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Abstract: In this paper the D3 dihedral logistic map of fractional order is introduced. The map
presents a dihedral symmetry Ds. It is numerically shown that the construction and interpretation
of the bifurcation diagram versus the fractional order require special attention. The system stability
is determined and the problem of hidden attractors is analyzed. Also, analytical and numerical
results show that the chaotic attractor of integer order, with D3 symmetries, looses its symmetry
in the fractional-order variant.
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0. Introduction

Fractional calculus, a branch of mathematical analysis, is used to model many
processes for which the standard integer-order derivatives do not work adequately. The
derivative of non-integer order dates back to the beginning of the theory of differential
calculus (letter of Gottfried Wilhelm Leibniz, 1695). The rapid development of the theory
of fractional calculus started from the work of Euler, Liouville, Riemann, Letnikov, and
so on [31,32].

As mentioned in [11], it is well known that the classical derivative of a continuous-
time periodic function is a periodic function with the same period. However, with respect
to derivative of fractional order, this is different because the periodicity is not necessarily
maintained by fractional derivative of periodic functions [2,20,26,27,36,38,39,43]. The
non-periodicity of solutions in continuous systems of fractional order (FO) was first
discovered by engineers (see e.g. [39]), and then proved by mathematicians (see e.g.
[2,26]). Just like for continuous FO systems, the periodicity aspects in discrete FO systems
became an important issue [4,17-20,25,33].

In this paper, the numerically orbits which apparently indicate some regular behav-
ior are called periodic-like orbits. It is also well known that in the theory of dynamical
systems, every emerging abrupt period-doubling is considered as bifurcation. Therefore,
in this paper the term bifurcation or bifurcation diagram is understood in the above sense
of a periodic-like phenomenon.

From a computational point of view, and based on the complexity or simplicity in
finding a basin of attraction in the phase space, it is natural to consider the following
classification of attractors: self-excited attractors, which can be revealed numerically by
integrating the systems with initial conditions within small neighborhoods of unstable
equilibria, and hidden attractors, which have the basins of attraction not connected
with any equilibria [13,28-30]. Examples of hidden attractors in continuous-time FO
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systems exist in systems such as Hopfield neuronal system [8], economic system [15],
hyperchaotic discontinuous system [12], and so on [24]. Problems of discrete systems
of FO, such as hidden attractors and chaos control are analyzed in [11] and [9,10,14]
respectively.

On the other side, as known, a dihedral group is a group of symmetries of a regular
polygon (a plane closed polygonal curve with all line segments with the same length and
interior angles with same measure) including rotations and reflections [42]. In geometry
by D, one denote the symmetries of a regular m-gon, which form a group of order
2m. The dihedral group is generated by two elements: reflection S in the symmetry
axes and rotation R about the center of the polygon with an angle 8 = 360°/m in the
counterclockwise direction. This group can be considered as generated by combining
rotations and mirror reflections several times. For m = 3 the group is called the symmetry
group of the equilateral triangle. An example of a D3 group is the Mercedes-Benz symbol.
The operation within the group is the composition of symmetries S and R. For a map
f : € = C with symmetry D,, one have

f8(2)] = S[f(2)]
fIR(@)] = R[f(2)]

In this paper is presented a FO variant of one of D3 dihedral maps, called Ds
dihedral logistic map. Integer order (IO) variants have been introduced by Golubitsky’s
[7,21,22] (see also [35]). Parameters are fixed and the fractional order is varied to study
the underlying dynamics.

The structure of the paper is as follows: In Section 1 the dihedral logistic map of
10 is presented; In Section 2 the FO variant of the system is deduced; Section 3 deals
with the numerical integration of the FO variant; In Section 4 the problems related to
the bifurcation diagrams are analyzed; Section 5 deals with the hidden attractors and
in Section 6 the symmetry breaking is analyzed, while the paper is ended with the
Conclusion section.

