigenvalue and | • | is evaluated for each eigenval-84

ues of the considered fixed point. If one or several fixed point admit eigenvalues not85

belonging to Sq, then the underlying fixed point is unstable.86

Theorem 1. X∗0 is unstable for q ∈ (0, log2 1.804) and asymptotically stable for q ∈ (log2 1.804, 1).87

Proof. Eigenvalues of X∗0 related to both axis Ox and Oy are: ex,y = −1.804 with88

arguments λx,y = π. The first inequality of Sq becomes:89
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|z| = 1.804 < 2q cosq 0
2− q

= 2q,

wherefrom one obtains:
q > log2 1804 ≈ 0.8512. (11)

The second inequality is:

|λx,y| = π >
qπ

2
,

wherefrom
q < 2. (12)

Because in this paper q ∈ (0, 1), from (11) and (12) one obtains q ∈ (log2 1.804, 1).90

Theorem 2. X∗1−6 are unstable for q ∈ (0, 1).91

Proof. Consider only the points X∗1,2, the calculations for the other points following the92

same path. Eigenvalues of the point X∗1 are ex = 4.4161 and ey = 2.4243 with arguments93

λx,y = 0. Then |λx,y| = 0 < qπ
2 which contradicts the second inequality in Sq. Therefore94

X∗1 is unstable on the plane (xOy).95

For X∗2 , ex = 3.0499 and ey = −1.6743. Then, λx = 0 and λy = π. |λx| = 0 < qπ
296

which shows X∗2 is unstable along the axis Ox. For the axis Oy, |λy| = π and the second97

inequality in Sq gives q < 2. Next, the first inequality in Sq, where |z| = 1.6743, gives98

the following inequality 1.6743 < 2q cosq 0
2−q = 2q, wherefrom q > log21.6743 ≈ 0.744.99

Therefore, X∗2 is stable along the direction Oy if q > 0.7446, but in the plane (xOy), X∗2 is100

unstable (saddle).101

The position of eigenvalues ex,y, related to the stability region S for the range102

q ∈ (0.8152, 1), is indicated by the tick line in Fig. 2.103

4. Bifurcation diagrams104

To obtain a visual summary of the dynamics of the DLMFO one considers the105

Bifurcation Diagram (BD) with respect the fractional order q ∈ (0, 1). As one can see in106

this section this useful tool should be considered for FO discrete systems with precaution107

not only due to the mentioned nonexistence of periodic solutions in continuous and108

also discrete FO systems, but also due to a non-invariance-like with respect to initial109

conditions (see also [41]). Thus, it is shown empirically that to every considered initial110

condition corresponds a different diagram which, for avoid the confusion with the111

BD, will be called Bifurcative Set (BS). So, while for IO discrete systems, such as the112

logistic map, the BD has a unique shape for whatever initial conditions, in the sense that113

the diagram obtained for parameter variation has the same shape for whatever initial114

conditions [16] (see also [34]), the DLMFO has the BD as “composed” of several different115

BSs, one for each considered initial condition. This characteristic are more evident q116

values close to 0.117

Diagrams in this paper are obtained by integrating the system with five different118

initial conditions for nmax = 2000 iterations, from which the first 1700 being discarded to119

avoid transients. The utilized Matlab code is presented in [16].120

Note that for different values of q, every considered initial condition in the numerical121

experiment of the BD, has been iterated before drawing the diagram for nmax = 10000,122

in order to verify that the results obtained with nmax = 2000 are similar to those with123

nmax = 10000 iterations, and are not prejudiced by transients. Therefore, the choice of124

2000 iterations proved to be an acceptable compromise between computer time and125

rightness of the results.126

For the sake of simplicity, one consider the diagrams for only the variable x (Figs.127

3). For figure clarity, only five empirically chosen initial conditions are considered:128

[x0, y0]1 = [−0.5,−0.1] (magenta), [x0, y0]2 = [0.2, 0.1] (red), [x0, y0]3 = [.01, .01] (blue),129
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[x0, y0]4 = [−0.5, 0.3] (green), [x0, y0]5 = [0.1,−0.7] (black). Supplementary initial130

conditions have been tested but the diagrams become too loaded. As can be seen, each131

initial condition generates a different BS.132

Fig. 3 (b) reveals the consistency of the analytical result of the asymptotical stability133

of X∗0 with the numerical results (point P with q = 0.8512 ≈ log2 1.804). Moreover, the134

zoom in Fig. 3 (b) shows a periodic-like orbit, which exists for q < 0.8512. Figs. 3 (c) and135

