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Abstract: This paper considered the issue of agricultural fields boundary recognition in satellite
images. A novel algorithm based on the aggregated history of vegetation index data obtained via open
satellite data, Sentinel-2, was proposed. The proposed algorithm included several basic steps, namely
the detection of parcel regions on aggregated index data; the calculation of aggregated edge maps; the
segmentation of parcel regions using the edges obtained; the computation of connected components
and their contour extraction. In this paper, we showed that the use of aggregated vegetation index
data and boundary maps allow for much more accurate agricultural field segmentation compared to
the instant vegetation index approach. The quality of segmentation within regions of Russia and
the Ukraine was estimated. The dataset that was used and Python implementation of the proposed
algorithm were provided.

Keywords: digital farming, remote sensing, land management, multispectral image processing, land
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1. Introduction

The development of modern agriculture directly depends on the efficient use of land,
which requires reliable and timely information about the state of land [1]. One of the sources
of information regarding agricultural land is cadastre maps that document the boundaries
of fields. This information needs to be regularly revised and updated, which highlights
the issue of agricultural fields boundary recognition [2]. While the manual markup of
fields using satellite images is usually employed, this process has several drawbacks. It
is extremely labor intensive, and it is ineffective for use in the annotation of large areas,
such as counties or regions [3]. Hence, automatic markup is a relevant issue. Moreover,
agricultural fields boundary recognition is a preprocessing step in the crop classification
problem. For example, [4] showed that the employment of objects extracted from the
recognized boundaries creates better results compared to the analysis of individual pixels.

This work is devoted to agricultural fields boundary recognition using publicly avail-
able multispectral satellite data. As it is difficult to find publicly available data that can be
used to train and test such an algorithm, we created and published a dataset that includes
several agricultural regions located in Russia and the Ukraine. The paper is structured as
follows: Section 2 provides a review of the works that discuss remote sensing technologies
and agricultural fields boundary recognition in detail; Section 3 introduces considered
study area and data used for experiments; Section 4 describes the proposed approach
and algorithm; Section 5 provides the list of tested algorithms, formulates the quality
assessment metrics and describes the methodology of the experiments, and the results.
Finally, Section 6 summarizes the results of the research and details the employed data
samples and the implementation of the proposed algorithm.

2. Related work

The registration, processing and analysis of the Earth’s surface satellite monitoring
data is an area of modern science in the field of remote sensing that is under active
development. This area of modern science is especially crucial for countries with large
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areas of actively used agriculture land, such as Australia, Argentina, China, Spain, and
the United States of America [5]. Satellite-based sensing systems can provide regular data
covering large territories with deep historical context. UAV-based are significantly more
precise (with resolution up to centimeters by pixel [6]) but are applicable only for certain
areas of interest. The evolution of technologies with respect to each remote sensing system
and observation condition specifics is an area of progress in efficient agriculture.

The obtained images are subject to various kinds of distortions due to the influence
of atmospheric effects, difficult observation conditions (the presence of shadows, haze,
clouds, etc.), and imperfections in the registration system. This significantly complicates
the task of their further analysis [7,8]. Distortions and eliminating artifacts compensation
methods are being actively developed to improve the quality of the recorded data [9-12],
including methods for atmospheric effects correction [13-15], cloud and shadow detection
and compensation [16,17], and denoising [18].

Russia has over 200 - 10° Ha of agricultural land area [19] and requires a rapid increase
in agriculture production; therefore, the development of relevant technologies is of particu-
lar importance [20]. Among the works of Russian scientists, both fundamental research
on computer optics methods [21-23] and physical processes of image registration [24,25]
and applied research aimed at the development of integrated satellite monitoring data
processing systems [26,27] can be highlighted. The results of these studies make it possible
to improve both the hardware characteristics of remote sensing systems, for example, by
significantly facilitating the registration system [28], and to improve the quality of the
monitoring data obtained [29,30]. Much attention is being paid to the color properties of
images. Physical approach-based color segmentation methods are being proposed [31,32],
methods for use in evaluating the spectral characteristics of lighting sources are being
developed [33] and the properties of color coordinate systems are being investigated [34], as
well as the properties of color images registered in dense medium such as water [35]. With
regard to working with multispectral images, methods for use in their visualization [36],
restoration [37,38], and correction [29] are being actively developed. As for information
retrieval from satellite data, specific problem-oriented methods are being investigated, such
as cropland boundaries segmentation [39], crops [40] and tree species classification [41,42],
texture classification for forests inventory purposes [43], and windthrow detection [44].