)

1. D3 dihedral logistic map of IO

The beauty of the symmetry groups can be unveiled better in the complex plane
that in the cartesian plane as it is simplest to work with complex numbers. Consider a
map f : C = C, z = x + iy € C and the iteration

zn = f(zu—1), 20=x0+iyo€C, n>1. )
One of the Dihedral Logistic Maps (DLMs) [7,21,22] (see also [35]), is defined as

f(z) = (a+ pzz + yR(2"))z + 2",

with a, B, v, 6 as real parameters. Due to particular symmetries, this systems belongs to
the maps with D, symmetries and is also called the D, dihedral logistic map.

Consider the case of m = 3. After some calculations one obtains the following form
for f

_ (Aloy)\ _ (ax+ (2 +xy?) B+ (xF = 3x%yP)y +6(x — )
floy) = (fz(x,y))( ay + (%Y + y°)B + (x°y — Bxy®)y — 20xy ) R

Thus, in the cartesian parametric form , the iteration (2) defining the DLM of 10 is
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X =axy_1 + (X)_1 + Xu_1ys_1)B+ (Xp 1 —3x5 5 )y + (x5 — i 1),
Yn =0Yn1+ (X5 Yn—1+ Yo 1)B+ (X) 1Yn-1— %1y 1)Y — 20%u_1Yn-1, 4
n=1, xo,y0 € R

In this paper one chose for (4) the particular case: « = —1.8040, 8 =1,y = 0 and
0 = 0.5, values for which the system becomes

Xp=—18040x, 1+ x> | +x,1y5 1 +05x3 | —051> ,,
yn =—18040 y,_1 + yn,lxﬁfl + ]/i,l — Xn—1Yn-1, ©)
n=12,.. x9,y0 € R.
The image of the attractor obtained after 10000 iterations is presented in Fig. 1.

2. Dihedral logistic map of FO

Consider the Caputo’s like discrete Initial Value Problem of FO with g € (0,1) and
starting point 0:

Au(t) = f(t+qg—1),u(t+q-1)), t € Ny_g, u(0) = uo, (6)

where N, = {a,a+1,a+2,...} and A7 stands as the g-th Caputo-like discrete fractional
difference. Then, with f given by (3) in the scalar form (5), the DLM of FO (called
DLMFO hereafter) is expressed as follows

Alx(t) =ax(t+g—1)+ (Pt +q-1) +x(t+g -1yt +q— 1))+
(Ht+qg—1) =32t +qg -1y (t+q—1)y+0(x*(t+q9—1)—
V(t+gq-1)),

Aly(t) =ay(t+q—1)+ (2(t+g—Dy(t+q9—-1) + > (t+q—1))p+ 7)
(Pt+g-Dy(t+q—1) =3x(t+9 -1y’ (t+q9—1))7—
20x(t+q—1)y(t+q9—1)
teNy 4 x x(0) = x0,y(0) =

The solution of (6) is the following integral [1,3,6]

u(t) = ug FL ti t—s—1)TVf(u(s+49—1)). 8)

A convenable numerical form of (8) can be obtained with the following substitution:
s+q =i. Then, (t —s — 1)(4=Y) becomes

(t—s—1)"D = T(t—s) _ T(t-1+q) _T(t—itq)
[(t—s—q) T(t—-s—q+1) T(E—i+1)

and, because t € N; = {1,2,...}, by replacing t € N with the usual index n € N, a
convenient iterative numerical form of the integral (8) is

Zi(n_lj—kq)f(u(i—l))r u(O):uo, neN. )

Adapting (9) to the system (7), with the particularization of parameters «, 3, 7, d men-
tioned before, one obtains the following integral
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iy q)fﬁgz :zizg (—1.804 x(i — 1) + x(i — 1)+
i=1

i—1)2+05x(i—1)2-05y(i—1)?),

=
-
|
—_
S~—
<
—

y(n) = y(0) + r(lq) ;IF,EZ — z i Z; (—1.804 y(i —1) +y(i — D)x(i —1)%+

y(i—1)° — x(i— y(i — 1)), [x(0),5(0)]' = [xo,y0l',n € N,

or
1 vI(n—i+q)
X =30+ s ;F(n — (—1.804 x;_1 + 3 | + %17 1 +05x% | —0517 ),
1 «I(n—i+q)
y" :yo + r(q) Z=11-'(n i 1) (_1804 yllfl +yi71x127] +y?7] - xi*lyifl)/

(10)

Remark 1. Because the uniqueness of a explicit sequence as (10) is automatic, following [37,
Definition 1.1.1], equations (10) define a discrete dynamical system of FO, whose behavior fully
represents the dynamics of the DLMFO (7).