(d) present the time series and phase plot, respectively, indicating the behavior of an136

orbit starting close from X∗0 , which tends asymptotically to X∗0 for q > 0.8512.137

The following natural questions arise:138

Q1: Should the BD be considered as the “reunion” of all BSs?139

Q2: Considering the intensive numerical experiments which indicate that different initial140

conditions generates different BSs, how many such BSs can be finally obtained and141

which one of these BSs should be considered the “right” BD?142

Hereafter, in order to avoid the problem raised by Q1, by BD of the GLMFO one143

understands the set of all obtained BSs.144

Another BD with five initial conditions [−0.5, 0.1] (magenta), [0.2, 0.1] (red), [−0.01, 0.1]145

(blue), [.4, .1] (green) and [.1, .1] (black), presented in Fig. 4, underlines the differences146

between BSs, even for y0 kept constant (y0 = 01.).147

The following experiment reveals the fact that for any of 600 considered initial148

conditions [x0, y0] within the segment [x0, 0.8], for x0 ∈ [0.5, 0.5], and q = 0.03, in the149

bifurcation diagram vs initial condition, x0 and with y0 constant, there correspond150

different attractors (Figs. 5 (a)). Because there are an infinity of points within the151

considered segment, one can extrapolate the idea that to every initial condition there152

exist different BSs. On the other side, from Fig. 5 (b) one can see that for the IO case of153

the considered system, the initial conditions x0 give birth to similar (chaotic) attractors.154

This is in agreement with the cases of IO other discrete and continuous systems where155

BDs do not present such sensible dependence on initial conditions.156

To better understand the differences between the IO cases and FO cases, consider157

the sketch in Fig. 6, where two BDs are considered. In Fig. 6 (a) is presented a BD158

of discrete system of IO depending on a real parameter r (such as the logistic map),159

for a single value of r, while in Fig. 6 (b) are presented the BS of a discrete system160

of fractional order q (like the GLMFO) for a particular value of q. Both systems are161

considered as depending on the variable u. The vertical bars or points corresponding to162

r or q are attractors (Poincaré-like sections of BDs through r or q), attractive points or163

stable cycles (like), quasiperiodic (like) or chaotic attractors. As known, in both cases the164

chaotic behavior is characterized by the sensitive dependence of initial conditions (as165

first formulated by Guckenheimer [23]). However, as this paper shows, in FO systems,166

like the considered GLMFO, for a considered value of q all different initial conditions (in167

this sketch u0i, i = 1, 2..., 5), could generate different regular-like, and chaotic attractors168

(red, yellow, blue, green, black tick lines), while in the IO case all initial conditions lead169

finally to a single attractor (chaotic in this sketch, black tick line), or two attractors (in170

the case of multistability).171

Therefore, the sensitive dependence of the BD on initial conditions has different172

meaning from the classical notion of dependence on initial conditions (see [11,16]). Every173

BD of a FO system, considered as a set of all Poincaré sections through the axis q, which174

are all different, depends sensibly on the considered initial conditions, while every orbit175

depends sensibly on the initial condition.176

Remark 2.177

i) Beside the dependence on initial conditions, because fractional derivatives are nonlocal operators,178

they present the so called memory effect which means that the actual behavior is not only179

influenced by the actual state of the underlying system but also by the events happened in the past.180

Therefore, beside the dependence on the initial conditions, at every moment n, the solutions xn and181

yn depends not only on x0 and y0 but also on all previous values xk and yk, for k = 1, 2, ..., n− 1.182
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ii) Because the decay rate of the solutions in the asymptotically stable case is n−q [5] (see also [18]),183

smaller values of q implies bigger errors, while to bigger values of q, close to 1, errors are smaller.184

In Fig. 7 the graph of n−q is represented as function on n for different values of q. For clarity,185

only first few dozens of values n have been considered. The circles at n = 30 indicates the order186

of errors for each considered values of q. If one considers nmax = 10000, from the curve q = 0.01187

one obtains 10000−0.01 = 0.9120, while the curve q = 0.9, gives 10000−0.9 = 2.5119e− 004.188

