
Neutrosophic Chromatic Number Based on Connectedness

Henry Garrett

Independent Researcher

DrHenryGarrett@gmail.com

Twitter’s ID: @DrHenryGarrett | c©DrHenryGarrett.wordpress.com

Abstract

New setting is introduced to study chromatic number. vital chromatic number and
n-vital chromatic number are proposed in this way, some results are obtained. Classes
of neutrosophic graphs are used to obtains these numbers and the representatives of the
colors. Using colors to assign to the vertices of neutrosophic graphs is applied. Some
questions and problems are posed concerning ways to do further studies on this topic.
Using vital edge from connectedness to define the relation amid vertices which implies
having different colors amid them and as consequences, choosing one vertex as a
representative of each color to use them in a set of representatives and finally, using
neutrosophic cardinality of this set to compute vital chromatic number. This specific
relation amid edges is necessary to compute both vital chromatic number concerning
the number of representative in the set of representatives and n-vital chromatic number
concerning neutrosophic cardinality of set of representatives. If two vertices have no
vital edge, then they can be assigned to same color even they’ve common edge. Basic
familiarities with neutrosophic graph theory and graph theory are proposed for this
article.
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1 Background 1

Fuzzy set in Ref. [15], neutrosophic set in Ref. [2], related definitions of other sets in 2

Refs. [2, 13,14], graphs and new notions on them in Refs. [5–11], neutrosophic graphs 3

in Ref. [3], studies on neutrosophic graphs in Ref. [1], relevant definitions of other 4

graphs based on fuzzy graphs in Ref. [12], related definitions of other graphs based on 5

neutrosophic graphs in Ref. [4], are proposed. 6

In this section, I use two subsections to illustrate a perspective about the 7

background of this study. 8

1.1 Motivation and Contributions 9

In this study, there’s an idea which could be considered as a motivation. 10

Question 1.1. Is it possible to use mixed versions of ideas concerning “connectedness”, 11

“neutrosophic graphs” and “neutrosophic coloring” to define some notions which are 12

applied to neutrosophic graphs? 13
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It’s motivation to find notions to use in any classes of neutrosophic graphs. 14

Real-world applications about time table and scheduling are another thoughts which 15

lead to be considered as motivation. Connections amid two items have key roles to 16

assign colors. Thus they’re used to define new ideas which conclude to the structure of 17

coloring. The concept of having vital edge from connectedness inspires me to study the 18

behavior of vital edge in the way that, both vital chromatic number and n-vital number 19

are the cases of study. 20

The framework of this study is as follows. In the beginning, I introduced basic 21

definitions to clarify about preliminaries. In section “Definitions and Clarification”, new 22

notion of coloring is applied to the vertices of neutrosophic graphs. Vital edge from 23

connectedness has the key role in this way. Classes of neutrosophic graphs are studied 24

in the terms of vital edges. In section “Applications in Time Table and Scheduling”, one 25

application is posed for neutrosophic graphs concerning time table and scheduling when 26

the suspicions are about choosing some subjects. In section “Open Problems”, some 27

problems and questions for further studies are proposed. In section “Conclusion and 28

Closing Remarks”, gentle discussion about results and applications are featured. In 29

section “Conclusion and Closing Remarks”, a brief overview concerning advantages and 30

limitations of this study alongside conclusions are formed. 31

1.2 Preliminaries 32

Definition 1.2. G : (V,E) is called a crisp graph where V is a set of objects and E 33

is a subset of V × V such that this subset is symmetric. 34

Definition 1.3. A crisp graph G : (V,E) is called a neutrosophic graph G : (σ, µ) 35

where σ = (σ1, σ2, σ3) : V → [0, 1] and µ = (µ1, µ2.µ3) : E → [0, 1] such that 36

