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Abstract:  
Concussion, also known as mild traumatic brain injury (mTBI), commonly causes transient neu-
rocognitive symptoms, but in some cases, it causes cognitive impairment, including working 
memory (WM) deficit, which can be long-lasting and impede a patient’s return to work. The predic-
tors of long-term cognitive outcomes following mTBI remain unclear because abnormality is often 
absent in structural imaging findings. The purpose of the study was to determine whether machine 
learning-based models using functional magnetic resonance imaging (fMRI) biomarkers and demo-
graphic or neuropsychological measures at baseline could effectively predict 1-year cognitive out-
comes of concussion. We conducted a prospective, observational study of patients with mTBI who 
were compared with demographically-matched healthy controls enrolled between September 2015 
to August 2020. Baseline assessments were collected within the first week of injury, and follow-ups 
were conducted at 6 weeks, 3 months, 6 months, and 1 year. Potential demographic, neuropsycho-
logical, and fMRI features were selected according to the significance of correlation with the esti-
mated changes in WM ability. The support vector machine classifier was trained using these poten-
tial features and estimated changes in WM between the predefined time periods. Patients demon-
strated significant cognitive recovery at the third month, followed by worsened performance after 
6 months, which persisted until 1 year after concussion. Approximately half of the patients experi-
enced prolonged cognitive impairment at 1-year follow up. Satisfactory predictions were achieved 
for patients whose WM function did not recover at 3 months (accuracy=87.5%), 6 months (accu-
racy=83.3%), 1 year (accuracy=83.3%), and performed worse at 1-year follow-up compared to base-
line assessment (accuracy=83.3%). This study demonstrated the feasibility of personalized predic-
tion for long-term postconcussive WM outcomes based on baseline fMRI and demographic features, 
opening a new avenue for early rehabilitation intervention in selected individuals with possible 
poor long-term cognitive outcomes. 
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1. Introduction 
Mild traumatic brain injury (mTBI), commonly referred to as concussion, typically 

does not present with visual findings on structural magnetic resonance imaging (MRI) 
examinations, and therefore, providing neuroimaging evidence to support diagnosis or 
therapeutic evaluation is difficult. Furthermore, mTBI can cause an array of postconcus-
sive symptoms (PCS), most notably headache, sleep deficit, fatigue, dizziness, depression, 
anxiety, and cognitive impairment [1]. The average time required for symptom relief in 
most individuals is approximately 3 months [2]; however, some individuals with subjec-
tive PCS continue to experience symptoms even 1 year after concussion [3, 4]. Postconcus-
sive neuropsychological deficits have been suggested to be secondary to cognitive deficits 
[5-7]. Studies have suggested that only 15% of first-time concussed individuals continue 
to experience persistent neuropsychological symptoms [8, 9]; however, approximately 
half of them experience long-term cognitive impairment that persists for years and can 
severely affect overall quality of life [10, 11]. The options for early treatment of mTBI re-
main rather limited due to a general lack of validated biomarkers with a high degree of 
sensitivity and specificity for the development of symptom-specific therapies. Thus, use-
ful clinical biomarkers for individualized postconcussive management must be urgently 
identified, particularly to target individuals with poor long-term cognitive outcomes. 

Working memory (WM) involves the ability to transiently store and manipulate in-
formation to be used for cognitive or behavioral activities. WM deficit is one of the most 
common postconcussive cognitive impairments [12]. Chen et al. demonstrated reduced 
activation in the regions of N-back WM circuitry in patients with mTBI during both mod-
erate and high WM load conditions compared with healthy controls (HCs), especially 
prominent under WM 2-back > 1-back condition [13]. Differences were identified in WM 
functional activity between both patients with symptomatic mTBI and HCs as well as pa-
tients’ baseline assessment and 6-week follow-up, whereas no difference was observed in 
neuropsychological and behavioral performance, including digit span score, continuous 
performance test and WM task performance, suggesting that the deficits in WM functional 
activity estimated from functional magnetic resonance imaging (fMRI) may have a higher 
sensitivity to mTBI than to neuropsychological and behavioral evaluations alone [13]. 