Consider q = 0.1 and the underlying attractors presented in Figs. 8 (see also dotted189

line in Fig. 3 (b)).190

For the initial condition [x0, y0]1 one obtains a periodic-like orbit (Fig. 8 (a)), fact191

underlined by the zoom in phase plane representation (Fig. 8 (b)), which shows the fact192

that it is not about a true periodic orbit.193

For [x0, y0]2 one obtains a two-band quasiperiodic-like orbit (Fig. 8 (c)). The two194

colored filled disks indicate the alternative visiting order of the subsets denoted A1195

and A2 of the quasiperiodic-like attractor (Fig. 8 (d)). To note that for q = 0.1 similar196

quasiperiodicity-like orbits can be obtained with initial condition within the blue and197

yellow BSs.198

As Fig. 3 (e) shows, there are several bifurcation-like points, the “end” points of199

quasiperiodic-like behavior of yellow, blue and red BSs (such as the points P1,2, Q1,2 and200

R1,2 or the point P in Fig. 3 (b)), related to BSs, these points have different positions in201

the fractional-order space (each of them take place at different values of q). Note that, by202

comparing with the IO case where these points would indicate Hopf bifurcations, in FO203

systems this is a delicate problem, since periodicity still doesn’t exists.204

5. Hidden attractors205

While generally in the cases of IO systems the attractors coexistence, one of the206

ingredient of hidden attractors, is indicated by the presence of different BSs which seem207

to coexist and complement each other in a kind of harmony, in the considered case of208

the DLMFO (and also in some other FO discrete systems, see [11,14,16]) the BSs seem to209

be independent, having nothing to do with each other.210

Let find next the potential hidden chaotic attractors for q within the range (0, 0.06),211

where the BSs indicate chaotic behavior.212

Because for this range of q the fixed points are unstable, one can consider that all213

chaotic attractors are hidden (see the characterization of hidden attractors in Introduc-214

tion). As the BSs show (Fig. 3 (a)), there exists periodic chaos, when in the BD, the215

chaotic attractor consists of several vertical bands and even a typical orbit fills out every216

of the interval irregularly, the successive iterations visit them periodically.217

For example, for q = 0.03 and the initial condition [x0, y0]5, one obtains the hidden218

chaotic attractor presented in Fig. 9 (a). The projection on the Ox axis reveals a connected219

set, as shown by the one-band chaotic segment in the cross-section of the black BS with220

the line q = 0.03. Another hidden chaotic attractor identified in the blue BS, for the221

initial condition [x0, y0]3, which is composed by two disconnected sets (two-band chaotic222

segments in the cross section of the blue BS with the line q = 0.03) is presented in Fig. 9223

(b)). If one approaches the zero value of q such as q = 0.005, for [x0, y0] = [−0.01,−0.01]224

one obtains another chaotic attractor (Fig. 9 (c)) which resembles with the IO counterpart225

(Fig. 1).226

The numerical experiments show that for q ∈ (0, 0.06), all BSs give birth hidden227

chaotic (for q ∈ (0, 0.06)), or periodic-like (for q ∈ (0, 1)), attractors.228

As mentioned in Q2 it is difficult to specify the real number of these hidden attrac-229

tors.230
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6. Symmetry broken by the fractional order231

Another interesting property of this system, which probably is due to the frac-232

tionality is the fact that, compared with its counterpart IO map, the considered chaotic233

attractors in Figs. 9 (a),(b) and (c), present a dihedral D3 symmetry-broken.234

Consider first the DLM of IO with the typical chaotic attractor depicted in Fig. 1235

and the reflection (mirror) lines through the center (origin), (a), (b), (c). As can be seen,236

(almost) every point can be considered as the mirror with respect one of the axes, or237

obtained with a rotation. The term “almost” is used due of the iterations convergence.238

For example, consider the clear visible point A in Fig. 1 with coordinates xA =
0.3216, yA = 0 and rotate it around the origin O with R (red arrow) with the angle
θ = 1200 counterclockwise. As known, the rotation R in plane can be represented by the
matrix

R =

cos(θ) − sin(θ)

sin(θ) cos(θ)

 =

 1
2 −

√
3

2
√

3
2

1
2

,

and, therefore, the new point, B, will have the coordinates

(
xB
yB

)
= R · A =

 1
2 −

√
3

2
√

3
2

1
2 )

(0.3216
0

)
=

(
−0.1606
0.2781

)
,

with a good approximation of the graphically determined coordinates.239

The same point B can be also obtained with a symmetry S across the line (b) (red
dotted line). The matrix representation of a symmetry across a line through origin of
equation y = mx is (see one of the proofs in [40])

S =
1

1 + m2

(
1−m2 2m

2m m2 − 1

)
, (13)

where m = tan α, α being the angle of line (b) with axis Ox, in this case m = tan 600 =
√

3.
Therefore, (

xB
yB

)
= S · A =

1
4

(
−2 2

√
3

2
√

3 2

)(
0.3216

0

)
=

(
−0.1606
0.2781

)
.