µ(xy) ≤ σ(x) ∧ σ(y) for all xy ∈ E. 37

Definition 1.4. A neutrosophic graph is called neutrosophic empty if it has no 38

edge. It’s also called neutrosophic trivial. A neutrosophic graph which isn’t 39

neutrosophic empty, is called neutrosophic nontrivial. 40

Definition 1.5. A neutrosophic graph G : (σ, µ) is called a neutrosophic complete 41

where it’s complete and µ(xy) = σ(x) ∧ σ(y) for all xy ∈ E. 42

Definition 1.6. A neutrosophic graph G : (σ, µ) is called a neutrosophic strong 43

where µ(xy) = σ(x) ∧ σ(y) for all xy ∈ E. 44

Definition 1.7. A path v0, v1, · · · , vn is called neutrosophic path where 45

µ(vivi+1) > 0, i = 0, 1, · · · , n− 1. i-path is a path with i edges, it’s also called length 46

of path. 47

Definition 1.8. A crisp cycle v0, v1, · · · , vn, v0 is called neutrosophic cycle where 48

there are two edges xy and uv such that µ(xy) = µ(uv) =
∧
i=0,1,··· ,n−1 µ(vivi+1). 49

Definition 1.9. A neutrosophic graph is called neutrosophic t-partite if V is 50

partitioned to t parts, V1, V2, · · · , Vt and the edge xy implies x ∈ Vi and y ∈ Vj where 51

i 6= j. If it’s neutrosophic complete, then it’s denoted by Kσ1,σ2,··· ,σt
where σi is σ on Vi 52

instead V which mean x 6∈ Vi induces σi(x) = 0. If t = 2, then it’s called neutrosophic 53

complete bipartite and it’s denoted by Kσ1,σ2
especially, if |V1| = 1, then it’s called 54

neutrosophic star and it’s denoted by S1,σ2 . In this case, the vertex in V1 is called 55

center and if a vertex joins to all vertices of neutrosophic cycle, it’s called 56

neutrosophic wheel and it’s denoted by W1,σ2
. 57

Definition 1.10. Let G : (σ, µ) be a neutrosophic graph. For any given subset N of V, 58

Σn∈Nσ(n) is called neutrosophic cardinality of N and it’s denoted by |N |n. 59
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Definition 1.11. Let G : (σ, µ) be a neutrosophic graph. Neutrosophic cardinality of 60

V is called neutrosophic order of G and it’s denoted by On(G). 61

Definition 1.12. Let G : (σ, µ) be a neutrosophic graph. The number of vertices is 62

denoted by n and the number of edges is denoted by m. 63

Definition 1.13. Let N = (σ, µ) be a neutrosophic graph. It’s called neutrosophic 64

connected if for every given couple of vertices, there’s at least one neutrosophic path 65

amid them. 66

Definition 1.14. Let N = (σ, µ) be a neutrosophic graph. Suppose a path 67

P : v0, v1, · · · , vn−1, vn from v0 to vn. mini=0,1,2,··· ,n−1 µ(vivi+1) is called 68

neutrosophic strength of P and it’s denoted by Sn(P ). 69

Definition 1.15. Let N = (σ, µ) be a neutrosophic graph. The number of maximum 70

edges for a vertex, amid all vertices, is denoted by ∆(N). 71

2 Definitions and Clarification 72

Definition 2.1. Let N = (σ, µ) be a neutrosophic graph. A neutrosophic edge xy is 73

called vital if deletion of xy has no change on its connectedness which is a maximum 74

strength of paths amid them. 75

Definition 2.2. Let N = (σ, µ) be a neutrosophic graph. A vertex which has common 76

vital edge with another vertex, has assigned different color from that vertex. The 77

number of different colors, is called vital chromatic number and its neutrosophic 78

cardinality is called n-vital chromatic number. 79

Example 2.3. Assume Figure (1) with respect to first order. 80

(i) : Only vital edge is n2n3. Other edges aren’t vital. 81

(ii) : The vertices n2 and n3 have different colors. 82

(iii) : The vertex n1 could get any color. 83

(iv) : The vertex n1 has no vital edge with any given vertex. 84

(v) : The set of representatives of colors is {n1, n2}. 85

(vi) : Amid n2 and n3, n2 has minimum value. 86

(vii) : Deletion of edge n1n2 has no change in the connectedness of obtained 87

neutrosophic graph. 88

(viii) : The vital number is two. 89

(ix) : n-vital chromatic number is 2.57. 90

3 Basic Properties 91

Proposition 3.1. Let N = (σ, µ) be a neutrosophic cycle. Then all edges are vital. 92
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Figure 1. Neutrosophic graph N1 is considered with respect to first order. It’s complete
but it isn’t neutrosophic complete. It’s cycle but it isn’t neutrosophic cycle. It’s
neutrosophic 3-partite but it isn’t neutrosophic complete 3-partite.