Among works regarding the segmentation of agricultural fields based on multispectral
satellite images, several approaches can be distinguished.

Edge-based methods [4,45,46] detect edges in an image by analyzing gradient maps.
Such methods usually employ various filters, e.g., Scharr operators [47] or Canny [48],
etc.[4], for the detection of edges. However, these methods are sensitive to noise, and the
latter induces false edges [49].

Region-based algorithms [50-53] either locate groups of neighboring pixels, thus
identifying objects based on some homogeneity criteria, or separate regions with different
spectral properties. Such methods tend to over-segment fields characterized by high
internal variability [54].

To address the drawbacks of the region- or edge-based approaches, hybrid methods
combining region-based and edge-based methods are employed [49,55-57].

Each of the listed approaches can be implemented using both low-parameter methods
[55] and machine [50] methods, including deep learning [46,58]. There are also methods
that combine neural networks and classical computer vision approaches [59,60].

For example, [50] proposed a method based on splitting a multispectral image into
so-called superpixels and then combining them using machine learning. By a superpixel,
the authors denote a small local cluster containing a statistically homogeneous region of
an image according to several criteria, such as color, texture, or brightness. For image
segmentation, the authors implemented the Simple Linear Iterative Clustering (SLIC)
algorithm, modified for multispectral data. Then, using the characteristics of the obtained
segments, for each pair of superpixels, it was determined whether they should be combined.
This problem was solved using the RUSBoos classification algorithm as the target labels
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within the employed dataset were not balanced due to the characteristics of the landscape.
Hence, the authors show the possibility of reducing the problem of agricultural fields
boundary recognition to the problem of classification.

In another paper [51], the authors investigated the effect of temporal data on the
quality of field recognition. This work compared the output of two U-Net neural networks
that used the same spatial area for training. In the first case, a single RGB image was used
for training; in the second case, three RGB images belonging to the same spatial region
at different points in time were used. The vegetation season was conventionally divided
into three time periods: January—March, April-June, and July—-September. A single image
was taken from each period as input data. The results of this paper show that a model that
employs both spatial and time data allows for better accuracy compared to a model trained
on spatial data alone.

In [55], a method for use in the automated extraction of agricultural fields from Web-
Enabled Landsat Data (WELD) time series was proposed. Within the first stages, crop
probability and field edges maps were constructed based on five years of weekly WELD
data. The green, red, near-infrared, and mid-infrared channels, as well as the Normalized
Difference Vegetation Index (NDVI), were used to calculate probabilities. The NDVI time
series was formed from the maximum weekly values of the index over a 5-year period. In
this study, the authors suggested that pixels with consistently high seasonal NDVI values
were most likely related to crop production, but some non-agricultural vegetation types
also had high NDVI values, which resulted in inaccuracies. The resulting maps were used
for Variational Region-Based Geometric Active Contour (VRGAC) segmentation. Next, the
watershed algorithm was used to separate fields that have fuzzy boundaries.

In [47], the authors also used temporary data to extract field boundaries. The authors
selected seven Sentinel-2 images on clear days for the vegetation period of 2016-2017. First,
field boundaries were extracted for each date on red, green, blue, and NIR channels; then,
an aggregated boundary map was obtained by summing 28 layers of boundaries (four
channels for seven dates). The resulting aggregated boundary map was fed to the input of
the segmentation algorithm to obtain potential agricultural regions. Furthermore, these
regions were classified into cultivated and uncultivated objects using a classification and
regression tree (CART) algorithm. NDVI indicators aggregated over the observation time,
such as min, max, range, and standard deviation for each pixel, were selected as features
for classification. Finally, small regions that were obtained as a result of segmentation
were filtered out. The authors used the Scharr and Canny operators to obtain boundary
maps. Three segmentation algorithms were tested: watershed, multi-resolution, and
multi-threshold. Thus, six algorithms that could be used to obtain field boundaries were
investigated. The authors showed that watershed segmentation performed best on Canny’s
boundary map. Canny edge detection provided clearer boundaries compared to Scharr’s
algorithm. The authors also noted that multi-temporal data application is more effective
than instant data analysis due to the dynamic nature of field crops.

In these studies, research data were provided by various satellites such as SPOT
[54,61], LANDSAT [55], WorldWide-2/3 [45,57], or Sentinel-2 [4,52,58]. After analyzing the
related work, we came to the conclusion that it is advisable to use a hybrid approach to
field segmentation, taking into account historical data.

The approach proposed in this paper was closest to a hybrid method as it used the
derived edge maps to localize the fields more accurately. Furthermore, the proposed
algorithm had low parameters and did not require a large amount of marked-up data for
training, unlike neural network solutions [62].

