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Abstract 
A paradigm shift away from null hypothesis significance testing seems in progress. Based 
on simulations, we illustrate some of the underlying motivations. First, P-values vary 
strongly from study to study, hence dichotomous inference using significance thresholds is 
usually unjustified. Second, statistically significant results have overestimated effect sizes, 
a bias declining with increasing statistical power. Third, statistically non-significant results 
have underestimated effect sizes, and this bias gets stronger with higher statistical power. 
Fourth, the tested statistical hypotheses generally lack biological justification and are often 
uninformative. Despite these problems, a screen of 48 papers from the 2020 volume of the 
Journal of Evolutionary Biology exemplifies that significance testing is still used almost 
universally in evolutionary biology. All screened studies tested the default null hypothesis 
of zero effect with the default significance threshold of p = 0.05, none presented a pre-
planned alternative hypothesis, and none calculated statistical power and the probability of 
‘false negatives’ (beta error). The papers reported 49 significance tests on average. Of 41 
papers that contained verbal descriptions of a ‘statistically non-significant’ result, 26 (63%) 
falsely claimed the absence of an effect. We conclude that our studies in ecology and 
evolutionary biology are mostly exploratory and descriptive. We should thus shift from 
claiming to “test” specific hypotheses statistically to describing and discussing many 
hypotheses (effect sizes) that are most compatible with our data, given our statistical 
model. We already have the means for doing so, because we routinely present 
compatibility (“confidence”) intervals covering these hypotheses. 
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Introduction 
In 2019, the editors of a special issue of The American Statistician on “statistical inference 
in the 21st century” concluded “that it is time to stop using the term ‘statistically significant’ 
entirely” (Wasserstein et al., 2019). More than 800 scientists subscribed to a commentary 
titled “Retire statistical significance” (Amrhein et al., 2019a). Biologists now claim that “the 
reign of the P-value is over” (Halsey, 2019) and that “it is time to move away from the cult 
around binary decision making and statistical significance” (Muff et al., 2021), while 
numerous scientific journals publish editorials or revise their guidelines, asking their 
authors to diminish the importance attributed to null hypothesis significance testing (e.g., 
Davidson, 2019; Harrington et al., 2019; Krausman & Cox, 2019; Michel et al., 2020). 

After decades of heated discussions about a methodological approach deeply 
ingrained in our scientific culture (reviewed in Amrhein et al., 2017; Gigerenzer, 2018; 
Hurlbert & Lombardi, 2009; Johnson, 1999; Mayo, 2018; Oakes, 1986; Szucs & Ioannidis, 
2017; Ziliak & McCloskey, 2008), a paradigm shift seems finally under way. Even in the 
most selective journals, it is now possible to publish papers using traditional frequentist 
methods without any reference to P-value thresholds and statistical significance (e.g., 
Senzaki et al., 2020). 

In this note, however, we report that this development has so far been largely 
ignored by evolutionary biologists, for example by the authors of 48 papers that we 
randomly selected from the 2020 volume of the Journal of Evolutionary Biology. We 
therefore provide a summary of the main problems with the traditional culture of analyzing, 
presenting and interpreting scientific data based on statistical significance. We then make 
recommendations how we can participate in the paradigm shift and contribute to improving 
scientific practice by using a more nuanced form of statistical inference. 
 
What are the problems? 
As in many fields of research, a study in ecology and evolutionary biology typically starts 
with observational or experimental data acquired because we suspect a relationship 
between variables (we use the terms ‘relationship’ and ‘effect’ interchangeably). For 
statistical analysis, the most popular approach seems to be hypothesis testing. According 
to the methods developed by Jerzy Neyman and Egon Pearson, this would require pre-
analysis specification and justification of the tested (null) hypothesis, of an alternative 
hypothesis, and of decision rules (Goodman, 2016; Greenland, 2020; Lehmann, 2011). 

If following this procedure, our aim is to “reject” or “accept” hypotheses, a minimum 
requirement would be to make defensible choices of alpha and beta error probabilities 
(i.e., the probabilities of rejecting the null hypothesis if in reality it is true [‘false positive’], 
and of failing to reject the null hypothesis if it is false [‘false negative’]), as well as 
calculating statistical power (the probability of rejecting the null hypothesis if it is false) 
before the data for the study are collected. “Defensible choices” means that acceptable 
error probabilities are set by taking into account the costs and implications of committing 
the above errors within the research context of our study (Greenland, 2017). 

In practice, however, data in ecology and evolutionary biology are typically collected 
without any pre-study determination and justification of reasonable null and alternative 
hypotheses or of decision rules and decision costs (see our survey below and Anderson et 
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al., 2021, for power analysis in ecology). Instead, the data are subjected to null hypothesis 
significance testing (NHST) with a default null hypothesis of a zero relationship and a 
default P-value threshold (accepted alpha error, or alpha level) of p = 0.05. Also, in the 
absence of pre-study power calculation, there is no information on the beta error, which is 
1-power. The test thus yields a P-value reflecting the probability of observing a relationship 
at least as large as the one we found, given that the null hypothesis of “no relationship” is 
true – and given that all other assumptions about the test and about the entire study are 
correct (Amrhein et al., 2019b). 

If the P-value is below 0.05, we usually interpret this as indirect evidence against 
the null hypothesis, thus drawing the reverse conclusion that the null hypothesis seems 
unlikely given our data; hence we reject the null hypothesis and infer that a relationship 
exists – the test was “statistically significant”. If the P-value is equal to or greater than 0.05, 
we are inclined to say that no relationship exists, or at least that we were not able to 
demonstrate it; the test was “statistically non-significant”. An equivalent approach is 
evaluating whether a 95% confidence interval overlaps the null hypothesis of zero effect, in 
which case the null hypothesis would not be rejected. 

This standard protocol of NHST with unjustified alpha and unknown beta error 
probabilities discredits the originally intended rationale of Neyman-Pearson hypothesis 
tests (Szucs & Ioannidis 2017), and the associated dichotomous inference about the 
presence or absence of a relationship rests on several misconceptions. We now discuss 
four of these misconceptions that appear most important to us. 
 