Proof. Consider N = (σ, µ) be a neutrosophic cycle. Hence, there are at least two edges
which are weakest, it means there are xy, uv ∈ E such that

µ(uv) = µ(xy) = min
e∈E

µ(e).

In other hand, for every given vertices x and y, there are two paths from x to y. So for
every given path,

S(P ) = min
e∈E

µ(e).

Thus for every x, y ∈ V, xy ∈ E, the value µ(xy) forms the connectedness amid x to y. 93

Therefore connectedness amid any given couple of vertices, doesn’t change when they 94

form an edge and they’re deleted. It induces every edge is vital. 95

Proposition 3.2. Let N = (σ, µ) be a neutrosophic complete which is neither 96

neutrosophic empty nor neutrosophic path. Then all edges are vital. 97

Proof. Suppose N = (σ, µ) is a neutrosophic complete which is neither neutrosophic
empty nor neutrosophic path. If x, y ∈ V, then xy ∈ E. Thus P : x, y is a path for every
given couple of vertices. Hence

S(P ) = µ(xy).

Therefore, connectedness ≥ µ(xy). In other hands, assume P ′ : x, · · · , y is an arbitrary
path from x to y. By N = (σ, µ) is a neutrosophic complete, N = (σ, µ) is a
neutrosophic strong. By N = (σ, µ) is a neutrosophic strong,

S(P ′) ≤ µ(xy).

Then connectedness ≤ S(P ). It implies connectedness ≤ µ(xy). To sum it up, 98

connectedness = µ(xy). It induces xy is vital. 99

Proposition 3.3. Let N = (σ, µ) be a neutrosophic graph which is fixed-edge and 100

which is neither neutrosophic empty nor neutrosophic path. Then all edges are vital. 101
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Proof. Assume N = (σ, µ) is a neutrosophic graph which is fixed-edge and which is
neither neutrosophic empty nor neutrosophic path. ByN = (σ, µ) is a fixed-edge,

∀e, e′ ∈ E, µ(e) = µ(e′).

It induces for every given edge e and every given paths P, P ′

S(P ) = S(P ′) = µ(e).

It implies connectedness is fixed and it equals to µ(e) where e ∈ E. Therefore, the 102

deletion of e has no change on connectedness amid every couple of vertices. It means 103

every edge is vital. 104

Proposition 3.4. Let N = (σ, µ) be a neutrosophic graph which is neither 105

neutrosophic empty nor neutrosophic path. Then there’s at least one vital edge. 106

Proof. Consider N = (σ, µ) is a neutrosophic graph which is neither neutrosophic empty
nor neutrosophic path. Assume N = (σ, µ) is a neutrosophic graph which is either
fixed-edge or fixed-vertex and neutrosophic strong. Hence, all edges have same value. It
means

∀e, e′ ∈ E, µ(e) = µ(e′).

It induces for every given edge e and every given paths P, P ′

S(P ) = S(P ′) = µ(e).

It implies connectedness is fixed and it equals to µ(e) where e ∈ E. Therefore, the
deletion of e has no change on connectedness amid every couple of vertices. It means
every edge is vital. In other hand, suppose otherwise. So by |E| > 2, there’s one edge e
such that for every edge e′ 6= e,

µ(e) > µ(e′).

Let a number µ(e′) be
min
e∈E

µ(e).