As historical data provides more detailed information, it should be employed. How-
ever, at the same time, it is highly preferable to reduce the dimensionality of data within an
algorithm. Thus, we proposed the use of time-aggregated historical data to segment the
fields.
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3. Study areas and data
3.1. Sentinel-2 data

This study employed data from the remote sensing programs Sentinel-2A and Sentinel-
2B, launched in 2015 and 2017, respectively, which provided data for each area every 5
days on average.

A set of 13 images in Jpeg2000 format, taken in different spectral ranges and with
spatial resolutions from 60 m/pixel to 10 m/pixel with a maximum size of 10800x10800
pixels (see Table 1), was provided for each sensing time. The data were geometrically
corrected and delivered as 100x100 km tiles in the Military Grid Reference System (MGRS).

Ne Name Center
of channel Wavelength, nm | m/pixel

0 B1—Coastal aerosol 443 60
1 B2—Blue 490 10
2 B3—Green 560 10
3 B4—Red 665 10
4 B5—Vegetation Red Edge 705 20
5 B6—Vegetation Red Edge 740 20
6 B7—Vegetation Red Edge 783 20
7 B8—NIR 842 10
8 B8a—Narrow NIR 865 20
9 B9—Water Vapor 940 60
10 B10—SWIR Cirrus 1375 60
11 B11—SWIR 1610 20
12 B12—SWIR 2190 20

Table 1: Sentinel-2 satellite band specifications.

The localized cloud data, also provided by the Sentinel-2 source along with multispec-
tral images, were used for cloud cover processing.

3.2. Data collection and study areas

To compare our approach with the alternatives found in the reviewed works, a uni-
fied fields boundaries markup and unified segmentation quality evaluation metrics were
required. Analysis of the experimental sections of other works has shown that the accurate
comparison of approaches is difficult, mainly due to the inaccessibility of the data samples
used in these works. In [1,50,52,55,57,58], the markup was obtained manually and is not
accessible; [63] does not mention the origins of the reference fields; [4,45,49,58] list sources,
but there are no references to the specific datasets.

We performed our own expert field markup for four regions within Russia and the
Ukraine. Each of the areas was a square fragment of a tile of 57300m x 57300m with a
spatial resolution of 10 m/pixel. The areas were chosen so that each of them had other
types of terrain in addition to fields: urban area, water surface, swamps, and forests.

Ground truth data were segmented by experts on RGB images taken during cloudless,
clear days. Table 2 provides information regarding the coordinates of the considered areas,
as well as the dates when the chosen images were taken.
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Date of satellite
image
for markup

Coordinates of the area

Tile code [latitude, longitude]

[51.44875, 33.75522]
[51.44054, 34.57954]
[50.92548, 34.56203]
[50.93354, 33.74684]

36UWB 21 September 2020

52.77559, 38.29526

]
52.77759,39.14469)]
52.26246,39.14301] 7 June 2020

]

[
37UDU {
[52.26049, 38.30345

[50.97909, 38.99972]
[52.77759, 39.14469]
[50.46100, 39.80700]
[50.46380, 38.99972]

37UES 27 June 2020

51.41588,42.12371

]
51.43321,42.94708]
50.91828, 42.96983] 7 October 2020

]

[
38ULB {
[50.90127,42.15556

Table 2: The considered areas.

Furthermore, we refer to the extracted fragments by the same names as the MGRS
tiles to which they belong.

The observation period from 01 January 2016 to 31 December 2020 was chosen for
experiments and algorithm tests. To calculate the aggregated vegetation indices, only
images with cloud coverage less than 80% were considered, and to calculate the aggregation
of edge maps, only images with less less than 1% were considered.

Table 3 provides statistics regarding the number of fields and their sizes.

Tile Number | Fields average | Fields median

code of fields area, km? area, km?
36UWB 6984 0.27 0.11
37UDU 4411 0.43 0.18
37UES 3957 0.44 0.31
38ULB 3507 0.61 0.39

Table 3: Statistics of fields according to markup by experts.

The fragments were divided into training and test samples, so that both groups
contained small and large fields of different shapes. Figure 1 illustrates the relative locations
of the considered fragments, as well as the training/test division.
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Figure 1. Relative locations of the considered fragments. The shaded regions represent the training
sample; the dotted areas represent the test sample.