We hypothesized that long-term cognitive outcomes of mTBI can better be predicted 
using pooled fMRI, demographic, and neuropsychological biomarkers than by using neu-
ropsychological evaluations alone. In this prospective observational study, our objectives 
were to identify fMRI, demographic, or neuropsychological biomarkers at baseline that 
could best predict future cognitive changes during the year following a concussion and to 
construct machine learning-based predictive models to discriminate between patients at 
high risk of poor long-term cognitive outcomes and patients with normal recovery. Spe-
cifically, the N-back WM task (N = 1 and 2) were performed to obtain potential disease-
related fMRI features since WM 2-back > 1-back condition could show the most prominent 
changes of impaired WM circuitry after mTBI [13]. Additionally, machine learning algo-
rithms can unravel the relationship between input variables (e.g., biomarkers) and re-
sponse variables (e.g., cognitive outcome) through a data-learning process, which allows 
for the prediction of future cognitive changes for each individual or the stratification of a 
patient population based on characteristic features. Furthermore, understanding various 
potential biomarkers associated with postconcussive WM impairments may render it pos-
sible to translate these biomarkers into effective cognitive rehabilitation strategies to im-
prove, or at least mitigate impediments to, the recovery of WM function, which is im-
portant in most occupations. 
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At present, for cognitive rehabilitation management, detailed holistic neuropsychiat-
ric assessments are required to identify, establish, and develop adaptive general or do-
main-specific interventions, whether adopting a nonpharmacologic or pharmacologic ap-
proach [14]; this is particularly true for the treatment of posttraumatic deficits in memory 
and executive function, as different compensatory training strategies are applied based 
on impairment severity [15]. Our aim was to construct a framework for precise individu-
alized prediction of postconcussive cognitive outcomes based on the early fMRI and neu-
ropsychological biomarkers assessed at baseline to facilitate early therapeutic intervention 
and individualized rehabilitation strategies. 

 
2. Materials and Methods 

2.1. Participants and neuropsychological evaluation 
Between September 2015 and August 2020, 70 right-handed patients with mTBI (age 

= 37.9±12.2 years; 23 [32.9%] women) and 48 age-, sex-, and education-matched right-
handed HCs (age = 37.4±12.0 years; 16 [33.3%] women) consented to participate in the 
study at Taipei Medical University Hospital. Reasons for injury were as follows: motor 
vehicle accident (n=37), fall (n=17), sports (n=3), assault (n=8), and other (n=5). Patients 
were followed up at 6 weeks (n=34; 52.52±6.95 days), 3 months (n=29; 100.96±13.56 days), 
6 months (n=28; 195.95±14.61 days), and 1 year (n=25; 376.48±16.52 days) after concussion. 
In total, 24 patients (38.6%) completed the baseline and all five follow-up sessions. Patients 
dropped out during follow-up visits mainly because of failure to keep in touch through 
phone calls or e-mails or a change in residence or job. All participants had normal or cor-
rected-to-normal visual activity and no history of neurological or psychiatric disorders. 
This study was approved by the Institutional Review Board of Taipei Medical University 
Hospital before data collection (TMUH TMU-JIRB No. 201504083, N201612008, 
N201904032, and N202102008) and conducted according to the original and amended Dec-
laration of Helsinki. 

The following operational definition of mTBI was used in the current study: patients 
with closed-head injury manifesting in a loss of consciousness lasting for < 30 min, initial 
Glasgow Coma Scale score > 13, and normal findings in computed tomography of the 
entire brain. The exclusion criteria were prior neuropsychiatric illnesses or symptoms, 
brain injury history, any coexisting or previous neurological illnesses, and contraindica-
tion for MRI. Inclusion criteria for the control group were the same, except for a negative 
assessment for mTBI and no concussion history. 

Neuropsychological assessments, namely six types of clinical symptom measures, 
the Mini-Mental State Examination (MMSE), and the Wechsler Adult Intelligence Scale, 
fourth edition (WAIS-IV), were conducted by a clinical psychologist on the same day as 
the initial and follow-up MRI scans. The clinical symptoms were assessed using the Glas-
gow Outcome Scale–Extended (GOSE), Pittsburgh sleep quality index, Epworth Sleepi-
ness Scale, Dizziness Handicap Inventory, Rivermead Post Concussion Symptoms Ques-
tionnaire (RPQ), Beck Anxiety Inventory, and Beck Depression Inventory, for which 
higher scores indicate greater symptomatology. Moreover, WM ability was assessed using 
the WM index (WMI), arithmetic ability (AMT), and digit span score (DS). 