Misconception 1: The P-values emerging from our analyses are reliable 
P-values are contingent on the sample data obtained and hence represent random 
variables themselves. They are expected to vary from replication to replication of a study, 
even for surprisingly large sample sizes (Cumming, 2014; Halsey et al., 2015). This is 
illustrated in Figure 1, based on simulations of correlations between two variables 
(methodological detail and simulation code are given as Appendices 1 and 2). For a true 
correlation of r = 0.45, arguably qualifying as a substantial effect size in the field of ecology 
and evolution (Møller & Jennions, 2002), P-values are highly variable with sample sizes up 
to around n = 20 to 30 (Figure 1a). When the true effect size is smaller (r = 0.24), P-values 
span a remarkably wide range even when sample sizes approach n = 100 (Figure 1b).  
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Figure 1 P-values and effect sizes in statistical hypothesis tests in relation to sample size. 
Shown are summary statistics based on null hypothesis significance tests of a simulated 
true correlation between a predictor and a response variable, for sample sizes ranging 
from eight to 100 in increments of two. The simulated true effect sizes (shown as solid 
horizontal lines) are Pearson correlation coefficients that were chosen to be relatively 
strong (r = 0.45) in (a) and (c) and weaker (r = 0.24) in (b) and (d). For each sample size, 
10,000 replicate bivariate data sets were simulated and tested. The blue bars show 90% 
intervals of the P-value distribution among replicate tests, and the dark blue bullet points 
indicate the fraction of tests that were ‘statistically significant’ (p < 0.05; significance 
threshold shown as dashed horizontal line). The smaller black bullets in (a) and (b) 
represent median effect estimates of the subset of replicate tests that were ‘statistically 
significant’, with 90% intervals of the effect size distribution given as black bars (note that 
in (b), this interval would extend to -0.75 for n = 8; with small sample sizes, the effect size 
distributions of significant tests were bimodal because a fraction of the significant tests had 
strong negative correlations). The panels (c) and (d) are identical to (a) and (b), except 
that here the effect estimate distributions are presented for the subset of replicate tests 
that were ‘statistically non-significant’. All visualized quantities range from zero to one and 
hence refer to the same Y-axis scale. Note that when sample size is low and/or the true 
effect size is modest, most ‘statistically significant’ effect estimates are biased upwards. 
Analogously, ‘non-significant’ effect estimates tend to underestimate the true effect size, 
and here the bias gets stronger with increasing sample size and/or when the true effect 
size is substantial.  
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This variability of the P-value is impressive enough in simulations in which the true 
properties of the data are known and all assumptions underlying our statistical model are 
met (because we simulated the data according to this model). In reality, however, model 
assumptions will usually be violated to some degree. Further, we often do not discuss or 
are not even aware of all assumptions (Amrhein et al., 2019b). Departures from model 
assumptions, however, invalidate P-values and other statistical measures at least to some 
degree. This becomes obvious if the assumption of “no P-hacking” is violated, in which 
case the reported P-values are close to worthless. No P-hacking means that “analytical 
decisions were taken independently from the obtained data and would have been the 
same given other possible data” (Gelman & Loken, 2014) – an assumption that is probably 
almost always violated to some degree, albeit often unknowingly and with the best of 
intentions. 

Given all the random noise (stochastic variability as shown in Figure 1) and non-
random noise (assumption violations), it is not surprising that meta-analyses (Halsey, 
2019) and large-scale replication projects (Errington et al., 2021; Open Science 
Collaboration, 2015) reveal dramatic variability in P-values from study to study. This 
variability is not a problem of the P-value by itself, but simply reflects variation in the data 
from sample to sample. However, if P-values are used with a threshold for dichotomous 
judgments about the “presence” or “absence” of an effect, or about whether an effect is 
“real” or not, as is typical within the NHST framework, we may easily reach overconfident 
conclusions in either direction. Such overconfident dichotomous generalizations from 
single studies often lead to the erroneous perception that replication studies show 
“conflicting” evidence and that science in general is in a replication crisis (Amaral & Neves, 
2021; Amrhein et al., 2019a, b). 

Another issue is that many studies in ecology and evolution report dozens if not 
hundreds of P-values, and often many more P-values are calculated but not reported 
(Fraser et al., 2018). By definition, some proportion (depending on the adopted 
significance threshold) of these tests must turn out ‘statistically significant’ even if the 
tested (null) hypothesis is true. This multiple comparison problem is probably widely known 
in principle, but routinely ignored when drawing conclusions about analytical results. 
Moreover, possible strategies to adjust for multiple comparisons are debated and there are 
no easy solutions (Greenland, 2020). The inconvenient message is that conclusions drawn 
from individual P-values become more unreliable the more P-values are calculated. It is 
therefore particularly poor practice to present just a subset of the calculated P-values 
chosen for their significance while hiding the rest; complete reporting is crucial, even if it 
may appear embarrassing to present numerous P-values in a paper or appendix. 

Taken together, while still often perceived as the centerpiece of a statistical analysis 
suited for dichotomous decision making, P-values are generally no more than crude 
indicators of how compatible a statistical model is with our observed data, given that all 
assumptions are correct (Amrhein et al., 2019b; Greenland, 2019; Rafi & Greenland, 
2020). One of these assumptions is that our tested (null) hypothesis is true. A small P-
value then suggests that at least one of the assumptions is violated; whether and to what 
degree this can be interpreted as “evidence against the null hypothesis” is often so 
uncertain that we should refrain from making dichotomous decisions based on single 
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studies (Amrhein et al., 2019b). This is one of the reasons why we should reduce the 
importance we assign to isolated studies for drawing conclusions and making decisions 
(Amaral & Neves, 2021; Nelder, 1986; Nichols et al., 2019, 2021). 
 
Misconception 2: Statistical non-significance indicates the absence of an effect 
It has been known for more than a century that the absence of statistically significant 
evidence is not evidence of absence (Altman & Bland, 1995; Fisher, 1935; Pearson, 
1906). Yet, the wrong conclusion of “no effect” because p > 0.05 is still drawn in around 
half of the published papers across multiple research fields (Amrhein et al., 2019a). 

Within the Neyman-Pearson hypothesis testing framework, we may “accept” a null 
hypothesis if p > alpha and behave as though it were true if we know, approximately, how 
often we are in error when making that decision (given that all model assumptions are 
correct). However, since we usually do not formally calculate statistical power, we usually 
have no idea how often we would commit the beta error of falsely accepting a wrong null 
hypothesis (because beta = 1-power). If we calculated power for our studies in ecology 
and evolution that typically have small effect sizes (Møller & Jennions, 2002), we would 
likely find that our beta error probability is high: across 44 reviews in the social, behavioral 
and biological sciences, average power to detect such effects was merely 24%, and hence 
the average beta error probability was 100-24 = 76% (Smaldino & McElreath 2016; see 
also Button et al., 2013; Jennions & Møller, 2003). 

Even with the widely recommended power of 80%, the probability of falsely 
accepting a wrong null hypothesis (beta = 20%) would be four times the probability of 
falsely rejecting a true null hypothesis (alpha, by default set to 5%). This reveals another 
oddity of the current application of hypothesis tests: why should a four times higher beta 
error be tolerable across scientific disciplines, implying that it is generally four times less 
costly to wrongly claim “there is no relationship” than to wrongly claim “there is a 
relationship”? As is known since hypothesis tests were invented, false negatives can be 
more costly than false positives, depending on the subject and purpose of a study. For 
patients, for example, a false-negative inference (e.g., wrongly claiming no adverse drug 
effects) can cause more immediate harm than a false-positive (e.g., wrongly claiming a 
beneficial drug effect; Greenland, 2017). 

Low statistical power of our research and high beta error probabilities are thus one 
of the reasons why claims of “no relationship” are usually unwarranted. For illustration, 
consider the substantial true correlation between two variables shown in Figure 1a. Using 
a sample size of 20, we obtain a “non-significant” result in roughly half of the tests, hence 
inferring “no relationship” would be erroneous in half of the studies; and when the true 
correlation is weaker (Figure 1b), we would be wrong in half of the cases even for sample 
sizes beyond 60. 

However, even with high statistical power, a large P-value does not mean that the 
null hypothesis of a zero effect can be considered true (Greenland, 2012), because many 
other hypotheses are probably similarly or more compatible with the data. This becomes 
obvious by imagining a ‘non-significant’ confidence interval overlapping the null hypothesis 
of a zero relationship. A 95% confidence interval shows not just one, but all the null values 
(hypotheses, values for the true effect size, or possible parameter values) that would 
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produce p > 0.05 and would thus not be rejected when tested using our data (Amrhein et 
al., 2019b; Greenland et al., 2016; Rafi & Greenland, 2020). In a ‘non-significant’ interval, 
the hypothesis of ‘zero relationship’ would not be rejected and is thus reasonably 
compatible with our data – but all the other values covered by the interval are also 
reasonably compatible with our data; and usually the values near the point estimate are 
more compatible with the data than a value of zero effect (see below and Figure 2). 