4. Method

The proposed approach to agricultural fields boundary recognition can be described
by the following key stages: (1) MSAVI2 calculation and aggregation; (2) the detection
of agricultural fields regions; (3) the obtainment and aggregation of edge maps; (4) the
segmentation of regions, taking into account the detected edges; (5) the computation of
eight connected components and their contour extraction and filtering.

The input data of the algorithm was a set of Sentinel-2 multispectral satellite images
and corresponding cloud masks. The set was used to compute the Modified Soil-adjusted
Vegetation Index (hereinafter—MSAVI2) for each of the specific dates available (hereinafter,
such images are called instant) in the considered time period and their historical aggrega-
tion. In contrast to approaches that use satellite data for a specific date, or a list thereof,
we proposed the analysis of aggregated data within a historical period. Edge maps were
obtained by aggregating the edges obtained on separate instant images. Field regions
detection was performed on the aggregated MSAVI2.

Each of the stages within the proposed algorithm are described in detail below.

4.1. Aggregated vegetation index data

Single-channel image aggregation is a process of calculating a function of the pixel
values for each point of an image. The result of such calculations is also a two-dimensional
single-channel image.

The process of calculating aggregations is described below. Consider a set of available
images for a specific area and calculate the vegetation index MSAVI2 [64] for each image:

MSAVI2 = (NIR — RED) - (1+L)/(NIR + RED + L),
L=1-05-(2NIR+1— /(2NIR +1)2 — 8(NIR — RED)),

)

where RED and NIR are the red and near-infrared channels, correspondingly. All image
operations are pixel-wise.

The range of the index values under consideration was chosen experimentally by the
experts: [0...1].

Figure 2 illustrates the examples of red and near-infrared channels and an instant
MSAVI2 index for the same geographic region.
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Figure 2. Examples of Sentinel2 images: red channel (a), near-infrared channel (b), and MSAVI2 (c)
for 29 July 2020.

We considered the instant vegetation index as an image I with linear dimensions of
W x H. The aggregated image If was defined as a scalar two-dimensional image (also with
dimensions of W x H), the (i, j)-th pixel of which is the value of the aggregation function f
calculated for a sample of k; ; instant vegetation data:
7 :f(lgj,li{j,...,lff;:f), icf0,...,W—1),jel0,...,H—1] @)
where f is the aggregation function, I is an image of the vegetation index data for a
particular date, and k;; is a number of measurements available for (i, j)-th pixel. The
sampling is determined by the criterion of data certainty: the terrain corresponding to the
image point must not be obscured by clouds and must be within the sensor’s field of view.
At any particular point in time, the agricultural regions in the image may be present
at different stages of vegetation and crop production. This results in significant variability
in the observed index values both between fields (low vegetation during the early crop
production stages, or high in the peak stages) and within a single field, for example, due to
the harvesting stage. Thus, an aggregation function can be introduced as a sample mean
to smooth the vegetation maps over time, which will provide data with less vegetation
variability both between fields and within fields.
Thus, for aggregation as the sample mean, the equation above is expressed as follows:

kii—1
- 1 7
avg ¢
I = I ®)
L] g=0

ij k

Figure 3 schematically illustrates the time aggregation process of the MSAVI2 index
and the result obtained.

Observations number Pixel-wise average
accumulation index aggregation result

Pixel-wise index
values accumulation

Figure 3. Data certainty criterion-based vegetation index aggregation scheme and aggregated
vegetation index MSAVI2 from 2016 to 2020 inclusive.
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4.2. Searching for field regions

First, we localized the regions of agricultural fields in an input vegetation index image.
Region localization is achieved via clustering pixels into two groups: pixel of agricultural
field and pixel of non agricultural field, according to their absolute value. The Otsu
criterion was employed to find the optimal clustering threshold. The criterion determines
the threshold which maximizes the between-class variance [65]. This work assumed that
the regions with significantly higher vegetative rates represent wild plants outside the crop
production process.

Figure 4 illustrates an example of the aggregated vegetation index values histogram.
The histogram has two distinguishable peaks, which presumably correspond to the dis-
tribution of intensities of the fields” pixels and non-fields’ pixels. We searched for the
optimal Otsu threshold among such intensity values that exceed the minimum threshold
t1ow, Which defines regions of low vegetation (water surface, concrete areas, etc.):

to = arg max o3 (i), 4)

where 03(i) is the between-class variance calculated among index values exceeding thresh-
old t}o. The values of t;,,, are determined empirically.

0.03

rate

0.01

|
0.00 0.200.24 0.40 047 0.60 0.80 100
index values

Figure 4. Histogram of intensities of the aggregated index MSAVI2. The dot-dashed line represents
the threshold t;,,,; the dashed line represents the Otsu threshold value ¢(.