Then connectedness is ≥ µ(e′). But there’s a cycle which implies |E| > 3. It induces 107

there are at least two paths corresponded to e′. By µ(e) > µ(e′), connectedness ≥ µ(e′). 108

It implies corresponded connectedness to e′ isn’t changed when the deletion of e′ is 109

done. Thus the edge e′ ∈ E is vital. 110

Proposition 3.5. Let N = (σ, µ) be a neutrosophic strong which is fixed-vertex and 111

which is neither neutrosophic empty nor neutrosophic path. Then all edges are vital. 112

Proof. Assume N = (σ, µ) is a neutrosophic strong which is fixed-vertex and which is
neither neutrosophic empty nor neutrosophic path. Thus by N = (σ, µ) is a
neutrosophic fixed-vertex, for all v, v′ ∈ V,

σ(v) = σ(v′).

By N = (σ, µ) is a neutrosophic strong, for all e, e′ ∈ V,

µ(e) = µ(e′).

It induces for every couple of vertices which form an edge, connectedness amid them is 113

same and equals µ(e) where e is a given edge. It implies at least there are two paths 114

with strength µ(e). Thus deletion of every edge has no change on connectedness amid 115

its vertices. Therefore, every edge is vital. 116
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Proposition 3.6. Let N = (σ, µ) be a neutrosophic graph which is fixed-vertex and 117

complete. Then all edges are vital. 118

Proof. By N = (σ, µ) is neutrosophic complete, N = (σ, µ) is neutrosophic strong. By 119

N = (σ, µ) is a neutrosophic graph which is fixed-vertex, complete and applying 120

Proposition (3.5), all edges are vital. 121

Proposition 3.7. Let N = (σ, µ) be a neutrosophic graph which is fixed-edge. Then all 122

edges are vital. 123

Proof. Suppose N = (σ, µ) is a neutrosophic graph which is fixed-edge. Then for every
edges e and e′,

µ(e) = µ(e′).

It means all paths has same strength which is the value of an edge since all edges have 124

same values. It means the connectedness amid all given couple of vertices is the same. 125

There are at least two paths. So deletion any edge has no change on the connectedness 126

amid all given couple of vertices. 127

4 Vital Chromatic Number 128

Proposition 4.1. Let N = (σ, µ) be a neutrosophic graph which is neither neutrosophic 129

empty nor neutrosophic path. Then vital chromatic number is at most n and at least 1. 130

Proof. These bounds are sharp and tight as they’ll be shown in upcoming results. If 131

there’s no edge, then vital chromatic number is 1 but if the number of vertices are n 132

and they’re connected to each other, then vital chromatic number is n. 133

4.1 Largest Vital Chromatic Number 134

Proposition 4.2. Let N = (σ, µ) be a neutrosophic complete which is neither 135

neutrosophic empty nor neutrosophic path. Then vital chromatic number is n. 136

Proof. Consider N = (σ, µ) is a neutrosophic complete which is neither neutrosophic
empty nor neutrosophic path. By Proposition (3.2), all edges are vital. By N = (σ, µ)
isn’t a neutrosophic path, there are at least two path amid two given edges. In other
words, there is at least one cycle. By N = (σ, µ) is a neutrosophic complete, all vertices
are connected to each other. It implies,

∀v, v′ ∈ V, vv′ ∈ E.

It induces all vertices have different colors. The number of vertices are n. So vital 137

chromatic number is n. 138

Proposition 4.3. Let N = (σ, µ) be a neutrosophic path. Then vital chromatic number 139

aren’t computable. 140

Proof. Assume N = (σ, µ) is a neutrosophic path. Then there’s only one path amid two 141

given vertices. So deletion of an edge makes the connectedness amid its vertices, to be 142

incomputable. 143

Proposition 4.4. Let N = (σ, µ) be a neutrosophic star. Then vital chromatic number 144

aren’t computable. 145

Proof. Consider N = (σ, µ) is a neutrosophic star. Hence there’s only one path amid 146

two given vertices. Thus deletion of an edge makes the connectedness amid its vertices, 147

to be incomputable. 148
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4.2 Smallest Vital Chromatic Number 149

Proposition 4.5. Let N = (σ, µ) be a neutrosophic empty. Then vital chromatic 150

number is 1. 151

Proof. Let N = (σ, µ) be a neutrosophic empty. Then there’s no edge. It implies all 152

vertices have same colors where the minimum number of colors are applied. Thus vital 153

chromatic number is 1. 154

Proposition 4.6. Let N = (σ, µ) be a neutrosophic graph which is neither 155

neutrosophic empty nor neutrosophic path. Then vital chromatic number isn’t 1. 156