2.2. MRI data acquisition and experimental design 
MRI data were obtained using a 3T MRI scanner (Siemens MAGNETOM Prisma, Er-

langen, Germany), and a 64-channel head coil was used to acquire the fMRI time series. 
Standard single-shot gradient-echo echo planar imaging–based fMRI (TR/TE = 2000/20 
ms, flip angle = 90°, voxel size = 3×3×3.5 mm3, matrix = 64×64×40, and 105 volumes) was 
performed. Participants were instructed to keep their eyes closed and not entertain any 
particular thoughts while remaining awake, alert, and as motionless as possible. 

The experimental design of the N-back task in fMRI was performed using Presenta-
tion software (Version 18.1, Neurobehavioral Systems, Inc., Berkeley, CA, USA) and is 
presented in Figure S1. An N-back task contains three epochs, each composed of a 30-
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second task period and a 30-second fixation on a crosshair. The interstimulus interval be-
tween each trial during a task period was 2 seconds. In total, 45 trials were performed, 
with each task consisting of 80% nontarget trials and 20% target trials. In each run of the 
N-back tasks, participants were instructed to pay attention to a series of six-digit numeri-
cal stimuli and respond by using the right index finger to press the button whenever the 
current stimulus matched the number that had been presented N times previously (N = 1 
or 2) [16]. 

For the coregistration and normalization of fMRI data, three-dimensional T1-
weighted magnetization-prepared rapid gradient-echo images (TR/TE/TI = 2300/3.26/1030 
ms, flip angle = 8°, voxel size = 1×1×1 mm3, and matrix = 256×256×176) were obtained. 

 
2.3. Data analysis 

2.3.1. fMRI preprocessing 
The anatomical and fMRI data were preprocessed using Statistical Parametric Map-

ping (SPM12; Wellcome Department, University College London, UK) for slice timing cor-
rection, realignment, spatial normalization to MNI space, and spatial smoothing with a 5-
mm full-width-at-half-maximum Gaussian kernel. Furthermore, linear and quadratic 
trends of fMRI time series were removed. 

 
2.3.2. WM task activation and deactivation map 

To calculate the brain activation and deactivation map during the N-back WM task, 
the experimental paradigm used the convolved canonical hemodynamic response func-
tion as a regressor in a general linear model. Six head-motion parameters estimated 
through image realignment by using SPM12 were used as covariates and partially re-
gressed out of the preprocessed fMRI time series. A contrast image corresponding to the 
main effects of task performance was created and represented brain activity relative to the 
implicit baseline of unmodeled variance [17]. Group level activation and deactivation 
maps were then calculated as a one-sample t-test across all participants within each group. 

2.4. Statistical analyses 
A one-sample t-test was used to determine the significance within the HC or mTBI 

group, and a two-tailed two-sample t-test was used to observe between-group differences. 
A two-tailed paired-sample t-test was conducted to examine the significance between the 
initial and follow-up data. The statistical tests were corrected for multiple comparisons by 
controlling the false discovery rate (FDR) to q = 0.05 to avoid errors related to multiple 
comparisons in these calculations. 

2.5. Regions-of-interest selection and percentage signal change calculation 
The regions-of-interest (ROIs; Table S1) were first defined using a 3-mm-diameter 

sphere centered at the WM 2-back task activation and deactivation peak regions in the HC 
group (p < 0.01, FDR corrected; Figure 1). The percentage signal change map [18] of each 
participant’s WM condition was then estimated through multiplication of the regression 
coefficient map for the main effects of task performance approximated as the quotient by 
dividing the peak value by the constant term in the design matrix such that they could be 
compared across participants [17]. Finally, the percentage signal change value of each par-
ticipant’s WM condition at each ROI was then extracted.  
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Figure 1. Postconcussive working memory activation and deactivation changes over time between baseline and follow-up. (A) 

Activation and (B) deactivation maps of 1-back, 2-back, and 2-back > 1-back WM conditions in HCs and patients with mTBI at each 

time point. Patients showed significant recovery under the WM 2-back > 1-back condition (bottom row) after 3 months (yellow 

arrows) but worsened again at 1-year follow-up (blue arrows). Note that the statistical tests were corrected for multiple 

comparisons by controlling the false discovery rate (FDR) to q = 0.05 to avoid errors related to multiple comparisons in these 

calculations. 