Often, an interval covering the null value will also cover values of scientific or 
practical importance. Only if all the values inside an interval seem unimportant within a 
given research context and are thus of practical equivalence to the null, it may be justified 
to conclude that the study results indicated no effect of practical importance (Amrhein et 
al., 2019a, b; Colegrave & Ruxton, 2003; Hawkins & Samuels, 2021). 
 
Misconception 3: Statistically significant effect sizes are reliable 
Unless the power of a hypothesis test is near one, a significant test result will, on average, 
be associated with an overestimated (inflated) effect size. The reason is that due to 
sampling variation, some studies will find an effect that is larger than the true effect in the 
population; and those studies are more likely to be significant than studies that happen to 
find smaller, or more realistic, effects. The lower the statistical power, the more 
exaggerated a relationship needs to be to become statistically significant, and thus the 
stronger the overestimation of significant effect sizes (Colquhoun, 2014; Gelman & Carlin, 
2014; van Zwet & Cator, 2021). 

In our correlation example assuming the stronger relationship (r = 0.45), simulated 
replications capturing an effect equal to or smaller than the true effect size essentially 
cannot produce a significant test result unless the sample size is greater than about n = 20 
(Figure 1a; in other words, with n <= 20, the 90% intervals of effect size estimates of 
significant studies cover only effect sizes greater than the true value). With n = 20, the 
median observed correlation in significant tests overestimates the true correlation by 27%, 
and sample sizes of at least n = 50 or 60 are needed to achieve reasonably accurate 
effect size estimates. When the true effect size is smaller (r = 0.24), the median effect size 
estimates of significant tests remain biased upwards by at least 16 percent even when 
sample sizes approach n = 100 (Figure 1b). 

Analogously, effect sizes observed in non-significant tests tend to underestimate the 
true effects (Figure 1c, d). Perhaps counterintuitively, this downwards bias becomes 
stronger with larger sample size or with a larger true effect size; the reason is that with 
high statistical power, most tests on a true effect turn out significant, and only studies that 
due to sampling variation find a strongly underestimated effect will be non-significant. This 
bias probably plays a minor role in ecology and evolutionary biology, since effect sizes are 
usually given little attention when their associated tests are non-significant; however, 
whenever we focus on results because they are non-significant, our effect estimate will be 
more misleading the higher our statistical power is. 

In summary, the usual filtering of results based on statistical significance causes 
systematic overestimation of effect sizes in our studies, as well as in reviews and news 
based on those studies. This bias can be reduced by publishing and discussing all results, 
with a focus on describing interval estimates rather than on claiming “statistical 
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significance” or “non-significance”. Accordingly, in pre-registered replication studies 
publishing all results irrespective of their P-values, effect sizes are usually substantially 
smaller than in the original studies that likely filtered by statistical significance to decide 
what is reported and discussed. For example, in a project replicating 50 experiments from 
preclinical cancer biology, the median effect size for positive effects across the replications 
was 85% smaller than the median effect size in the original experiments (Errington et al., 
2021). 
 
Misconception 4: Our tests evaluate meaningful hypotheses 
NHST can be understood as a vacuous ritual established to give us the feeling that our 
judgment about observed effects is reliable and objective, hence scientific (Gigerenzer, 
2018; Gigerenzer & Marewski, 2015). This becomes evident when considering the 
hypotheses actually tested. The default hypothesis evaluated is a point null hypothesis of 
‘zero relationship’, yet we initiated our research because in the light of preexisting 
evidence, or at least of intuition or wishful thinking, we suspected that a non-zero 
relationship in a certain direction could exist. Very often, the tested null hypothesis of a 
‘zero relationship’ is thus implausible or irrelevant in the first place (Fisher, 1956, p. 42; 
Johnson, 1999) and has therefore been called a straw-man hypothesis that serves only to 
be rejected (Gelman, 2016). 

We should not only focus on this straw man, but also discuss test results on 
alternatives to the null hypothesis of zero effect (Greenland, 2020). Strangely, many 
researchers present such test results already, but usually do not discuss them – as 
mentioned above and shown in Figure 2, our traditional confidence intervals show ranges 
of hypotheses that get p > 0.05 when tested using our data. 

Further, as suggested below, we almost never present a formal a priori alternative 
hypothesis and thus cannot claim to test it. Instead, we tend to describe our observed 
point estimate as though it were a pre-planned alternative hypothesis, sometimes even 
calculating retrospective power based on this point estimate, which is useless because it 
adds no information beyond the obtained P-value (Colegrave & Ruxton, 2003; Greenland, 
2012; Hoenig & Heisey 2001). In practice, with our usual two-sided tests, the (unstated) 
alternative hypothesis amounts to “anything else but zero”, which in our view does not 
qualify as a hypothesis at all. There are just too many ways in which a point null 
hypothesis of zero effect could be false, and rejecting it in favor of “anything else” 
contributes very little to our knowledge (Szucs & Ioannidis 2017). 

We are deluding ourselves if we believe that the traditional NHST scheme is an 
appropriate way of evaluating research hypotheses. 
 
How widely are the above misconceptions recognized in our literature? 
To allow a glimpse of the culture of data analysis and the reporting of results in ecology 
and evolution, we randomly chose 48 empirical articles published in 2020 in the Journal of 
Evolutionary Biology and screened them in the light of the above misconceptions (more 
detailed methods are given in Appendix 1, and screening data and data summaries are 
provided in xlsx format as supplementary material). 
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All of the 48 articles adopted the classical NHST framework in which the 
interpretation of results is based on evaluating P-values against a significance threshold 
(three studies did not present thresholded P-values but used the equivalent procedure of 
evaluating whether confidence intervals include zero, and one study used NHST only in 
the methods section). All studies used the qualifier “significant” or “non-significant” to rate 
test results. The significance threshold was consistently p = 0.05, although this was 
declared explicitly in only 22 of the 48 studies. 

Only one study provided a formal description of which null hypothesis was tested, 
and no single study considered a non-zero effect size as informed null hypothesis; hence 
all tested hypotheses were the default nulls of ‘zero relationship’. No study specified a 
formal pre-planned (and pre-registered) alternative hypothesis, and accordingly no study 
conducted a power analysis before data collection (one study performed post-hoc power 
analysis based on observed parameter estimates, which is useless; Colegrave & Ruxton, 
2003; Greenland, 2012; Hoenig & Heisey 2001). This means that all 48 studies should be 
considered exploratory (Parker et al., 2016; Szucs & Ioannidis, 2017). 

We also counted the number of significance tests reported across the results 
section of the main body of the paper, including the figures and tables. We considered 
comparisons of P-values against a significance threshold as well as checks of whether a 
confidence interval (CI) contained zero. We also counted all tests that were not made 
explicit, which usually concerned figures visualizing tests of all treatment groups against 
each other, while indicating P-values or stars (*) only for the significant comparisons. 