The masks of potential fields and regions with very low vegetation are defined as M
and L, respectively. Such masks are binary images with dimensions of W x H obtained by
thresholding I7°¢ using to and t},, respectively:

o , 1, ifI% <to;
Potential field regions mask: M;; = i (5)
0, otherwise
1, if I < tows
Low-vegetation regions mask: L;; = bl low (6)
0, otherwise

To increase the reliability of the localization of water bodies and other regions of the
terrain with very low average vegetation, we used the morphological dilatation of the
image L according to a structural element s of size w:

L=L®sw). )

The result of field localization is the image F, obtained by element-by-element sub-
traction of the mask of low-vegetation regions W from the image M:

a

Fj = M;; — Li;. 8
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Figure 5 illustrates the examples of the original image I (a), low-vegetation regions L
(b), field region mask M (c), and the final result of field localization F (d).

() © @

Figure 5. Tllustrations of the search for field regions: aggregated MSAVI2 index [ (a), low-

vegetation region mask L (b), potential field region mask M (c), detected field region F (d).

4.3. Edges Detection

As in [47], to obtain edge maps, we used the Canny edge detector [48]. However,
unlike [47], we extracted edges from pre-computed MSAVI2 images rather than RGB and
NIR channels of satellite images.

As the agricultural fields may be at different stages of vegetation on a single selected
date, the accumulation of boundaries over the historical period strengthens static field
boundaries and accumulates weak ones.

We considered the instant Canny edge map for index I as an image E(I) of size W x H
with values of one for the boundary pixels. The accumulated edge map E was calculated
as the sum of instant boundaries normalized by the number of measurements:

1 k,"j—l

Eij= 1+ Y E(I%);, 9)
ij &=0
where ¢ is the index of the image in the historical dataset.

Despite the known position of clouds in the image, the accuracy of their localization is
not perfect, hence the false boundaries for clouds, and their shadows can be detected, and,
as a consequence, such false boundaries appear within the aggregated data. To reduce their
effect on the signal-to-noise ratio in the final accumulative image, only cloud-free satellite
images were considered.

A binary edges mask E? from the accumulated image E was obtained via threshold
binarization. The threshold was also calculated using the Otsu method.

Figure 6 illustrates the example of the aggregate index fragment calculated from
2016 to 2020 inclusive (Figure 6a) and the detected Canny edges (Figure 6b) on the index.
Figure 6¢c shows a binary edge mask obtained via 54 instant edge maps aggregation and
binarization.

The boundary accumulation approach provides a more detailed map of field edges
compared to boundary localization in the aggregated image.


https://doi.org/10.20944/preprints202112.0243.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 December 2021 d0i:10.20944/preprints202112.0243.v1

10 of 19

(b)

Figure 6. [llustration of approaches to the edge map extraction: aggregated MSAVI2 [*€ (a); Canny

edges on the aggregated index E(I*°8) (b); binary map of the aggregated Canny edges £;, (c).

The localizations of the field edges on different images do not always match exactly,
and usually, there is a spatial error. To reduce the influence of this effect when accumulating
the boundaries, instead of the original edge maps, we employed the results of the morpho-
logical dilatation for the latter. This step is also effective when there are inaccuracies in
the alignment of satellite images. The effect of this step on the quality of agricultural field
boundary segmentation is provided in the Experiments section of this paper.

The binary edges map was subjected to morphological closing. This step allows for a
reduction in the proportion of open edges and noisy false positive edges of small regions.

4.4. Segmentation of regions

Then, we obtained a mask of individual agricultural fields, taking the detected edges
into account. A raster image R of the segmented fields was obtained as follows:

R;j = max(0,F;; — Eib,].), (10)

where F is an image of localized field regions, and E? is the edges image.

4.5. Contours extraction and processing

In this step, the R image was searched for eight connected components, which consti-
tute a list C. For each component, its vector contour was determined. Then, it was checked
for validity (no self-intersections, the number of points was more than two, etc.). If the con-
tour was not valid, it was corrected. To get rid of noise caused by image over-segmentation,
false positive detections, and unlikely big fields, vector contours were filtered by area using
the thresholds #/7°* and t/j7%. These thresholds were determined empirically.

4.6. Flowchart of the proposed approach

Figure 7 shows a schematic of the proposed algorithm.


https://doi.org/10.20944/preprints202112.0243.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 December 2021 d0i:10.20944/preprints202112.0243.v1

11 of 19
-------------------------- fields TTTTTTTTTTTTTTTTT

: I mask ' !