3. Stability of fixed points

The study of hidden attractors is based on the stability of the fixed points. Compared
to 1O counterparts, fixed points of the system (9) are not obtained by solving the equation
f(u) = u, but solving the equation f(u) = 0. Therefore, for the DLMFO system modeled
by (10), one obtain the following seven equilibria

X5 =(0,0), Xi=(-16162,0), X; = (1.1162,0),
X3, = (—0.5581,+0.9667), and XZ = (0.8081,1.3996).

The Jacobian is

_(3x%+x+y?—1.804 2xy —y
](x,y)—< 2xy —y X% —x+3y> —1.804)

which will be evaluated at the fixed points X*.
Conform to [5, Theorem 1.4], a fixed point of a discrete FO system is asymptotically
stable if all its eigenvalues belongs to the set 57:

_ q
Sq:{ZGC:z|<(2cos A 71:) and|)t|>qn},

2—q 2

where A denotes the argument of the eigenvalue and | e | is evaluated for each eigenval-
ues of the considered fixed point. If one or several fixed point admit eigenvalues not
belonging to S7, then the underlying fixed point is unstable.

Theorem 1. X is unstable for q € (0,log, 1.804) and asymptotically stable for g € (log, 1.804,1).

Proof. Eigenvalues of X related to both axis Ox and Oy are: ey, = —1.804 with
arguments Ay, = 71. The first inequality of S7 becomes:
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0
|z| = 1.804 < 27 cos’ 7= 29,
wherefrom one obtains:
g > log, 1804 ~ 0.8512. (11)
The second inequality is:
Axyl =m> iy
2
wherefrom
g<2 (12)

Because in this paper g € (0,1), from (11) and (12) one obtains g € (log, 1.804,1). O

Theorem 2. X;_ are unstable for q € (0,1).

Proof. Consider only the points X7 ,, the calculations for the other points following the
same path. Eigenvalues of the poin’é X] are ey = 44161 and e, = 2.4243 with arguments
Axy = 0. Then [Ay,| =0 < 2% which contradicts the second inequality in S7. Therefore
Xj is unstable on the plane (xOy).

For X3, ex = 3.0499 and ey = —1.6743. Then, Ay = 0and A, = 7. [Ay| =0 < %
which shows X3 is unstable along the axis Ox. For the axis Oy, |A,| = 7 and the second
inequality in S7 gives g < 2. Next, the first inequality in S7, where |z| = 1.6743, gives
the following inequality 1.6743 < 27 cos? % = 21, wherefrom q > log,1.6743 ~ 0.744.
Therefore, Xj is stable along the direction Oy if g > 0.7446, but in the plane (xOy), X is
unstable (saddle). O

The position of eigenvalues ey, related to the stability region S for the range
g € (0.8152,1), is indicated by the tick line in Fig. 2.

4. Bifurcation diagrams

To obtain a visual summary of the dynamics of the DLMFO one considers the
Bifurcation Diagram (BD) with respect the fractional order g € (0,1). As one can see in
this section this useful tool should be considered for FO discrete systems with precaution
not only due to the mentioned nonexistence of periodic solutions in continuous and
also discrete FO systems, but also due to a non-invariance-like with respect to initial
conditions (see also [41]). Thus, it is shown empirically that to every considered initial
condition corresponds a different diagram which, for avoid the confusion with the
BD, will be called Bifurcative Set (BS). So, while for 10 discrete systems, such as the
logistic map, the BD has a unique shape for whatever initial conditions, in the sense that
the diagram obtained for parameter variation has the same shape for whatever initial
conditions [16] (see also [34]), the DLMFO has the BD as “composed” of several different
BSs, one for each considered initial condition. This characteristic are more evident g
values close to 0.