The next result regards the symmetries of the DLMFO.240

Theorem 3. Attractors of the DLMFO have not D3 symmetries.241

Proof. Consider first the IO and the symmetry S with respect the horizontal axis (sym-
metry axis (a)). Then, because m = 0, the symmetry S (13) becomes

S =

(
1 0
0 −1

)
.

Applied to some point (x, y) one has242

S(x, y) = S
(

x
y

)
=

(
1 0
0 −1

)(
x
y

)
=

(
x
−y

)
= (x,−y), (14)

and due to the parity of functions f1,2(x, y) in (3) ( f1 and f2 are even and odd, respec-243

tively), from (1) one obtains244

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 December 2021                   doi:10.20944/preprints202112.0303.v1

https://doi.org/10.20944/preprints202112.0303.v1


Version December 17, 2021 submitted to Journal Not Specified 9 of 19

f (S(x, y)) = f (x, y)|(x,y)=(x,−y) =(
−1.8040 xn−1 + x3

n−1 + xn−1y2
n−1 + 0.5 x2

n−1 − 0.5 y2
n−1

−1.8040 (−yn−1) + (−yn−1)x2
n−1 + (−yn−1)

3 − xn−1(−yn−1)

)
=

(
f1(x, y)

− f2(x, y)

)
(15)

On the other side

S( f (x, y)) = S f (x, y) =
(

1 0
0 −1

)(
f1(x, y)
f2(x, y)

)
=

(
f1(x, y)
− f2(x, y)

)
. (16)

Therefore, f (S(x, y)) = S( f (x, y)). The second condition (1) can be proved similarly.245

Consider next the FO case and denote the map of the right hand side of (10) as

F(x, y) =
(

x0 + F1(x, y)
y0 + F2(x, y)

)
, (17)

where

F1(x, y) =
1

Γ(q)

n

∑
i=1

Γ(n− i + q)
Γ(n− i + 1)

(−1.804 xi−1 + x3
i−1 + xi−1y2

i−1 + 0.5 x2
i−1 − 0.5 y2

i−1),

and

F2(x, y) =
1

Γ(q)

n

∑
i=1

Γ(n− i + q)
Γ(n− i + 1)

(−1.804 yi−1 + yi−1x2
i−1 + y3

i−1 − xi−1yi−1),

where, for the sake of simplicity, the parameter n and index i in F1,2 are omitted.246

Following the way used to verify the symmetry for the IO case, by using the parity247

properties of F(x, y) defined in (17) and following (14) one obtains248

F(S(x, y)) = F(x, y)|(x,y)=(x,−y) =

(
x0 + F1(x, y)
y0 − F2(x, y)

)
. (18)

On the other side249

S(F(x, y)) =
(

1 0
0 −1

)(
x0 + F1(x, y)
y0 + F2(x, y)

)
=

(
x0 + F1(x, y)
−y0 − F2(x, y)

)
, (19)

and, therefore, F(S(x, y)) 6= S(F(x, y)).250

Actually, the explanation of this result lies in the mentioned time history of numer-251

ical methods for continuous and also discrete systems of FO. This symmetry broken252

is also presumably due to the influence of the fractional order q and seems to be more253

powerful as the q increases. As can be seen from (18) and (19), if y0 = 0, the influence of254

y0 disappears and symmetry should maintains. However, for y0 = 0, yn = 0 for all n and255

the attractors starting from [x0, 0] collapse on the axis Ox, case which is not considered256

here. Thus, while for the hidden chaotic attractors in Figs. 7 (a) and (b) obtained for257

q = 0.03 the symmetry destroyed, the attractor in Fig. 7 (c) with q = 0.01 resembles with258

the its IO counterpart in Fig. 1, but is still non-symmetric.259

7. Discussion260

In this paper one of Golubitsky’s maps of IO (dihedral logistic map) has been261

considered in the FO discrete form. The IO variant presents dihedral D3 symmetry which262

is lost in the FO variant. It is shown that only few hundreds iteration are not enough to263

discard transients and to obtain accurate results. As in some previous studied discrete264
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systems of FO, the bifurcation diagram seems to be composed by several different265

sets, called bifurcative sets, one for each initial condition, which indicate attractors266

coexistence. In other words, the bifurcative sets depend sensibly on initial conditions,267

but in a different sense for the classical meaning of the sensitive dependence on initial268

conditions of an orbit. Probably due to the convergence of the integration method, for269