In the results sections, the studies reported 49 significance tests on average 
(median 23, range 0–390). About half of the reported tests were non-significant (on 
average 25). These numbers, however, are underestimates because several papers 
presented many more tests in the Supporting Information, probably particularly non-
significant tests that were not selected for reporting in the main text of the paper. Twelve 
studies adjusted P-values for multiple testing (using Bonferroni-type procedures). In all 
cases, this adjustment focused on specific subsets of analyses; P-values were never 
adjusted for multiple comparison across an entire research article. 

Finally, we screened all verbal descriptions of non-significant tests in the results 
sections. Among 41 papers that contained such verbal descriptions, 26 (63%) used 
inappropriate wording for at least one of the tests, implying that non-significance indicates 
the absence of an effect (misconception 2); 35 (85%) used adequate wording for at least 
one of the tests. The most common examples of inadequate wording (‘proofs of the null’) 
were statements like “there was no difference / no effect” based exclusively on the P-value 
and not, e.g., on an evaluation of all values covered by the CI. We also counted the 
occasionally occurring “no difference was observed” or “patterns were the same” as 
inadequate interpretations, since usually effect sizes in a table or figure showed that a 
difference or correlation was observed, and that patterns were not the same. 

Examples of what we considered appropriate wording were “no significant 
difference” (although we do not encourage using this language) or “no difference / effect 
was found” as well as “there was no evidence of / no support for”, because this phrasing 
emphasizes absence of evidence and not evidence of absence (Altman & Bland, 1995). 
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One particularly obvious example of an inappropriate proof of the null was 
“individual estimates were also uncorrelated ... (r = .258; p = .472)”. Another curious 
example of how the overemphasis on significance tests leads us astray included a table 
with 102 tests presented only with three-star notation (***) but no P-values or other test 
statistics, let alone effect sizes (for references, see the supplementary material). 

One study reported an absurdly small and precise P-value of p = 10-57, meaning 
that the probability of observing a relationship at least as large as the one that was found, 
given that the statistical model and all assumptions like the null hypothesis are correct, is 1 
/ 1057. This would roughly correspond to the probability of picking a specific atom from our 
solar system in a random draw. However, it is easy to obtain similarly small P-values by 
“testing” a statistical model very far from what we observe in our study; for example, a few 
data points close to the diagonal of y = x suffice to conclude that the default hypothesis of 
a zero correlation is extremely incompatible with our data. A very small P-value therefore 
does often not mean that the study found “very strong evidence for the effect” (as 
researchers usually claim); but it shows that the model and null hypothesis chosen for 
testing are too far away from reality to be useful and that we should come up with a better 
model. 

Based on our screening, we conclude that the research protocol described above 
under the heading What are the problems? is by no means a caricature, but a relatively 
accurate portray of how studies in evolutionary biology are at present conducted and 
reported. The vast majority of investigations in our field still follows the traditional NHST 
scheme, despite ample exposure of its problems since about a century (Amrhein et al., 
2017; Berkson, 1938; Boring, 1919; Gigerenzer, 2018; Greenland, 2017; Hurlbert & 
Lombardi, 2009; Johnson, 1999; Mayo, 2018; McShane et al., 2019; Oakes, 1986; 
Rozeboom, 1960; Szucs & Ioannidis, 2017; Ziliak & McCloskey, 2008), and despite broad 
agreement within the community of statisticians that the current state of NHST usage is 
damaging to science (Amrhein et al., 2019a; Benjamin et al., 2018; Seibold et al., 2021; 
Wasserstein et al., 2016, 2019). 

We are forced to recognize that the problems related to NHST abound in our 
literature: overconfident claims about “discovered effects” and overestimated effect sizes 
for significant tests, and a great proportion of erroneously dismissed but potentially 
biologically relevant effects and underestimated effect sizes for non-significant tests. 
Clearly, it is high time for improving our conventions of data analysis and reporting of 
results. 
 
Moving from significance testing to estimation and compatibility 
Undoubtedly, science is progressing despite the problems with NHST highlighted above. 
One main reason is that although initial studies on a given phenomenon often suffer from 
biases such as inflated effect sizes introduced by the significance filter, these biases are 
often reduced in replication studies (effect sizes in replications are usually smaller than in 
the original studies; Brembs et al., 2013; Errington et al., 2021; Jennions & Møller, 2002; 
Open Science Collaboration, 2015). With every replication study that contributes new data 
in a relatively unbiased way, the substrate for building and refining models about principles 
in nature becomes more solid. Recognizing that this accumulation of, and synthesis 
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across, data sets lies at the heart of the scientific progress (Glass, 2010; Nichols et al., 
2019, 2021) has several conceptual and methodological implications. 
 
Study questions rather than hypotheses 
We no longer need to test hypotheses framed as “there is a relationship”, a generalized 
claim for which single studies are usually unable to give sufficient support. The contribution 
of single studies to science is the estimation of the direction and strength of potential 
relationships and of their uncertainty, based on observations and experiments. More 
generalized scientific conclusions will typically require information to be combined across 
multiple studies, each performed under their own set of conditions and assumptions and 
hence describing unique patterns and variation. Such meta-analyses summarize data or 
effect estimates and their precision, not the number of hypothesis confirmations like “we 
have shown there is a relationship because p < 0.05”. 

It seems that in ecology and evolutionary biology, we are generally driven by 
curiosity, broad study questions and multi-factorial hypotheses rather than by clear-cut, 
isolated hypotheses that can be either “rejected” or “accepted” (Glass, 2010; Nichols et al., 
2019). We should therefore primarily report descriptions of relationships and their 
uncertainty, and refrain from perceiving our NHST studies as confirmatory. Without pre-
planned (and pre-registered) quantitative predictions and justified decision rules, our 
studies are exploratory (Parker et al., 2016; Szucs & Ioannidis, 2017), whatever statistical 
framework we use for analysis. 

There is no shame in admitting that our research, for example in the 48 studies that 
we screened, is generally exploratory and guided by broad questions rather than by 
narrow hypotheses. But if we cannot really provide yes-or-no answers, it also makes no 
sense to force students and study authors to formulate the usual array of dichotomized 
hypotheses in the introductions of their papers. Instead, it makes more sense to ask “how 
strong is the relationship?” or “is it strong enough to matter?”, and to formulate our 
expectations about the direction and size of that relationship. 
 
Full reporting rather than filtering of results 
We should abandon filtering our study outcomes based on statistical significance, no 
matter what significance threshold is used (Amrhein & Greenland, 2018; Benjamin et al., 
2018). If our research is well conceptualized and properly carried out, any emerging result 
is a useful contribution to science, deserves discussion within the focal research context, 
and deserves publication. In this light, there is also no problem in analyzing one and the 
same data set in different ways to explore the sensitivity of results to violations of 
assumptions (Greenland 2020) – as long as these explorations are fully reported, not just 
the ones producing a desired outcome such as the smallest P-value. And perhaps even 
more important than full reporting of summary statistics is that we ensure free access to 
the underlying raw data for meta-analysts (Lawrence et al., 2021; Whitlock et al., 2010). 

Giving up the practice of favoring statistically significant over non-significant effects, 
or of applying similar filtering methods based, e.g., on Bayes factors or the Akaike 
information criterion (AIC), will naturally reduce the upwards bias of reported effect sizes. 
For this and other reasons, there is now a broad movement of statisticians and 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 December 2021                   doi:10.20944/preprints202112.0235.v1

https://doi.org/10.20944/preprints202112.0235.v1


 
 
12 

researchers advocating that the labels “statistically significant” or “non-significant”, and 
analogous decorations of P-values such as stars or letters, should have no place in 
research articles (Amrhein et al., 2019a; Hurlbert et al., 2019; Lakens et al., 2018; 
Trafimow et al., 2018; Wasserstein et al., 2019). 
 