2.6. Postconcussive WM changes at predetermined time periods during 1-year follow-up 
To determine the courses of postconcussive WM changes, we first retrospectively as-

sessed the 24 patients who completed the baseline and all five follow-up sessions to de-
termine the status of WM decline or recovery at each time point during the 1-year follow-
up period. The two-tailed paired-sample t-test was applied to examine the significance 
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between the baseline and follow-up data to identify the statistically significant progres-
sion of postconcussive cognitive decline at predetermined time points (periods). Specifi-
cally, these statistically significant time periods of cognitive changes were regarded as the 
meaningful time periods for the machine learning–based approach in terms of postcon-
cussive cognitive progression prediction. Patients were further divided into “poor out-
come” and “good outcome” groups according to the negative and positive slopes of cog-
nitive changes within the specific time period. 

2.7. Individualized prediction of postconcussive WM impairments by using biomarkers measured 
at baseline 

The percentage signal change extracted from ROIs for the WM task performed by 
each participant was used for N-back WM fMRI features. Neuropsychological assess-
ments (namely seven types of neuropsychological tests, clinical symptom measures, and 
the WAIS-IV test) and the demographic data (namely age, sex, education year, and score 
on the GOSE) were treated as the potential neuropsychological and demographic features, 
respectively. The candidate fMRI, demographic, and neuropsychological features were 
selected if there were a significant correlation with the estimated changes in WMI during 
the specific time period to train the support vector machine (SVM) classifier with k-fold 
cross-validation (k=10 in this study) for each prediction to achieve a reliable and unbiased 
estimate of machine learning model performance on a limited dataset sample [19]. Specif-
ically, the complete data set is first divided into k consecutive folds. Then each fold is used 
once as a validation, and the remaining k-1 folds form the training set. This approach may 
be computationally expensive, but it does not waste too much data (as is the case when 
fixing an arbitrary validation set), which is the main advantage in problems with very 
small sample size. The individual SVM classification approach was accomplished using 
in-house MATLAB (version R2020a, Mathworks, Sherborn, MA, USA) scripts. 

3. Results 

3.1. Demographics 
In total, 70 patients with mTBI and 48 HCs were recruited in this study (Figure S2). 

Among the patients, 24 who completed the baseline and all five follow-up sessions were 
selected for investigations regarding dynamic changes in cognitive functions after con-
cussion. Table S2 lists the basic demographic characteristics of both groups. No signifi-
cant between-group differences in terms of age, sex, and education were observed be-
tween patients and HCs. Furthermore, no significant within-group differences were ob-
served in demographics between patients who completed the 1-year follow-up and those 
who completed only the baseline assessment following concussion. All structural MRI 
were unremarkable in terms of structural or signal changes. 

3.2. Postconcussive WM changes during 1-year follow-up period 

3.2.1. N-back WM task 
In both groups, the N-back WM task fMRI exhibited increased signals in the bilateral 

frontal and parietal lobes (p < 0.01, FDR corrected; Figure 1A), consistent with activation 
of WM circuitry. However, the extent of activation was less in the patient group than in 
HCs (Figure 1A, first two columns). Furthermore, the response of the brain to the increase 
in WM load from 1-back to 2-back, as shown in the brain activation (Figure 1A, bottom 
row) and deactivation (Error! Reference source not found.B) maps, was greater in HCs 
than in patients with mTBI. The WM deficit pattern of WM 2-back > 1-back and activation 
regions were recovered at the third month of follow-up; however, the WM deficit (decline) 
paradoxically reappeared again at 1-year follow-up after concussion. Lastly, deactivation 
in the patient group constantly disappeared at WM 2-back > 1-back activation regions 
throughout the 1-year follow-up. In addition, as the WM load increased from 1-back to 2-
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back, there would be an imbalance in the communication between task-positive (activa-
tion) and task-negative (deactivation) regions in the context of effortful task execution. 
Collectively, these findings revealed changes that persist during the chronic phase of 
mTBI and highlight the need for longitudinal studies to map the postconcussive cognitive 
decline and/or recovery. 