Diagrams in this paper are obtained by integrating the system with five different
initial conditions for 7,4y = 2000 iterations, from which the first 1700 being discarded to
avoid transients. The utilized Matlab code is presented in [16].

Note that for different values of g, every considered initial condition in the numerical
experiment of the BD, has been iterated before drawing the diagram for #,,,x = 10000,
in order to verify that the results obtained with 1, = 2000 are similar to those with
Nmax = 10000 iterations, and are not prejudiced by transients. Therefore, the choice of
2000 iterations proved to be an acceptable compromise between computer time and
rightness of the results.

For the sake of simplicity, one consider the diagrams for only the variable x (Figs.
3). For figure clarity, only five empirically chosen initial conditions are considered:
[x0,Y0]1 = [—0.5, —0.1] (magenta), [xo, yo]2 = [0.2,0.1] (red), [xo, yo]3 = [.01,.01] (blue),
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[x0,¥0la = [—0.5,0.3] (green), [xo,y0]5 = [0.1,—0.7] (black). Supplementary initial
conditions have been tested but the diagrams become too loaded. As can be seen, each
initial condition generates a different BS.

Fig. 3 (b) reveals the consistency of the analytical result of the asymptotical stability
of X{j with the numerical results (point P with g = 0.8512 ~ log, 1.804). Moreover, the
zoom in Fig. 3 (b) shows a periodic-like orbit, which exists for g < 0.8512. Figs. 3 (c) and
(d) present the time series and phase plot, respectively, indicating the behavior of an
orbit starting close from X{j, which tends asymptotically to Xj for g > 0.8512.

The following natural questions arise:

Q1: Should the BD be considered as the “reunion” of all BSs?

Q7: Considering the intensive numerical experiments which indicate that different initial
conditions generates different BSs, how many such BSs can be finally obtained and
which one of these BSs should be considered the “right” BD?

Hereafter, in order to avoid the problem raised by Q;, by BD of the GLMFO one
understands the set of all obtained BSs.

Another BD with five initial conditions [—0.5, 0.1] (magenta), [0.2, 0.1] (red), [—0.01,0.1]
(blue), [4,.1] (green) and [.1, .1] (black), presented in Fig. 4, underlines the differences
between BSs, even for y kept constant (yy = 01.).

The following experiment reveals the fact that for any of 600 considered initial
conditions [x, o] within the segment [x,0.8], for xo € [0.5,0.5], and g = 0.03, in the
bifurcation diagram vs initial condition, xy and with yy constant, there correspond
different attractors (Figs. 5 (a)). Because there are an infinity of points within the
considered segment, one can extrapolate the idea that to every initial condition there
exist different BSs. On the other side, from Fig. 5 (b) one can see that for the IO case of
the considered system, the initial conditions x( give birth to similar (chaotic) attractors.
This is in agreement with the cases of IO other discrete and continuous systems where
BDs do not present such sensible dependence on initial conditions.

To better understand the differences between the IO cases and FO cases, consider
the sketch in Fig. 6, where two BDs are considered. In Fig. 6 (a) is presented a BD
of discrete system of IO depending on a real parameter r (such as the logistic map),
for a single value of r, while in Fig. 6 (b) are presented the BS of a discrete system
of fractional order g (like the GLMFO) for a particular value of 4. Both systems are
considered as depending on the variable u. The vertical bars or points corresponding to
r or g are attractors (Poincaré-like sections of BDs through r or g), attractive points or
stable cycles (like), quasiperiodic (like) or chaotic attractors. As known, in both cases the
chaotic behavior is characterized by the sensitive dependence of initial conditions (as
first formulated by Guckenheimer [23]). However, as this paper shows, in FO systems,
like the considered GLMFO, for a considered value of g all different initial conditions (in
this sketch ug;, i = 1,2...,5), could generate different regular-like, and chaotic attractors
(red, yellow, blue, green, black tick lines), while in the IO case all initial conditions lead
finally to a single attractor (chaotic in this sketch, black tick line), or two attractors (in
the case of multistability).