Compatibility rather than confidence 
Finally, the overconfidence resulting from NHST should give way to a greater acceptance 
of uncertainty and embracing of variation (Gelman, 2016). Our data and statistics are 
generally more noisy and biased than we recognize. Appreciating that a single study will 
rarely suffice to establish a robust model of a biological principle will remove the pressure 
to oversell potential effects, or even to turn tests statistically significant by more or less 
subtle data manipulation (Fraser et al., 2018; Gelman & Loken, 2014). 

Because the main value of our research is the estimation of effect sizes and of their 
uncertainty, our emphasis should shift to the clear and comprehensive presentation of 
point estimates and their associated interval estimates. A straightforward way of doing so 
is interpreting the classical confidence intervals as compatibility intervals (Amrhein et al., 
2019a, b; Gelman & Greenland, 2019; McElreath, 2020; Rafi & Greenland, 2020). 

For instance, results could be summarized as follows: “In our study, the average 
weight increase was 7.5 g; possible values for the true average weight increase that were 
most compatible with our data, given our statistical model, ranged from 2.0 to 13.1 g (95% 
CI)”. This clearly conveys more insight than “We found a significant average weight 
increase of 7.5 g (p = 0.009)”. 

If the interval includes effect sizes in the opposite direction, we could write: “In our 
study, the average weight increase was 5.0 g; possible values for the true average weight 
change that were most compatible with our data, given our statistical model, ranged from a 
1.5 g decrease to an 11.5 g increase (95% CI)”. Compare this with the vacuous statement 
“We found a non-significant average weight increase of 5.0 g (p = 0.13)”. In both cases, 
the researchers should then discuss the biological implications of a possible weight 
change across the entire observed intervals. 

From a traditional hypothesis testing perspective, the 95% CI shows the values 
“most compatible with our data” because it covers all null hypotheses that would get p > 
0.05 when tested using our data. As just exemplified, a strength of compatibility intervals is 
to direct our attention to a range of most compatible effect sizes (hypotheses) in the light of 
our data and our statistical model. However, compatibility intervals should not be misused 
for dichotomous judgments based on whether or not they overlap an effect size of zero, as 
this shares all the problems inherent in traditional NHST. Of course, our plea for interval-
based statistical inference extends to compatibility intervals obtained, e.g., using Bayesian 
methods (traditionally called “credible intervals”; McElreath, 2020) or resampling 
procedures (Manly & Navarro Alberto, 2020). 

An even stronger option for compatibility-based inference that avoids the arbitrary 
thresholds at which the lines of intervals must end is the compatibility curve (Infanger & 
Schmidt-Trucksäss, 2019; Poole, 1987; Rafi & Greenland, 2020). This underused tool 
allows evaluating the most compatible effect sizes in the light of the data and the statistical 
model, exposing two important elements hidden in conventional intervals: that compatibility 
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does not stop where an interval would end, but extends beyond it; and that the 
compatibility of effect size estimates (hypotheses) is not uniform across an interval, but 
declines as we move away from the point estimate. We provide examples of compatibility 
curves applied to simulated regressions in Figure 2 and a working protocol based on 
bootstrap resampling as well as on conventional “confidence” intervals in Appendices 1 
and 2. 
 
Closing remarks 
Our call to give up NHST in favor of compatibility-based inference is not a call to 
completely abandon P-values or P-value thresholds: again, a conventional 95% 
compatibility interval displays hypotheses that are not rejected because they get p > 0.05, 
and compatibility curves also visualize P-values (Figure 2). Our main point is that when 
interpreting intervals, the focus is on many hypotheses rather than on just one of zero 
effect, and on uncertainty rather than on categorical statements about whether an effect 
has been “demonstrated” or not. 

Of course, many other options exist for effectively describing and communicating 
effect estimates and their uncertainty (Colquhoun, 2014; Cumming, 2014; Gurevitch et al., 
2018; Korner-Nievergelt et al., 2015; McElreath, 2020; Rafi & Greenland, 2020). Our task 
for the future is to exploit and to teach these options creatively, keeping in mind that all 
approaches have their strengths and weaknesses and answer slightly different questions, 
and that probably none of them is universally applicable or necessarily superior 
(Gigerenzer & Marewski, 2015; Goodman, 2016). What we hope to have made clear with 
this note, however, is that we can safely give up null hypothesis significance testing and 
the reporting of “statistical significance”. Doing so will help overcome problems with which 
science has struggled for decades. 
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Figure 2 Visualizing the range of values for the true effect size (or in other words, of 
hypotheses) that are most compatible with the observed data, given the statistical model, 
by means of compatibility curves. The two curves illustrate the most compatible values for 
the true Pearson correlation coefficients based on two exemplary simulated samples of n = 
30 and n = 80, generated using the bivariate simulation model underlying Figure 1a. Unlike 
in real research, the true correlation coefficient is known to be r = 0.45 (dashed vertical 
line). The black horizontal line under the left curve shows the 95% compatibility 
(“confidence”) interval based on the n = 30 sample. Here, one of the many values that are 
most compatible is a zero relationship (solid vertical line). Because zero is included, this 
interval would traditionally be called “non-significant”, although zero is clearly not the value 
most compatible with the data, because it is not at the highest point of the compatibility 
curve. One can imagine the compatibility curve as horizontally stacked compatibility 
intervals, with compatibility levels ranging from near zero to one; from the bottom, the 
lowest interval is approximately the 100%-interval and the highest is the 0%-interval. The 
peak of the curve is thus the shortest (0%) compatibility interval that is just one point, 
known as the point estimate. This point estimate, i.e., the observed effect size, is the 
correlation coefficient estimate that is most (100%) compatible with the sample data and 
the statistical model (but because many other hypotheses are also reasonably compatible, 
100% compatibility does not imply truth). The curve was drawn by determining the stacked 
compatibility intervals non-parametrically based on quantiles from a distribution obtained 
by bootstrapping the original samples and recalculating the correlation coefficient 100,000 
times, but a similar curve would arise when stacking conventional parametric “confidence” 
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intervals (see appendices 1 and 2). Another way to interpret the compatibility curve is that 
it indicates the P-values one would obtain, given the sample data and the statistical model, 
when using a given correlation coefficient on the x-axis as specific null hypothesis in a test. 
The 95% interval shown therefore covers correlation coefficients that have p > 0.05 and 
are thus most compatible with the data and the model. For more details on the 
interpretation of compatibility curves, see Infanger & Schmidt-Trucksäss (2019), Poole 
(1987), and Rafi & Greenland (2020). 
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Appendix S1 
 
Simulations 
To illustrate conceptual issues in NHST, we used the R language (R Core Team, 2020) to 
simulate data sets of two correlated variables (x = predictor; y = response). The predictor 
was drawn at random from a normal distribution with a mean of zero and a standard 
deviation of 0.5. The response was constructed by assuming the positive linear 
relationship y = 0.5x. To make the association between the variables noisy, we then added 
to each element of y a random draw from a normal distribution with a mean of zero and a 
standard deviation of 0.5 (scenario (a) with stronger correlation), or a standard deviation of 
1 (scenario (b) with weaker correlation). The exact correlations between x and y obtained 
in this way were 0.447 and 0.243, respectively, as determined empirically based on a 
sample size of n = 50 million. 