3.2.2. Neuropsychological assessment 
Assessment with the WAIS neuropsychological test revealed that WM-related abili-

ties, as indicated  by the WMI (Figure 2A), AMT (Figure 2B), and DS score (Figure 2C), 
significantly improved from 6 weeks to 3 months after mTBI but became worse again from 
3 to 6 months after mTBI. The result matched with our fMRI results and provided con-
verging evidence for the patients tend to have a transient cognitive recovery at the third 
month after mTBI, however, worsened again after 6 months. Because of the fluctuation 
and variation in the functional recovery of WM among patients, we grouped patients ac-
cording to follow-up time periods, where the patients with recovered WMI were classified 
into “good outcome group” and the patients exhibited a decline in WMI were labeled as 
“poor outcome group” for prediction model analysis. The percentages of patients in the 
four predefined time periods were as follows: 

1. 38% (9/24) of patients exhibited no recovery in WMI at 3 months after mTBI. 
2. 75% (18/24) of patients exhibited a decline in WMI from 3 to 6 months after mTBI. 
3. 38% (9/24) of patients exhibited no recovery in WMI from 6 months to 1 year after 

mTBI. 
4. 46% (11/24) of patients exhibited worsened WMI at 1-year follow-up than at the 

baseline. 
 

 
Figure 2. Postconcussive cognitive changes over time between baseline and follow-up. Dynamic individual patients’ trajectories 

of (A) WMI, (B) AMT, and (C) DS at each time point. The trajectories were normalized by subtracting baseline measurements for 

better visualization. Patients exhibited significant recovery during the 3-month follow-up but worsened again from 3 months to 6 

months or even at 1-year follow-up. Compared with baseline measurements, roughly half of the patients with mTBI displayed 

reduced cognitive function after 1 year. 

3.3. Prediction of postconcussive WMI decline based on baseline studies 

3.3.1. WMI not recovered at 3 months after mTBI 
Figure 3A presents the importance weighting of features derived from candidate 

fMRI activation and deactivation patterns, demographics, and neuropsychological tests 
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for predicting WMI changes between 6 weeks and 3 months after concussion. In particu-
lar, the selected features included two demographic (age and sex), five WM 1-back acti-
vation (left putamen, bilateral calcarine, left dorsolateral prefrontal cortex [dLPFC; BA46], 
and triangular part of the right inferior frontal gyrus ([IFG (tri.); BA45]), three WM 1-back 
deactivation (e.g., right middle cingulate cortex [MCC]), three WM 2-back activation 
(right dorsal anterior cingulate cortex [dACC], right rolandic operculum, and right infe-
rior temporal gyrus [ITG]), and one WM 2-back deactivation (the left middle temporal 
gyrus [MTG]) features (Figure 3A,B); 87.5% SVM prediction accuracy and an 82.96% area 
under the receiver operating characteristic curve (ROC-AUC; Figure 3C,D) were achieved 
using these features. 

 
Figure 3. SVM predictive model for 37.5% of patients whose WM ability did not recover at 3-month follow-up. (A) The red bar 

graph and the corresponding error bar, respectively, represent the average and standard deviation of the discriminative feature 

weights among the 10 cross-validated SVM classifiers. (B) Profiles of selected features for constructing the SVM classification model. 

None of the neuropsychological features were selected for this predictive model. (C) ROC curve of the selected feature to differentiate 

the “poor outcome group” from the “good outcome group.” (D) Confusion matrix to summarize the result of this binary classification 

model. 