Therefore, the sensitive dependence of the BD on initial conditions has different
meaning from the classical notion of dependence on initial conditions (see [11,16]). Every
BD of a FO system, considered as a set of all Poincaré sections through the axis g, which
are all different, depends sensibly on the considered initial conditions, while every orbit
depends sensibly on the initial condition.

Remark 2.

i) Beside the dependence on initial conditions, because fractional derivatives are nonlocal operators,
they present the so called memory effect which means that the actual behavior is not only
influenced by the actual state of the underlying system but also by the events happened in the past.
Therefore, beside the dependence on the initial conditions, at every moment n, the solutions x,, and
Yn depends not only on xy and yo but also on all previous values xy and yy, fork =1,2,..,n —1.
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it) Because the decay rate of the solutions in the asymptotically stable case is n=1 [5] (see also [18]),
smaller values of q implies bigger errors, while to bigger values of q, close to 1, errors are smaller.
In Fig. 7 the graph of n~1 is represented as function on n for different values of q. For clarity,
only first few dozens of values n have been considered. The circles at n = 30 indicates the order
of errors for each considered values of q. If one considers 1ny,ax = 10000, from the curve ¢ = 0.01
one obtains 10000~%01 = 0.9120, while the curve g = 0.9, gives 10000729 = 2.5119¢ — 004.

Consider q = 0.1 and the underlying attractors presented in Figs. 8 (see also dotted
line in Fig. 3 (b)).

For the initial condition [xo, yo]; one obtains a periodic-like orbit (Fig. 8 (a)), fact
underlined by the zoom in phase plane representation (Fig. 8 (b)), which shows the fact
that it is not about a true periodic orbit.

For [xo, yo]2 one obtains a two-band quasiperiodic-like orbit (Fig. 8 (c)). The two
colored filled disks indicate the alternative visiting order of the subsets denoted A,
and A; of the quasiperiodic-like attractor (Fig. 8 (d)). To note that for 4 = 0.1 similar
quasiperiodicity-like orbits can be obtained with initial condition within the blue and
yellow BSs.

As Fig. 3 (e) shows, there are several bifurcation-like points, the “end” points of
quasiperiodic-like behavior of yellow, blue and red BSs (such as the points P; », Q1 » and
Ry or the point P in Fig. 3 (b)), related to BSs, these points have different positions in
the fractional-order space (each of them take place at different values of g). Note that, by
comparing with the IO case where these points would indicate Hopf bifurcations, in FO
systems this is a delicate problem, since periodicity still doesn’t exists.

5. Hidden attractors

While generally in the cases of IO systems the attractors coexistence, one of the
ingredient of hidden attractors, is indicated by the presence of different BSs which seem
to coexist and complement each other in a kind of harmony, in the considered case of
the DLMFO (and also in some other FO discrete systems, see [11,14,16]) the BSs seem to
be independent, having nothing to do with each other.

Let find next the potential hidden chaotic attractors for 4 within the range (0,0.06),
where the BSs indicate chaotic behavior.

Because for this range of g the fixed points are unstable, one can consider that all
chaotic attractors are hidden (see the characterization of hidden attractors in Introduc-
tion). As the BSs show (Fig. 3 (a)), there exists periodic chaos, when in the BD, the
chaotic attractor consists of several vertical bands and even a typical orbit fills out every
of the interval irregularly, the successive iterations visit them periodically.

For example, for ¢ = 0.03 and the initial condition [xo, yo|5, one obtains the hidden
chaotic attractor presented in Fig. 9 (a). The projection on the Ox axis reveals a connected
set, as shown by the one-band chaotic segment in the cross-section of the black BS with
the line g = 0.03. Another hidden chaotic attractor identified in the blue BS, for the
initial condition [xo, o]3, which is composed by two disconnected sets (two-band chaotic
segments in the cross section of the blue BS with the line g = 0.03) is presented in Fig. 9

(b)). If one approaches the zero value of g such as g = 0.005, for [xg, yo] = [—0.01, —0.01]
one obtains another chaotic attractor (Fig. 9 (c)) which resembles with the IO counterpart
(Fig. 1).