Proof. Assume N = (σ, µ) is a neutrosophic graph which is neither neutrosophic empty 157

nor neutrosophic path. By Proposition (3.4), there’s at least one vital edge. 158

Proposition 4.7. Let N = (σ, µ) be a neutrosophic cycle. Then vital chromatic 159

number is at least 2 and at most 3. 160

Proof. Suppose N = (σ, µ) is a neutrosophic cycle. There’s at least amid two vertices. 161

By Proposition (3.1), all edges are vital. So at least the colors of two vertices are 162

different. It implies vital chromatic number is at least 2. By applying colors on vertices 163

in alternative ways, at most two vertices have common edges with same color. Hence 164

vital chromatic number is at most 3. 165

Proposition 4.8. Let N = (σ, µ) be an even neutrosophic cycle. Then vital chromatic 166

number is 2. 167

Proof. Assume N = (σ, µ) is an even neutrosophic cycle. By Proposition (4.6), vital 168

chromatic number is at least 2. By applying coloring on vertices in alternative ways, two 169

vertices with common edge, has different colors. Since the cycle has even number of 170

edges. Thus vital chromatic number is 2. 171

Proposition 4.9. Let N = (σ, µ) be an odd neutrosophic cycle. Then vital chromatic 172

number is 3. 173

Proof. Consider N = (σ, µ) is an odd neutrosophic cycle. By Proposition (3.1), all 174

edges are vital. So by using coloring in alternative way, there are two vertices which 175

have common edge and have same color. Thus vital chromatic number is 3. 176

Proposition 4.10. Let N = (σ, µ) be a neutrosophic bipartite which is fixed-edge and 177

complete. Then vital chromatic number is 2. 178

Proof. Suppose N = (σ, µ) is a neutrosophic bipartite which is fixed-edge and complete. 179

Thus strength of every path is as same as connectedness amid two vertices is. Thus all 180

edges are vital. By N = (σ, µ) is complete, all vertices from one part are connected to 181

all vertices of another part. Every part has no connection amid its vertices so all 182

vertices from every part, have same color. There are two parts. Thus vital chromatic 183

number is 2. 184

Proposition 4.11. Let N = (σ, µ) be a neutrosophic bipartite which is fixed-vertex and 185

complete. Then vital chromatic number is 2. 186

Proof. By N = (σ, µ) is fixed-vertex and complete, N = (σ, µ) is fixed-edge and 187

complete. Therefore, by Proposition (4.10), vital chromatic number is 2. 188

Proposition 4.12. Let N = (σ, µ) be a neutrosophic t−partite which is fixed-edge and 189

complete. Then vital chromatic number is t. 190
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Proof. By N = (σ, µ) is fixed-edge, all edges have same value. Thus all paths have same 191

strength. So connectedness amid two given vertices are same. Therefore all edges are 192

vital. Inside every part, there’s no edge amid two vertices. It induces the vertices of 193

every part have same color. There are t parts. It implies t different colors are applied. 194

Therefore vital chromatic number is t. 195

Proposition 4.13. Let N = (σ, µ) be a neutrosophic t−partite which is fixed-vertex 196

and complete. Then vital chromatic number is t. 197

Proof. It’s fixed-vertex and complete. So It’s fixed-edge and complete. By Proposition 198

(4.12), vital chromatic number is t. 199

Proposition 4.14. Let N = (σ, µ) be a neutrosophic wheel which is fixed-vertex and 200

neutrosophic strong. Then vital chromatic number is 3 or 4. 201

Proof. Consider N = (σ, µ) is a neutrosophic wheel which is fixed-vertex and 202

neutrosophic strong. By it’s fixed-vertex and neutrosophic strong, it’s fixed-edge. Every 203

edges have same value. So strength of paths and connectedness are same and equal to 204

each other. Thus all edges are vital. Then the center has one color and since it’s 205

connected to all other vertices, the color of center is unique. Therefore, vital chromatic 206

number is at least 2. Non-center vertices form a path which are colored by two colors 207