3.3.2. WMI decline from 3 to 6 months after initial recovery 
Figure 4A presents the importance weighting of features selected from among can-

didate fMRI results, demographics, and neuropsychological tests to predict WMI changes 
between 3 and 6 months after concussion. These features included three demographic 
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(age, sex, and education years), one WM 1-back activation (left inferior frontal gyrus or-
bital part [IFG (orb.); BA46]), one WM 1-back deactivation (left MTG), two WM 2-back 
activation (e.g., bilateral IFG [tri.]), and two WM 2-back deactivation (left hippocampus 
and right MTG) features (Figure 4A,B). The SVM prediction accuracy could reach 83.33% 
with an 84.26% ROC-AUC (Figure 4C,D). 

 
Figure 4. SVM predictive model for 75% of patients whose WM ability dropped from 3 to 6 months after concussion. (A) The red 

bar graph and the corresponding error bar, respectively, represent the average and standard deviation of the discriminative feature 

weights among the 10 cross-validated SVM classifiers. (B) Profiles of the selected features for constructing the SVM classification 

model. None of the neuropsychological features were selected for this predictive model. (C) ROC curve of the selected feature to 

discriminate the “poor outcome group” from the “good outcome group.” (D) Confusion matrix to summarize the result of this binary 

classification model. 

3.3.3. WMI not recovered from 6 months to 1 year after mTBI  
Figure 5A shows the importance weighting of features selected from candidate fMRI 

results, demographics, and neuropsychological tests for predicting WMI changes between 
6 months and 1 year after concussion. Features selected for SVM classification included 2 
demographic features (age and sex), 10 WM 1-back activation features (bilateral anterior 
insula [AINS], bilateral IFG [orb.], bilateral putamen, bilateral rolandic operculum, right 
dACC, and left inferior parietal sulcus [IPS]), 5 WM 1-back deactivation features (left pos-
terior cingulate cortex [PCC], right angular gyrus, left hippocampus, left MTG, and left 
inferior frontal cortex [IFC]), 8 WM 2-back activation (bilateral IFG [orb.], bilateral AINS, 
bilateral ITG, left putamen, and right rolandic operculum), and 3 WM 2-back deactivation 
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features (bilateral hippocampus and left amygdala; Figure 5A,B). With the use of the se-
lected features, the SVM classifier could reach 83.33% accuracy with an 88.89% ROC-AUC 
(Figure 5C,D). 

 
Figure 5. SVM predictive model for 37.5% of patients whose WM ability did not recover from 6-month to 1-year follow-up. (A) 

The red bar graph and the corresponding error bar, respectively, represent the average and standard deviation of the discriminative 

feature weights among the 10 cross-validated SVM classifiers. (B) Profiles of the selected features for constructing the SVM 

classification model. None of the neuropsychological features were selected for this predictive model. (C) ROC curve of the selected 

feature to discriminate the “poor outcome group” from the “good outcome group.” (D) Confusion matrix to summarize the result of 

this binary classification model. 

3.3.4. Patients whose WMI at 1-year follow-up was worse than at baseline 
The importance of the feature weighting derived from candidate fMRI, demographic, 

and neuropsychological features to predict the estimated changes of WMI between the 
baseline and 1-year after concussion are shown in Figure 6. Two demographic features 
(age and sex), four neuropsychological features (MMSE, DS, WMI, and AMT), two WM 
1-back activation features (e.g., left ITG and left temporal parietal junction [TPJ]), two WM 
1-back deactivation features (e.g., left ventromedial prefrontal cortex [vmPFC; BA25], left 
posterior insula [PINS]), and one WM 2-back deactivation feature (e.g., right hippocam-
pus) were selected (Figure 6A,B), and the SVM reached 83.33% accuracy with a 95.80% 
ROC-AUC (Figure 6C,D). 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 December 2021                   doi:10.20944/preprints202112.0264.v1

https://doi.org/10.20944/preprints202112.0264.v1


 

 

 
Figure 6. SVM predictive model for 45.83% of patients whose WM ability after 1 year became worse than at baseline. (A) The red 

bar graph and the corresponding error bar, respectively, represent the average and standard deviation of the discriminative feature 

weights among the 10 cross-validated SVM classifiers. (B) Profiles of the selected features for constructing the SVM classification 

model. None of the WM 2-back activation features were selected for this predictive model. (C) ROC curve of the selected feature to 

discriminate the “poor outcome group” from the “good outcome group.” (D) Confusion matrix to summarize the result of this binary 

classification model. 