smaller values of q, the differences between the bifurcative sets are significant, while for270

q tending to 1, these sets seem to tend one to each other. The instability of the system and271

the existence of several bifurcative sets, could be considered ingredient to find hidden272

attractors. However, finding their exact number, is a difficult if not an impossible task273

due to the dependence of the bifurcative sets on the initial conditions. One over all,274

the numerical approach of this system (and probably of other discrete systems of FO)275

indicates that the tools like bifurcation diagram, or hidden attractors require much more276

attention.277
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Figure 1. A D3-symmetric image of the DLM of IO (5). In red is indicated the counterclockwise
rotation with 1200 applied to the point A to obtain the point B which is symmetric with respect
the line (b).
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Figure 2. Stability domain S in the case of the fixed point X∗0 . Tick line represents the asymptotic
stability range of q for X∗0 .
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Figure 3. DLM of FO. (a) Bifurcation diagram vs q. The bifurcation-like point P indicates the
beginning of the stability of X∗0 for q > 0.8512; (b) Zoomed image; (c) Time series tending to
the asymptotically stable fixed point X∗0 for q > 0.8512; (d) Phase portrait with the orbit points
indicating the evolution of the orbit to X∗0 ; (e) Zoomed area of the bifurcation diagram.
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Figure 4. Another bifurcation diagram vs q ∈ (0, 0.15] for initial conditions [−0.5, 0.1], [0.2, 0.1],
[−0.01, 0.1], [0.4, 0.1], [0.1, 0.1].

Figure 5. Bifurcation diagrams of the DLM of FO and IO versus the initial conditions x0 ∈
[−0.5, 0.5] and y0 = 0.8. (a) The FO case q = 0.03; (b) The IO case.
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Figure 6. Sketch of diagrams of bifurcations. (a) The IO case; (b) FO case. u0i, i = 1, 2, ..., 5 are
initial conditions.

Figure 7. Graph of n−q for different values of q.
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Figure 8. Two orbits of the DLM of FO for q = 0.1. (a) Time series of a periodic-like orbit from
[x0, y0]1 = [−0.5,−0.1]; (b) Phase portrait of the orbit and a zoom indicating the slow orbit
convergence; (c) Time series of a two-band quasiperiodic-like orbit from [x0, y0]2 = [0.2, 0.1]. The
zoom indicates the alternate pattern of the orbit between the two subsets A1 and A2 (red and
brown) of the quasiperiodic-like attractor; (d) Phase portrait of the orbit [x0, y0]2 = [0.2, 0.1].
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Figure 9. Hidden chaotic attractors of the DLMFO with broken-symmetry. (a) q = 0.03 and
[x0, y0]5 = [0.1,−0.7]. (b) q = 0.03 and [x0, y0]3 = [.01, .01]; (c) q = 0.01, and [x0, y0] =

[−0.01,−0.01].

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 December 2021                   doi:10.20944/preprints202112.0303.v1

https://doi.org/10.20944/preprints202112.0303.v1


Version December 17, 2021 submitted to Journal Not Specified 18 of 19

8. Supplementary information278

Author Contributions: Conceptualization, M.-F. D; investigation and methodology, M.-F. D.;279

software, M.-F.D.; validation and formal analysis; M.-F. D. and N. K.; funding acquisition, N.K.280

Informed Consent Statement: All authors have read and agreed to the published version of the281

manuscript.282

Data Availability Statement: Data supporting reported results can be acquired from the corre-283

sponding author M.-F.D.284

Acknowledgments: N.K. and M.-F.D. acknowledge support from the Russian Science Foundation285

project 19-41-02002 (Section 5). Authors thank Alexandru-David Abrudan, Babes-Bolyai University,286

Cluj-Napoca, for his help.287

Conflicts of Interest: The authors declare no conflict of interest.288

References
1. Abdeljawad, T. On Riemann and Caputo fractional differences, Comput. Math. Appl. 2011 62, 1602–1611.
2. Area, I.; Losada, J.; Nieto, J. On Fractional Derivatives and Primitives of Periodic Functions. Abstr. Appl. Anal. 2014, 2014. art.

num. 392598.
3. Atici, F.M.; Eloe, P.W. Initial value problems in discrete fractional calculus. Proc. Americ. Math. Soc. 2007, 137, 981–989.
4. Bin, H.; Huang, L.; Zhang, G. Convergence and periodicity of solutions for a class of difference systems. Adv. Differ. Equ. 2006,

2006. art. num. 70461.
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