when applying colors are in alternative ways. Thus vital chromatic number is 3 if the 208

non-center vertices form even color and vital chromatic number is 4 if the non-center 209

vertices form odd color. 210

Proposition 4.15. Let N = (σ, µ) be a neutrosophic wheel which is fixed-edge and 211

neutrosophic strong. Then vital chromatic number is 3 or 4. 212

Proof. Consider N = (σ, µ) is a neutrosophic wheel which is fixed-vertex and 213

neutrosophic strong. It’s fixed-edge. Every edges have same value. So strength of paths 214

and connectedness are same and equal to each other. Thus all edges are vital. Then the 215

center has one color and since it’s connected to all other vertices, the color of center is 216

unique. Therefore, vital chromatic number is at least 2. Non-center vertices form a path 217

which are colored by two colors when applying colors are in alternative ways. Thus vital 218

chromatic number is 3 if the non-center vertices form even color and vital chromatic 219

number is 4 if the non-center vertices form odd color. 220

5 n-Vital Chromatic Number 221

Proposition 5.1. Let N = (σ, µ) be a neutrosophic graph which is neither 222

neutrosophic empty nor neutrosophic path. Then n-vital chromatic number is at most 223

order of N which is neutrosophic cardinality of V. 224

Proof. Assume N = (σ, µ) is a neutrosophic graph which is neither neutrosophic empty 225

nor neutrosophic path. If all edges are vital and all vertices are connected to each other, 226

then vital chromatic number is n. Thus n-vital chromatic number is at most order of N 227

which is neutrosophic cardinality of V. 228

5.1 Largest n-Vital Chromatic Number 229

Proposition 5.2. Let N = (σ, µ) be a neutrosophic complete which is neither 230

neutrosophic empty nor neutrosophic path. Then n-vital chromatic number is order of N 231

which is neutrosophic cardinality of V. 232
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Proof. Suppose N = (σ, µ) is a neutrosophic complete which is neither neutrosophic 233

empty nor neutrosophic path. By it’s complete, then all vertices are connected to each 234

other and all edges are vital. Thus n colors are used. It means n-vital chromatic 235

number is order of N which is neutrosophic cardinality of V. 236

Proposition 5.3. Let N = (σ, µ) be a neutrosophic path. Then n-vital chromatic 237

number aren’t computable. 238

Proof. Deletion of one edge, make N = (σ, µ) be in the situation where n-vital 239

chromatic number aren’t computable. Since there’s need to have at least two paths to 240

compute n-vital chromatic number. In other words, this notion is computable in 241

neutrosophic graph which has at least one cycle. 242

Proposition 5.4. Let N = (σ, µ) be a neutrosophic star. Then n-vital chromatic 243

number aren’t computable. 244

Proof. Assume N = (σ, µ) is a neutrosophic star. Then there’s only one path amid two 245

given vertices. Deletion one edge causes the connectedness to be incomputable. Thus 246

n-vital chromatic number aren’t computable. 247

5.2 Smallest n-Vital Chromatic Number 248

Proposition 5.5. Let N = (σ, µ) be a neutrosophic empty. Then n-vital chromatic
number is

min
x∈V

σ(x).

Proof. Suppose N = (σ, µ) is a neutrosophic empty. Then there’s no edge. It induces
there’s no vital edge. So all vertices are colored by one color. Hence all vertices have
same color. It means the number of color is one. It induces the cardinality of set
includes the representative of color is one. To find the representative of color, we have 1
choice from n options. Thus n-vital chromatic number is

min
x∈V

σ(x).

249

Proposition 5.6. Let N = (σ, µ) be a neutrosophic graph which is neither
neutrosophic empty nor neutrosophic path. Then n-vital chromatic number isn’t

min
x∈V

σ(x).

Proof. Consider N = (σ, µ) is a neutrosophic graph which is neither neutrosophic empty
nor neutrosophic path. Then there’s at least one edge. By Proposition (3.4), there’s at
least one vital edge. It induces the number of color is at least two. Therefore, the
cardinality of set of representative is at least two. It implies n-vital chromatic number
isn’t

min
x∈V

σ(x).