4. Discussion 

4.1. Validate machine learning algorithms in a limited data size 
Previous studies that have aimed at predicting long-term postconcussive cognitive 

outcomes for mTBI have generally adopted a multivariate approach encompassing pa-
tient demographics, clinical symptoms, and neuropsychological features, as well as other 
factors such as health care utilization and premorbid psychiatric conditions [20, 21]. How-
ever, the performance of such predictive methods can be limited due to clinical variability 
and complexity, as well as confounding factors such as ambiguous documentation, unde-
clared medication use, and other concurrent medical conditions, and assessment of mor-
phologic information based on structural brain imaging has not demonstrated additional 
benefits [22, 23]. In this observational study, we prospectively recruited 70 patients with 
mTBI and followed up their cognitive functioning with functional and neuropsychologi-
cal data for 1 year. In particular, 24 patients who completed all baseline and 5 follow-up 
sessions were selected for retrospective determination of the status of WM decline or re-
covery at each time point during the 1-year follow-up period. Although the relatively 
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small dataset used in this study might be a concern, k-fold cross-validation (k = 10 in our 
case) was applied to generate a reliable and unbiased estimate of machine learning model 
performance on a limited dataset sample [19]. Stated otherwise, we used a limited sample 
to estimate how the model is expected to perform in general when used to make predic-
tions on unseen data. The systematic processing procedures and the results of this study 
thus prove the feasibility of using machine learning–based approaches to reveal predic-
tive biomarkers related to poor postconcussive WM outcomes. 

4.2. Neuropsychological assessments are not predictive of postconcussion cognitive decline 
None of the baseline assessments of clinical neuropsychiatric symptoms (e.g. GOSE, 

sleep quality, depression and anxiety) or the self-reported PCS burden (RPQ) correlated 
significantly with WM changes between 6 weeks and 3 months, between 3 and 6 months, 
and between 6 months and 1 year after concussion in this study. These results substantiate 
the idea that the baseline neuropsychological assessments and PCS burden may not be 
predictive of postconcussive cognitive outcomes. Moreover, this was true in a previous 
study, which demonstrated that a lower cognitive reserve, but not a worse PCS diagnosis, 
was associated with a poor cognitive outcome following mTBI [24]. Studies have also 
shown that mTBI-induced differences in WM functional activity are observable; however, 
differences in neuropsychological and behavioral performance were not evident, suggest-
ing that the deficits of WM functional activity estimated from fMRI may have higher sen-
sitivity to long-term WM deficits in mTBI than to neuropsychological evaluations alone 
[13]. In addition, the time period between concussion and baseline assessment is also not 
related to the postconcussive WM changes, which indicates that the biomarkers identified 
in this study are not biased by the start time of the initial scan (within 1 week after mTBI 
in this research). Collectively, these results provide supportive evidence for using fMRI 
biomarkers elicited from baseline WM functional activity to predict long-term postcon-
cussive cognitive outcomes, as done in our research. 

4.3. Age and sex effect in postconcussive working memory impairment 
Recent studies have indicated the importance of age and sex effect in the context of 

mTBI, as elderlies and females are especially predisposed to postconcussive neurocogni-
tive symptoms [25-28]. This is also true in our data, where age and sex factor showed 
significant contribution to the predictive models (Figure 3, Figure 4, Figure 5 and Figure 
6), which possibly points to the age and sexual vulnerability factor to persistent postcon-
cussive WM impairments. Further investigation is needed to corroborate the findings and 
to identify the mechanisms behind the involvement of age and sex in mTBI, especially in 
long-term postconcussive WM outcome. 