The numerical experiments show that for g € (0,0.06), all BSs give birth hidden
chaotic (for g € (0,0.06)), or periodic-like (for g € (0, 1)), attractors.

As mentioned in Q5 it is difficult to specify the real number of these hidden attrac-
tors.
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6. Symmetry broken by the fractional order

Another interesting property of this system, which probably is due to the frac-
tionality is the fact that, compared with its counterpart IO map, the considered chaotic
attractors in Figs. 9 (a),(b) and (c), present a dihedral D3 symmetry-broken.

Consider first the DLM of IO with the typical chaotic attractor depicted in Fig. 1
and the reflection (mirror) lines through the center (origin), (a), (b), (c). As can be seen,
(almost) every point can be considered as the mirror with respect one of the axes, or
obtained with a rotation. The term “almost” is used due of the iterations convergence.

For example, consider the clear visible point A in Fig. 1 with coordinates x4 =
0.3216, y4 = 0 and rotate it around the origin O with R (red arrow) with the angle
0 = 120° counterclockwise. As known, the rotation R in plane can be represented by the

matrix
. cos(f) —sin(h) _ 1 _? ,
sin(f)  cos(0) @ 3

and, therefore, the new point, B, will have the coordinates

Y _ o4 | 2 —2\ /03216\ _ (—0.1606
ys) ey 0o )\ 02781 )
2 2
with a good approximation of the graphically determined coordinates.
The same point B can be also obtained with a symmetry S across the line (b) (red

dotted line). The matrix representation of a symmetry across a line through origin of
equation y = mx is (see one of the proofs in [40])

1 1—-m?2 2m
51+m2( 2m m21>’ (13)

where m = tan a, a being the angle of line (b) with axis Ox, in this case m = tan 60° = /3.

Therefore,
x5\ _g 172 2V3) 03216\ _ (~0.1606
vs) 7 " T i\as 2 0o )~ \ o281 )

The next result regards the symmetries of the DLMFO.

Theorem 3. Attractors of the DLMFO have not D3 symmetries.

Proof. Consider first the IO and the symmetry S with respect the horizontal axis (sym-
metry axis (a)). Then, because m = 0, the symmetry S (13) becomes

1 0
s=(o 4)
Applied to some point (x,y) one has

son=s() - )G (o o

and due to the parity of functions fj »(x,y) in (3) (f; and f; are even and odd, respec-
tively), from (1) one obtains
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f(S(X,y)) = f(x/y)|(x,y):(x,fy) =
( —1.8040 x, 1 +x3_ | +x,1y5_ 1 +05x2 | —051% ) B ( filxy) )

—1.8040 (—Yu—1) + (—Yn-1)%2_1 + (—¥u-1)° = Xu_1(—Yu—1) —h(xy)
(15)
On the other side
s =sen = (o ) (Bn) = (Fay) 09

Therefore, f(S(x,y)) = S(f(x,y)). The second condition (1) can be proved similarly.
Consider next the FO case and denote the map of the right hand side of (10) as

- (252,
where
F(xy) = — Ll —i+) (—1.804 x;_1 + 23 | +xi 192 + 052 —05y2 ),
@ =T+ )
and

1 \T(n—i+q) 2 3
B(xy) = T(a) ;F(n —i1) (=1.804 yi1 +yi1Xi 1 +¥i 1 — Xi-1¥i-1),

where, for the sake of simplicity, the parameter 7 and index i in F » are omitted.
Following the way used to verify the symmetry for the IO case, by using the parity
properties of F(x,y) defined in (17) and following (14) one obtains