For sample sizes ranging from eight to 100 in steps of two, we generated 10,000 
such bivariate data sets under both simulation scenarios. For each data set, we then 
analyzed the correlation between x and y by using the cor.test function, and saved the 
correlation coefficient (i.e., the effect size) and the associated P-value for the default null 
hypothesis of zero correlation. This allowed us to characterize the P-value distribution for 
each sample size based on the 5 and 95 percentiles (i.e., the 90% intervals centered at 
the median). Classifying the correlation tests as ‘statistically significant’ (p < 0.05) or ‘non-
significant’ (p > 0.05), we determined the proportion of significant tests. We then 
characterized the effect size distribution (median and 90% intervals) separately for the 
significant and non-significant tests. The R code used for data simulation, analysis and 
graphing is available as Appendix S2 below). 
 
Literature review 
We randomly chose four articles from each of the 12 issues of the Journal of Evolutionary 
Biology published in the year 2020 (volume 33). We considered the article category 
‘Research Papers’ only, and we ignored purely theoretical studies (e.g., pure simulation 
studies). The 48 papers were examined for whether statistical inference involved the 
dichotomous evaluation of P-values from statistical tests against a significance threshold, 
or whether confidence intervals included zero. We assessed whether test results were 
reported by using the qualifier “(non-)significant”, what significance threshold (alpha level) 
a study adopted, and whether this threshold was declared explicitly in the paper. We also 
determined the number of significance tests presented, focusing on the results section of 
the main article only, including the tables and figures; additional testing presented in the 
methods section or the Supporting Information was ignored for the counts. We counted all 
mentions of a P-value, even if a P-value was reported both in the text and in a table or 
figure, because sometimes P-values were interpreted twice and differently in a figure 
legend and the main text. For post-hoc tests reported by using stars or letter coding in 
figures or tables, each contrast represented a significance test and was counted as such. 
We further examined if authors pre-specified null hypotheses (that could be different from 
an effect size of zero), and whether investigations were tailored to biologically informed 
alternative hypotheses. The latter would have involved defining effect sizes of interest prior 
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to data collection (based on the literature or pilot studies) and estimating what sample 
sizes would be needed to reject false null hypotheses with a desired probability (i.e., 
power). As studies typically reported numerous significance tests, we additionally 
examined if attempts were made to adjust for multiple testing by searching for the key 
words “multiple testing”, “Bonferroni”, and “false discovery rate”. Finally, we screened the 
articles for inappropriate conclusions that there was no effect because the effect was 
statistically non-significant. The scoring sheet summarizing our literature screening and 
giving more explanations will be provided in xlsx format on Dryad. 
 
Compatibility curves 
Using the simulation model (a) from above (i.e., the stronger correlation), we generated 
two exemplary sample data sets, one with n = 30 and one with n = 80. The expected (true) 
correlation was the same in both cases (r = 0.45). To construct non-parametric 
compatibility curves, we bootstrapped (resampling with replacement) each sample 
100,000 times, each time calculating and recording the coefficient of the correlation 
between x and y. From the two distributions thus obtained, we then determined the lower 
and upper limit of the 0-99% compatibility (“confidence”) intervals (step size: 1%), as 
defined by symmetric (i.e., two-tailed) percentiles. For example, the 99% compatibility 
interval (bottom of the curve) was delimited by the bootstrapped correlation coefficients 
located at 0.5% and 99.5% of their ordered distribution, while the 0% compatibility interval 
(peak of the curve, or point estimate) represented the median of this distribution. Finally, 
we plotted the two endpoints of the compatibility intervals against their compatibility levels, 
thus obtaining the compatibility curves. We also carried out an analogous parametric 
analysis. For this, we applied the cor.test function to the two simulated data sets, 
sequentially raising the value of the compatibility level (conf.level argument) from 0-99% in 
steps of 1%. Recording the upper and lower limits of the compatibility intervals obtained in 
this way again allowed us to draw compatibility curves. Because the non-parametric 
approach makes fewer assumptions regarding the distribution of the data, we present only 
the non-parametric compatibility curves in the main text. However, both approaches are 
graphed together in Figure S1 below. The R code used for producing compatibility curves, 
both non-parametrically and parametrically, is shared on Dryad.  
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Figure S1 Parametric and non-parametric compatibility curves. The data generation 
protocol and the graphing conventions are identical to Figure 2, except that the parametric 
compatibility curves for n = 30 (dark blue) and n = 80 (very dark blue) are superposed on 
their non-parametric (bootstrap-based) counterparts. The locations and shapes of the 
curves differ from those in Figure 2, because a new random data set was drawn for each 
sample size. Note that depending on the specific variational properties of a given sample, 
the two types of compatibility curve may be nearly congruent, or one or the other type may 
be wider.  
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Appendix S2 
 
R code used for data simulation, analysis and graphing 
 
## Contents: 
# A - Simulator and plotting tool 
# B - Compatibility curve 
 
################################### 
# A - simulation of positive linear relationship between x and y to illustrate 1) effect size 

inflation and deflation, 2) the proportion of 'significant' 
#   P values, and 3) a chosen percentile of the P distribution in relation to sample size 
#     Approach: generate random x and y variables with known true relationship, and run a 

correlation test. 
#   For the 'statistically significant' (p < 0.05) and 'non-significant' (p > 0.05) tests, the 

effect sizes (the Pearson correlation coefficient) are recorded separately  
#     (note that when using the mean as point estimate, the absolute value of r should be 

recorded because with low sample size, sometimes negative correlations are  
#     significant). For that reason, the median seems more suitable (result nearly are 

identical anyway). 
#   This protocol is repeated for many experimentally relevant sample sizes (n), and for 

many replicate runs within each  
#   sample size. The mean effect size (r) for all 'significant' and 'non-significant' tests, and 

the proportion of significant tests, is then recorded across all replications for each n. 
#   To produce the data for publication, use repl<-10000 
#     The 'fact' flag allows controlling the relative amount of noise in the x-y relationship 

(and hence the strength of the true correlation); values of 1 and 2 were used 
#     Implemented by XXXXX, 2019-2021 
 
################################### 
# just to explore a single simulation run by hand (and produce exemplary scatterplots): 
rm(list=ls()) 
xsd<-0.5 ### the parametric sd of the x values; def:0.5 
fact<-1 ### this serves to control the noisiness of the relationship; for the main example, 

fact<-1 is used 
sl<-0.5 ### the parametric slope (dy/dx); def: 0.5 
n<-30 ### sample size; for the two examples, show 30 and 80 
x<-rnorm(n, 0, xsd) 
ypr<-x*sl # this is precise y as a function of x, without random noise in y 
#sd(ypr) # seems like the parametric sd(ypr) is sd(x)*sl 
noise<-rnorm(n, 0, xsd*fact) # this way, the amount of noise in y equals the parametric sd 

of y 
y<-ypr+noise 
#cor(x, y) # the parametric Pearson correlation coefficient is 0.447 for fact=1 and 0.243 for 

fact=2 (estimated with n = 50 million) 
cor.test(x, y, method='pearson') 
par(fin=c(4, 4), mai=c(1, 1, 1, 1)) 
rng<-c(-2.2, 2.2) 
plot(x, y, ann=F) 
#points(x, ypr, col='red') 
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segments(rng[1], rng[1]*sl, rng[2], rng[2]*sl, col='deepskyblue2', lwd=3) #true parametric 
slope 

a<-lm(y~x) 
abline(a, col='red', xpd=F) 
################################### 
 
 
 