‘ field mask  — '

compute index ! evaluation ! H it !

Sentinel-2 Images on Soomrrzoozzoozizoooizoil : field contours ; list of valid
data Sentinel-2 . . ' s H field contours

data H I ! : obtainment :

: edges mask :—;: !

' calculation | edges :\ I

; field mask evaluation

index images !
classif
aggregate aggreg::e d
index images index image

'
—>

'

H

H aggregated

index image

\
\ fields mask
H

=

I

." edges mask calculation

. . H : edges mask
index images | | compute edges agavesate binarize edges ;
|:> images on BEreg! aggregated morphological
. A edges images 2
' index images edges image closing
: “edges aggregated binarized
images edges image image
III
ﬁ;lds "‘ast ! field contours obtainment ‘; list of valid
1
edges mask | ﬁeld contours
t N
ﬁZf‘in::m find connected get components check and fix filter contours '
8 components contours invalid contours by area
edges mask
segmented connected field valid
lmage components contours contours

Figure 7. Flowchart of the proposed algorithm for agricultural fields segmentation.

The algorithm can be divided into three blocks: field mask evaluation, edge mask
calculation, and field contours obtainment. The calculation of the edges map on instant
indices also included morphological dilation of the obtained boundaries in order to improve
their further aggregation.

5. Experiments

We tested the proposed algorithm and its several modifications related to the methods
of edge map calculation. We also considered the case wherein the field boundaries were
determined from a single instant image (obtained on the same date as the image in which
the field markup was performed).

The tests were conducted using data from regions within the Russian Federation and
the Ukraine, where agriculture is well developed. The areas were chosen so that each
of them would be on a separate MGRS tile. To simplify and speed up the calculations,
we considered square fragments rather than complete tiles, which were about four times
smaller in terms of area.

Along with the results of the experiments, we provide our expert markup of the
regions under study.

5.1. Description of the tested algorithms

Along with the proposed algorithm (i), the following modifications were tested: (ii)
without edge map dilation in the aggregation process; (iii) with edge maps obtained from
aggregated MSAVI2 images alone; (iv) using instant data at a specific date.

The following parameters were investigated: ¢ (Canny operator parameter) is the
standard deviation of the Gaussian operator, which is applied to the original image during
preprocessing; w is the radius of the circular structural element used in morphological
closing; t#¢" and tj7% are the thresholds for the minimal and the maximal field region area,
respectlvely.

Experiments showed that for the available training sample, the following parameters
are the closest to the optimal ones: t7¢% = 0.05 km?, t¢? = 10% km?, and w = 2 pixels. The
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best result for boundary aggregation (i, ii) was achieved via the accumulation of Canny
boundary maps calculated with the parameter o = 1.

The third scenario (iii) considered was an algorithm with the calculation of field
boundaries on the image of the aggregated index. In this case, o was set to 0.01.

A (iv) scenario similar to the third was also considered, but one instant index image
was fed to the algorithm as input. The model parameters were: ¢ = 0.5, w = 3.

In Table 4, we introduce the following notation for each tested algorithm.

Algorlthm S Algorithm description and parameters
notation
Einstant Edge detection within the instant index, ¢ = 0.5,
w=3
. Edge detection within the aggregated instant index,
E(I"8) 7 =001, w=2
E Instant boundaries aggregation, o =1, w = 2
Egitated Instant dilated boundaries aggregation, o = 1, w = 2

Table 4: Tested algorithms” description.

5.2. Evaluation of segmentation accuracy

To evaluate the accuracy of algorithms in agricultural fields boundary recognition,
different approaches are used. Among them, we can distinguish pixel-based and object-
based metrics according to the type of data analyzed. Pixel-based metrics are defined for
sets of image pixels with assigned recognition result labels (field /non-field). Their main
advantage is that they are simple to implement and quick to compute, parameters which
mainly depends on the size of the images. However, their serious disadvantage is low
sensitivity to under- or over-segmentation. For example, the DICE [51] might yield a high
value both when fields are excessively split and when they are merged, as shown in Figure
8.

(a) Example of split reference field (b) Example of merged reference fields

Figure 8. Illustration of splits (a) and merges (b); gray polygons represent the ground truth; red lines
represent the fields recognized by the algorithm.

We used an object-based approach to estimate agricultural fields boundary segmen-
tation, which is more sensitive to over- and under-segmentation. We also performed
pixel-based metrics estimation.