F(S(x,y)) = F(, 9| (xy)=(x,-y) = (ﬁﬁfggw 19
On the other side
_ (1 0\ (x+F(xy)\ _ [ x0+F(xy)
S Y)) = (0 —1> (y0+F;(x/y)> - <_yo_}2<x,y>)' v

and, therefore, F(S(x,y)) # S(F(x,y)). O

Actually, the explanation of this result lies in the mentioned time history of numer-
ical methods for continuous and also discrete systems of FO. This symmetry broken
is also presumably due to the influence of the fractional order g and seems to be more
powerful as the g increases. As can be seen from (18) and (19), if yy = 0, the influence of
Yo disappears and symmetry should maintains. However, for yy = 0, y, = 0 for all n and
the attractors starting from [x, 0] collapse on the axis Ox, case which is not considered
here. Thus, while for the hidden chaotic attractors in Figs. 7 (a) and (b) obtained for
g = 0.03 the symmetry destroyed, the attractor in Fig. 7 (c) with g = 0.01 resembles with
the its IO counterpart in Fig. 1, but is still non-symmetric.

7. Discussion

In this paper one of Golubitsky’s maps of IO (dihedral logistic map) has been
considered in the FO discrete form. The IO variant presents dihedral D3 symmetry which
is lost in the FO variant. It is shown that only few hundreds iteration are not enough to
discard transients and to obtain accurate results. As in some previous studied discrete
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systems of FO, the bifurcation diagram seems to be composed by several different
sets, called bifurcative sets, one for each initial condition, which indicate attractors
coexistence. In other words, the bifurcative sets depend sensibly on initial conditions,
but in a different sense for the classical meaning of the sensitive dependence on initial
conditions of an orbit. Probably due to the convergence of the integration method, for
smaller values of g, the differences between the bifurcative sets are significant, while for
g tending to 1, these sets seem to tend one to each other. The instability of the system and
the existence of several bifurcative sets, could be considered ingredient to find hidden
attractors. However, finding their exact number, is a difficult if not an impossible task
due to the dependence of the bifurcative sets on the initial conditions. One over all,
the numerical approach of this system (and probably of other discrete systems of FO)
indicates that the tools like bifurcation diagram, or hidden attractors require much more
attention.
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Figure 1. A D3-symmetric image of the DLM of IO (5). In red is indicated the counterclockwise
rotation with 1207 applied to the point A to obtain the point B which is symmetric with respect

the line (b).
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Figure 2. Stability domain S in the case of the fixed point X{. Tick line represents the asymptoti

stability range of q for X.
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Figure 3. DLM of FO. (a) Bifurcation diagram vs 4. The bifurcation-like point P indicates the
beginning of the stability of X for g > 0.8512; (b) Zoomed image; (c) Time series tending to
the asymptotically stable fixed point X for g > 0.8512; (d) Phase portrait with the orbit points
indicating the evolution of the orbit to X{; (e) Zoomed area of the bifurcation diagram.
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Figure 4. Another bifurcation diagram vs g € (0,0.15] for initial conditions [—0.5,0.1], [0.2,0.1],
[—0.01,0.1], [0.4,0.1], [0.1,0.1].
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Figure 5. Bifurcation diagrams of the DLM of FO and IO versus the initial conditions xy €
[—0.5,0.5] and yp = 0.8. (a) The FO case g = 0.03; (b) The IO case.
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Figure 7. Graph of n~1 for different values of 4.
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Figure 8. Two orbits of the DLM of FO for 4 = 0.1. (a) Time series of a periodic-like orbit from
[x0,¥0]1 = [—0.5,—0.1]; (b) Phase portrait of the orbit and a zoom indicating the slow orbit

convergence; (c) Time series of a two-band quasiperiodic-like orbit from [xg, yg]2 = [0.2,0.1]. The
zoom indicates the alternate pattern of the orbit between the two subsets .4; and A, (red and
brown) of the quasiperiodic-like attractor; (d) Phase portrait of the orbit [xg, yo]2 = [0.2,0.1].
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Figure 9. Hidden chaotic attractors of the DLMFO with broken-symmetry. (a) ¢ = 0.03 and
[x0,40]5 = [0.1,—0.7]. (b) ¢ = 0.03 and [xg,yp]s = [.01,.01]; (c) g = 0.01, and [xp,y0] =
[—0.01, —0.01].
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