################################### 
# Simulator for the actual data for plotting. 
# In the simulation loop, the rrepl and nsrrepl objects can be populated with raw or 

absolute values, to be set by hand;  
# the former mode was chosen for publication. To explore the proportion of negative 

correlations (the true relationship is positive), 
# use the sign-aware (raw) mode and explore using the plotting module on the very bottom 

of section A 
 
rm(list=ls()) 
xsd<-0.5 ### the parametric sd of the x values; def:0.5 
fact<-1 ### this serves to control the noisiness of the relationship; for the strong 

correlation, fact<-1 is used; for the weaker correlation, fact<-2 is used 
sl<-0.5 ### the parametric slope (dy/dx); def: 0.5. can also use 0 to simulate the absence 

of an effect 
repl<-10000 ### def: 10000; the number of replicate tests performed for a given sample 

size 
lo.n<-8 ### minimum sample size considered; def: 8 
up.n<-100 ### maximum sample size considered; def: 100 
incr<-2 ### the step size (increment) for exploring n; def: 2 
perc<-0.5 ### the central fraction of P-values to record (percentage of the ordered 

distribution centered at the median); e.g., 1 will show the full range of P-values, 0.9 will 
show 5 to 95 percentile (the central 90%) 

perc2<-0.9 ### analogous to perc; a wider range (centered percentage) of P-values to 
record (lower and upper margin) 

rwd<-0.7 ### half the width of the P-value percentile rectangles 
alpha<-0.05 # standard significance level 
 
ps<-NULL # collects the proportion of significant (p<=0.05) tests for a given n 
rs<-NULL # collects the effect size for the significant tests for a given n 
nsrs<-NULL # collects the effect size for the non-significant tests for a given n 
prop.pos<-NULL # collect the proportion of positive correlations among all significant 

correlations 
nsprop.pos<-NULL # collect the proportion of positive correlations among all non-

significant correlations 
eprc<-NULL # collects the lower and upper margins of the central 'perc'-percentile of the 

effect size distribution for a given sample size 
eprc2<-NULL # collects the lower and upper margin of the wider 'perc2'-percentile of the 

effect size distribution for a given sample size 
prc<-NULL # collects the lower and upper margins of the central 'perc'-percentile of the P 

distribution for a given sample size 
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prc2<-NULL # collects the lower and upper margin of the wider 'perc2'-percentile of the P 
distribution for a given sample size 

nsesc<-NULL # collects the lower and upper margins of the central 'perc'-percentile of the 
effect size distribution for n.s. tests for a given sample size 

nsesc2<-NULL # collects the lower and upper margin of the wider 'perc2'-percentile of the 
effect size distribution for n.s. tests for a given sample size 

 
for(i in 1:((up.n-lo.n)/incr+1)){ 
 n<-lo.n+(i-1)*incr 
 prepl<-0 
 rrepl<-NULL 
 nsrrepl<-NULL 
 jps<-NULL 
 for(j in 1:repl){ 
  x<-rnorm(n, 0, xsd) 
  ypr<-x*sl # this is precise y as a function of x, without random noise in y 
  noise<-rnorm(n, 0, xsd*fact) # this way, the amount of noise in y equals the 

parametric sd of y 
  y<-ypr+noise 
  t<-cor.test(x, y, method='pearson') 
  if(t$p.value<alpha){ 
   prepl<-prepl+1 
   rrepl<-c(rrepl, t$estimate) #raw correlation, sign-aware 
   #rrepl<-c(rrepl, abs(t$estimate)) #abs() converts all correlations to positive, to 

facilitate plotting 
  } 
  else{ 
   nsrrepl<-c(nsrrepl, t$estimate) #raw correlation, sign-aware 
   #nsrrepl<-c(nsrrepl, abs(t$estimate)) #abs() converts all correlations to 

positive, to facilitate plotting 
  } 
  jps<-c(jps, t$p.value) 
 }  # the replicates per sample size 
 #min(rrepl); hist(rrepl, breaks=100, xlim=c(-1, 1)); length(which(rrepl<=0.447)) # to 

explore the effect sizes 
 ps<-c(ps, prepl/repl) 
 rs<-c(rs, median(rrepl)) # median; probably better because with very low n, the 

distribution of r is bi-modal, with a few rs proving significant but with opposite sign 
 #rs<-c(rs, mean(abs(rrepl))) # mean; I here take abs() because with very low n, the 

correl can be negative (very rarely though)! 
 prop.pos<-c(prop.pos, length(which(rrepl>=0))/length(rrepl)) # proportion of correlations 

being positive, for significant tests  
 nsrs<-c(nsrs, median(nsrrepl)) # median 
 #nsrs<-c(nsrs, mean(nsrrepl)) # I here do not take abs() because the distribution is not 

bi-modal 
 nsprop.pos<-c(nsprop.pos, length(which(nsrrepl>=0))/length(nsrrepl)) # proportion of 

correlations being positive, for n.s. tests 
 eprc<-rbind(eprc, round(quantile(rrepl, probs=c((1-perc)/2, 1-((1-perc)/2))), 5)) 
 eprc2<-rbind(eprc2, round(quantile(rrepl, probs=c((1-perc2)/2, 1-((1-perc2)/2))), 5)) 
 prc<-rbind(prc, round(quantile(jps, probs=c((1-perc)/2, 1-((1-perc)/2))), 5)) 
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 prc2<-rbind(prc2, round(quantile(jps, probs=c((1-perc2)/2, 1-((1-perc2)/2))), 5)) 
 nsesc<-rbind(nsesc, round(quantile(nsrrepl, probs=c((1-perc)/2, 1-((1-perc)/2))), 5)) 
 nsesc2<-rbind(nsesc2, round(quantile(nsrrepl, probs=c((1-perc2)/2, 1-((1-perc2)/2))), 5)) 
} # the sample sizes 
################################### 
 
# now can plot: 
mode<-'sign' ### 'sign' | 'n.sign' - should the effect sizes be shown for the significant or the 

n.s. tests? 
ns<-seq(lo.n, up.n, incr) 
truEf<-ifelse(fact==1, 0.447, 0.243) 
par(fin=c(5*1.2, 3.8*1.2)) ### set the figure dimensions 
lw<-2 ### set circle line width 
lwes<-1 ### width of the effect size dispersion line 
sym<-16 ### dot type for the effect sizes # 21 
symp<-19 ### dot type for the proportion of significant P 
plot(ns, ps, type='n', ylim=c(-0.39, 0.98), las=1) # bottom of Y axis scale needs to be set by 

eye; for n.sign c(-0.39, 1) was used, for sign c(-0.71, 1) 
for(i in 1:length(ns)){ # plot the 'perc2'-percentiles of P values 
 rect(ns[i]-rwd, prc2[i, 1], ns[i]+rwd, prc2[i, 2], col='skyblue1', border=NA) # deepskyblue2 

| lightblue2 
} 
#for(i in 1:length(ns)){ # overlay with the 'perc'-percentiles 
# rect(ns[i]-rwd, prc[i, 1], ns[i]+rwd, prc[i, 2], col='skyblue3', border=NA) # deepskyblue2 | 

lightblue2 
#} 
segments(lo.n, truEf, up.n, truEf) # watch out, this is numerically specific (a function of the 

xsd and sl parameters). 0.447 is for xsd=0.5 and sl=0.5! 
segments(lo.n, alpha, up.n, alpha, col='steelblue4') # watch out, this is numerically specific 