Sets of fields segmented by experts and fields recognized by the system with cardi-
nality of N,.r and Nexp are denoted as F,f = {f}ef,. . ,f::“’f} and Fexp = {foxp, - - - ,fj}’;;""},
respectively.
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We compared the recognized fields to fields segmented by the experts using Jaccard’s
coefficient (11) and considered that fgxp matched frle y if J( rie fr gx,,) > 0.5.

S(anb)
S(aub)’

where S(x) denotes the area of the polygon x.
Under the condition J(a,b) > 0.5, if the fields from Fexp do not intersect each other

(a similar condition is imposed on Fy.f), Frf . ;7;0 5 Fexp can be considered one-to-one
a, .

correspondence. We denote the set of Nyje20ne found one-to-one correspondences between
elements from F,.r and Fexp as Fonezone:

J(a,b) = (11)

Fonezone = {Pl/ p2,..., PNO,MDM}/ Py = (fzef,fgxp)tp (12)
The index of unambiguous field recognition is introduced as the value RecRate:
RecRate — 2—one2one 1000, (13)
Nexp + Nref

This value equals 100% if each field from the expert markup under the condition
J(a,b) > 0.5 has a one-to-one correspondence from the set of recognized fields. It is
sensitive to both false positives and false negatives, which are accounted for within both
None2one and Nexp-

To assess the accuracy of the determined field area, we considered the following value:

_ S(fcfxp) - S(f;ef)
S(7L)

The criteria for the accuracy of determined field area are the mean and median of the
area errors:

581‘

-100%, Vi € Fyuedone- (14)

1

<d0S >=
Noneone ieF,

Ss; (15)

ne2one

0S50 = median (Js;) (16)
i€ Fonedone
The criteria (13) and (15) can be both accounted for in a single criterion RecRatey if an
additional condition is imposed on the recognized fields to allow for area error:

RecRateg = 2 N0m2oneds<t. 100, (17)
Nexp + Npe f
where Njje20ne,65<0 is the number of correctly recognized fields for which the area error ds;
is less than the threshold value 6. Here, we used 6 = {0.1,0.2}.

The value (17) is sensitive to over- and under-segmentation and penalizes for merge/split
errors. If we did not consider such recognition results as errors, we could introduce a softer
measure of accuracy (18) that took not only the one-to-one correspondences between the
elements F,, Z Fexp into account.

We chose the following value as such a criterion:

(anb) S(anb)
s * 5@

Q(a,b) = max{ 5 (18)

The field f, s corresponds to the field fgxp = argmax(Q)( frief' f)), provided that

fePexp

Q frief, fgxp) > 0.5. Thus, we find correspondences Fy.f Q(u<5>0.5 Fexp. Similarly, the
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correspondences F,r  —  Fexp. The set of these correspondences F.r <>
Q(a,b)>05 Q(a,b)>05

does not include one-to-one correspondences alone and allows for merges (when one field
fexp corresponds to several fields f,.¢) and splits (when one field f,. corresponds to several
fields fexp), as well as chains of correspondences.

We denote the set of correspondences found as described above by Fq, and the number
of ref fields from this set by Nr?f‘ Then, we can define the «soft» criterion of recognition as

F, exp

follows:

NQf

re

RecRatesor = Wef -100% (19)
We denote the fields from the set Fy, that are not in Fq as Frp = ngp\FQ with

cardinality |Frp| = Npp. We consider the fields within Frp to be false positive predictions

and introduce the value FPR:

Ngp
Nref

FPR = -100% (20)
Finally, we also take into account the pixel-based metric DICE, defined for both fields
and their boundaries:

2TP .
DICE = oy 100%, (1)

where TP is the number of true positive predictions, FP is the number of false positive
predictions, and FN is the number of false negative predictions. When converting the
vector representation of the boundaries of the fields into raster to compute DICE, g, we
set the width of the borders to 2 pixels.

5.3. Results and discussion

Table 5 illustrates the quality estimates for the set of agricultural fields boundary
recognition configurations under study using the proposed approach. The metrics are
calculated for both regions from the test sample.

Metrics | Ejpstant | E(I"8) | E | Edilatea
RecRate 23.54 29.63 | 48.27 | 51.25
RecRatey 14.11 21.07 | 35.00 | 36.14
RecRateq 9.47 1649 | 2714 | 22.64
< S > 20.64 1790 | 16.39 | 17.48
4S50 14.14 791 8.10 | 11.69
FPR 0.97 4.73 494 4.70
RecRategory | 39.62 80.50 | 71.40 | 68.02
DICEfjq4s | 53.32 88.31 | 87.65 | 8641
DICEygqes | 2690 | 4424 | 4752 | 42.26

Table 5: The results of quality evaluation by various quality criteria for the test regions.