4.4. The role of WM task-induced deactivation regions in reflecting postconcussive cognitive 
decline 

In addition to considering WM functional activity as a potential fMRI biomarker for 
postconcussive WM decline, the WM task-induced default mode network (DMN) deacti-
vation regions were considered in this research. The DMN, which is known to be active 
during rest and to deactivate during externally oriented tasks, may be essential for opti-
mal WM operation [29]. The failure to deactivate the DMN during a cognitive task may 
limit the ability to reallocate cognitive resources for task execution [30, 31]. Superior WM 
performance might be associated with the balance in the communication between task-
positive (activation) and task-negative (deactivation) regions in the context of effortful 
task execution [32]. Therefore, exclusively examining abnormalities in aberrant activation 
may be insufficient for a complete understanding of WM pathology [29]. Thus, we focused 
on both activation and deactivation deficits, marking a substantive advancement over 
prior works. In our work, approximately one-third to one-half of fMRI biomarkers exhib-
ited deactivation deficits and significantly contributed to the prediction of postconcussive 
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WM impairments. The results suggest that characterizing both activation and deactivation 
deficits is crucial for a complete understanding of WM dysfunction in mTBI. 

4.5. Scientific merit and clinical implications 
The systematic characterization of WM functional deficits may have crucial thera-

peutic implications in patients with postconcussive WM dysfunction, facilitating rehabil-
itation intervention planning in selected patients. Studies have suggested the potential 
application of brain functional activation and deactivation patterns in WM tasks for early 
neurocognitive training referral, training intensity planning, or even functional recovery 
prediction [13, 33]. Moreover, pharmacological interventions such as catecholaminergic 
treatment with methylphenidate improve cognitive performance in patients with severe 
TBI through the normalization of WM activation patterns [34]. Manktelow et al. demon-
strated that compromised functional integrity and connectivity strength between key 
structures of the WM activation pattern in patients with TBI can be treated with 
methylphenidate to improve cognitive performance and that methylphenidate’s pharma-
cologic effect may be more beneficial in patients with moderately severe cognitive deficits 
[35]. This treatment outcome correlation has not been well-explored for mTBI; neverthe-
less, our study results also indicate that the assessment of WM functional deficits may 
facilitate early rehabilitation interventions for patients with possible poor long-term cog-
nitive performance and may thus reduce heterogeneity in treatment response and cogni-
tive outcome. These fMRI predictive biomarkers exhibit potential to reflect the functional 
dynamics of neuroplasticity mechanisms in the injured brain. Our results support the hy-
pothesis that pooled fMRI, demographic, and neuropsychological baseline biomarkers 
can satisfactorily predict postconcussive WM deficits during a 1-year period. Future stud-
ies must focus on using these predictive biomarkers as a patient stratification strategy to 
provide early intervention for patients who are at high risk of postconcussive WM dys-
functions. 

5. Conclusions 
This study examined postconcussion cognitive changes during a 1-year follow-up 

period. Consistent with a previous study [36], in our study, patients with mTBI demon-
strated significant cognitive recovery at the third month after concussion, followed by 
worsened performance after 6 months, which persisted until 1 year after concussion (Fig-
ure 1). Approximately half of the patients experienced prolonged cognitive impairment, 
including impaired WM, DS, and AMT at 1-year follow up (Figure 2). The results are sim-
ilar to those of previous studies, indicating that significant postconcussion cognitive im-
pairment may persist for years despite some recovery over time [36]. Even a single con-
cussion can lead to persistent cognitive impairment in approximately half of patients [10]. 
We constructed machine learning–based predictive models to differentiate patients at 
high risk for poor cognitive outcomes at the representative time periods after concussion. 
Satisfactory predictions were achieved for patients with mTBI whose cognitive function 
did not recover after 3 months (Figure 3), worsened at 6 months (Figure 4, did not recover 
at 1 year (Figure 5), and worsened at 1 year compared with baseline (Figure 6). This study 
demonstrated the feasibility of prediction individualization for long-term postconcussion 
cognitive outcomes by using pooled fMRI, demographic, and neuropsychological features 
and further suggests the possibility of early therapeutic intervention, such as neurocogni-
tive training, for individuals with mTBI with poor long-term cognitive outcomes to reduce 
postconcussive cognitive decline and risk of chronicity [37]. fMRI may also be used to 
evaluate and guide treatment strategies, specifically targeting brain areas involved in 
postconcussive cognitive decline [13, 38, 39]. 
 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1: 
N-back WM task diagram, Figure S2: Flow chart, Table S1: WM 2-back task-induced activation and 
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deactivation peak regions among all participants, Table S2: Demographics, clinical and cognitive 
characteristics, and WM task performance of the participants. 
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