(a function of the xsd and sl parameters). 0.447 is for xsd=0.5 and sl=0.5! 
points(ns, ps, col='steelblue4', lwd=lw, pch=symp, cex=0.7) # the fraction of sign P 

(skyblue4 | dodgerblue3 | deepskyblue3 |royalblue2) 
if(mode=='sign'){points(ns, rs, col='gray0', lwd=lw, pch=sym, cex=0.7)} #median or mean 

(whatever chosen in simulation module; median is default) effect size for tests yielding 
P<alpha 

if(mode=='n.sign'){points(ns, nsrs, col='gray0', lwd=lw, pch=sym, cex=0.7)} #median (or 
mean) effect size for n.s. tests 

for(i in 1:length(ns)){ # add the percentiles for the effect sizes 
 ##segments(ns[i], rs[i]-0.014, ns[i], eprc2[i, 1], col=gray(0.5)) #these four lines apply 

when using sym<-21 (open circle) 
 ##segments(ns[i], rs[i]+0.014, ns[i], eprc2[i, 2], col=gray(0.5)) 
 ##segments(ns[i], rs[i]-0.014, ns[i], eprc[i, 1], col=gray(0)) 
 ##segments(ns[i], rs[i]+0.014, ns[i], eprc[i, 2], col=gray(0)) 
 if(mode=='sign'){segments(ns[i], eprc2[i, 1], ns[i], eprc2[i, 2], col=gray(0), lwd=2)} #these 

two lines apply when using sym<-16 (filled circle) 
 #if(mode=='sign'){segments(ns[i], eprc[i, 1], ns[i], eprc[i, 2], col=gray(0.5), lwd=2)} 
 if(mode=='n.sign'){segments(ns[i], nsesc2[i, 1], ns[i], nsesc2[i, 2], col=gray(0), lwd=2)} 

#these two lines apply when using sym<-16 (filled circle), for n.s. tests 
 #if(mode=='n.sign'){segments(ns[i], nsesc[i, 1], ns[i], nsesc[i, 2], col=gray(0.5), lwd=2)} 
} 
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#visual exploration of the proportion of negative correlations among the correlations 

recorded (signif. or n.s.) (the true correlation is positive) 
mode<-'n.sign' ### 'sign' | 'n.sign' - should the effect sizes be shown for the significant or 

the n.s. tests? 
ns<-seq(lo.n, up.n, incr) 
if(mode=='sign'){plot(ns, 1-prop.pos)} 
if(mode=='n.sign'){plot(ns, 1-nsprop.pos)} 
################################### A 
 
 
 
 
 
 
################################### 
# B - Compatibility curve (or P value function) 
# This is partly recycling the first module of part A above 
# Can be executed in non-parametric (boostrap-based) or parametric mode 
# Note that when using the bootstrap approach, the median (or mean) of the bootstrap 

distribution may not be identical to the observed point estimate; this means  
# that the observed point estimate is highly likely, but not the very top hypothesis, given 

the variational properties of the data. 
# Implemented by XXXX, 18june2020 
 
rm(list=ls()) 
xsd<-0.5 ### the parametric sd of the x values; def:0.5 
fact<-1 ### this serves to control the noisiness of the relationship; Here fact<-1 is used 
sl<-0.5 ### the parametric slope (dy/dx); def: 0.5 
n<-30 ### sample size; for the two examples, show 30 and 80. Can do only one sample at 

a time 
incr<-0.01 ### this is the step size for the compatibility levels to be explored 
bsiter<-100000 ### number of iterations for bootstrapping 
 
#produce the data: 
x<-rnorm(n, 0, xsd) 
ypr<-x*sl # this is precise y as a function of x, without random noise in y 
#sd(ypr) # seems like the parametric sd(ypr) is sd(x)*sl 
noise<-rnorm(n, 0, xsd*fact) # this way, the amount of noise in y equals the parametric sd 

of y 
y<-ypr+noise 
cor(x, y) # the parametric Pearson correlation coefficent is 0.447 for fact=1 (estimated with 

n = 50 million) 
is<-((1-incr)/incr)+1 # the total number of compatibility steps to consider 
 
#produce the bootstrap distribution for r (to later derive the non-parametric interval data): 
bsr<-NULL #collects the bootstrap r values 
for(i in 1:bsiter){ 
 idx<-sample(n, n, replace=T) 
 bsr<-c(bsr, cor(x[idx], y[idx])) 
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} 
mean(bsr); median(bsr) # this will be very close, but not identical to the observed point 

estimate 
 
pint<-data.frame(NULL) #collects the parametric interval data 
bsint<-data.frame(NULL) #collects the bootstrap interval data 
yd<-NULL #collects the compatibility levels 
for(i in 1:is){ 
 icl<-(1-incr)-incr*(i-1) 
 yd<-c(yd, icl) 
 pint<-rbind(pint, cor.test(x, y, method='pearson', conf.level = icl)$conf.int) 
 bsint<-rbind(bsint, quantile(bsr, probs=c(0+(1-icl)/2, 1-(1-icl)/2))) 
} 
 
#plot the curves: 
xxs<-0 # 0.02 when using the full -1 to 1 X-range 
yxs<-0.01 
par(fin=c(4, 5.2)) ### set the figure dimensions 
#plot(pint[1,1], yd[1], type='n', xlim=c(min(pint[1, 1], bsint[1, 1])-xxs, max(pint[1, 2], bsint[1, 

2])+xxs), ylim=c(0-yxs, 1+yxs), xaxs='i', yaxs='i', yaxp=c(0, 1, 20)) 
plot(pint[1,1], yd[1], type='n', xlim=c(-0.5-xxs, 1+xxs), ylim=c(0-yxs, 1+yxs), xaxs='i', 

yaxs='i', xaxp=c(-0.5, 1, 15), yaxp=c(0, 1, 20)) 
segments(0, 0, 0, 1, col='black') 
segments(0.447, 0, 0.447, 1, col='black') 
 
# first curve: 
lw<-3 
pcol<-'deepskyblue1' 
#lines(pint[, 1], rev(yd), col=pcol, lwd=lw) # parametric 
#lines(pint[, 2], rev(yd), col=pcol, lwd=lw) 
lines(bsint[, 1], rev(yd), col=pcol, lwd=lw) # bootstrap 
lines(bsint[, 2], rev(yd), col=pcol, lwd=lw) 
# add the 95% CI: 
#segments(pint[6,1], 0.05, pint[6,2], 0.05, lwd=lw) # parametric 
segments(bsint[6,1], 0.05, bsint[6,2], 0.05, lwd=lw) # bootstrap 
# if an additional curve needs to be added (need to first produce new data with different 

sample size, and generate new bootstrap distribution and stats accordingly): 
lw<-3 
pcol<-'deepskyblue3' 
#lines(pint[, 1], rev(yd), col=pcol, lwd=lw) # parametric 
#lines(pint[, 2], rev(yd), col=pcol, lwd=lw) 
lines(bsint[, 1], rev(yd), col=pcol, lwd=lw) # bootstrap 
lines(bsint[, 2], rev(yd), col=pcol, lwd=lw) 
################################### B 
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