The Egijareq algorithm had the best RecRate of 51.25% (61.73% for the training data)
with a median area error 0550=11.69% (8.41% for the training data). Softer criterion,
RecRateg, s, which did not penalize for errors of under- or over-segmentation, was 68.02%
(74.77% for the training data). The worst value of RecRate was observed for the algorithm
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Einstant: it is 23.54% with 0550=14.14%. The greatest increase in quality in terms of RecRate
was observed when using an aggregated edge map (29.63% — 48.27%), which allows for
the segmentation of fields with greater accuracy.

Preliminary dilation of the edges when aggregating them also improved the RecRate
criterion, but to a lesser extent (48.27% — 51.25%). Using aggregated indices instead of
instant ones gave a noticeable increase in quality (23.54% — 29.63%).

It is worth noting that for the algorithm E(1%%8), RecRate=29.63% that the criterion
RecRatesyr; had a higher value than that of Ejitateq and equaled 80.50%. This effect is
explained by the fact that the large under-segmented fields obtained by the algorithm
E(I*8) covered a large number of fields found within the ground-truth, hence RecRate,, ft
increased. At the same time, over-segmentation of fields by the Eg ;4.4 algorithm resulted
in the contours for small regions, which have no matches within the markup, so they were
labeled as false positives.

The accuracy of the computed edges map also significantly influenced over- and under-
segmentation. Therefore, improving the stage of edges detection will contribute to the
development of the algorithm. For example, as the balance of areas of boundaries and non-
boundaries is not guaranteed, a better result in comparison with the original Otsu criterion
can be given by its generalization to the case of unbalanced classes [66]. Furthermore,
different forms of fields are characteristic for different countries and territories, but within
one region, fields often have a similar structure. In such cases, a restriction may be
imposed on the possible shapes of field boundaries, as was done in a study regarding
the recognition of road markings [67,68]. This will remove false boundaries and reduce
over-segmentation. In addition, the search for instant boundaries can be performed on
the projection of a multi-spectral image instead of the MSAVI2 index. The conversion of a
multispectral satellite image to a single-channel image can be performed by the method
of dimensionality reduction, preserving contrast and boundaries [36]. All the proposed
improvements also imply classical low-parametric methods, which are realizable within
the framework of the proposed approach.

For low thresholds for the minimum area, the quality according to RecRate dropped
significantly because of the rapidly increasing number of false positives within the rec-
ognized regions. The Gaussian smoothing parameter ¢ = 1 of the Canny operator, as
experiments have shown, is close to optimal: at values of 0.5 or 1.5, the value of RecRate
slightly decreased. Small values of o (on the order of magnitude 0.001 — 0.1) when aggre-
gating boundaries resulted in strong noise. It should be noted that for all the algorithms
(except for Ejysiant), the indicators DICE fg145, DICE,g4s, calculated from pixel data, have
similar values. The best DICE ;45 was observed for E(I"8) = 88.31%.

Figure 9 shows the visualization of recognition for the investigated algorithms.
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Figure 9. Recognition samples for considered algorithms referred to as satellite image layers. Ground
truth regions are showed with gray polygons; segmented fields—with red line.

6. Conclusion

This paper considered the issue of agricultural fields boundary recognition using open
Sentinel-2 satellite data. A low-parameter algorithm based on the use of classical image
processing tools was proposed for use with vegetation index images.

This paper described a method for use in vegetation index data as well as field edge
maps aggregation over a historical period. We experimentally showed that this combination
used as input data allows for the more accurate recognition of field boundaries compared
to the employment of instant satellite data.

The proposed algorithm is easy to implement, and it does not require the use of
resource-intensive computing machines equipped with GPU. Due to a small number of
parameters and transparent architecture, segmentation quality optimization is much easier
compared to the neural networks approach. The approximate running time of the algorithm
for Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz machine is ~ 60 sec for an input image of
5730x5730 pixels.

We also provided the source code of the algorithm implementation in Python3.8
(https:/ /github.com/iitpvisionlab/fields-recognizer) and the expert markup of fields for
training (7918 parcel contours) and test (10941 parcel contours) data, which were used
in the experimental part of this work (https://doi.org/10.5281/zenodo.5571868). The
markup repository also contains precomputed example images that are used as input in
the algorithm.
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Plans for future work include the investigation of improvements in the detection of
field regions in order to decrease false positives and research regarding more accurate
edges mask obtainment. Furthermore, research regarding parcel ground-truth dataset
extension on other terrains is of interest, along with an investigation into increasing its
quality.
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