250

Proposition 5.7. Let N = (σ, µ) be a neutrosophic cycle. Then n-vital chromatic
number is at least

min
x,y∈V, xy∈E

σ(x) + σ(y).

And at most
min

x,y,z∈V,xy,yz,xz∈E
σ(x) + σ(y) + σ(z).
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Proof. Suppose N = (σ, µ) is a neutrosophic cycle. By using alternative coloring of
vertices, two or three numbers of colors are used. So the cardinality of set of
representative is two or three. There are only these possibilities. Therefore n-vital
chromatic number is at least

min
x,y∈V, xy∈E

σ(x) + σ(y).

And at most
min

x,y,z∈V,xy,yz,xz∈E
σ(x) + σ(y) + σ(z).

251

Proposition 5.8. Let N = (σ, µ) be an even neutrosophic cycle. Then n-vital
chromatic number is

min
x,y∈V, xy∈E

σ(x) + σ(y).

Proof. Assume N = (σ, µ) is an even neutrosophic cycle. If colors are applied on vertices
in alternative ways which cause two vertices with a common edge, have different colors,
then by it’s even neutrosophic cycle, the representatives of colors are two. Since there
are even edges which by Proposition (3.1), all are vital. It induces the cardinality of set
of representatives is two. Thus n-vital chromatic number is n-vital chromatic number is

min
x,y∈V, xy∈E

σ(x) + σ(y).

252

Proposition 5.9. Let N = (σ, µ) be an odd neutrosophic cycle. Then n-vital chromatic
number is

min
x,y,z∈V, xy∈E

σ(x) + σ(y) + σ(z).

Proof. Consider N = (σ, µ) is an odd neutrosophic cycle. Then number of edges are
odd. By Proposition (3.1), all edges are vital. Using different colors on the vertices
which have common edges, implies usage of three colors. Hence the set of
representatives has the cardinality three. To choose, the representatives, in every color,
minimum value of vertices, introduces the representative of specific color. Then n-vital
chromatic number is

min
x,y,z∈V, xy∈E

σ(x) + σ(y) + σ(z).

253

Proposition 5.10. Let N = (σ, µ) be neutrosophic bipartite which is fixed-edge and
complete. Then n-vital chromatic number is

min
x,y∈V, xy∈E

σ(x) + σ(y).

Proof. Assume N = (σ, µ) is neutrosophic bipartite which is fixed-edge and complete.
It’s fixed-edge so all edges have same value and as its consequences, all paths have same
strength and all connectedness are same. Hence all edges are vital. By it’s complete, all
vertices from one part are connected to all vertices from another part. By it’s bipartite,
there are two colors to use on vertices such that every part has same color. So the set of
representatives has the cardinality two which implies n-vital chromatic number is

min
x,y∈V, xy∈E

σ(x) + σ(y).

254

10/15

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 December 2021                   doi:10.20944/preprints202112.0226.v1

https://doi.org/10.20944/preprints202112.0226.v1


Proposition 5.11. Let N = (σ, µ) be neutrosophic bipartite which is fixed-vertex and
complete. Then n-vital chromatic number is

min
x,y∈V, xy∈E

σ(x) + σ(y).

Proof. Assume N = (σ, µ) is neutrosophic bipartite which is fixed-vertex and complete.
By it’s fixed-vertex and complete, it’s fixed-edge and complete. By Proposition (5.10),
n-vital chromatic number is

min
x,y∈V, xy∈E

σ(x) + σ(y).

255

Proposition 5.12. Let N = (σ, µ) be neutrosophic t−partite which is fixed-edge and
complete. Then n-vital chromatic number is

min
x1,x2,··· ,xt∈V, xixj∈E

σ(x1) + σ(x2) + · · ·+ σ(xt).

Proof. Assume N = (σ, µ) is neutrosophic t−partite which is fixed-edge and complete.
All parts have same color on their vertices. By it’s fixed-edge and applying Proposition
(3.7), all edges are vital. Thus minimum number of colors is t. And the set of
representatives has the cardinality t. It means n-vital chromatic number is

min
x1,x2,··· ,xt∈V, xixj∈E

σ(x1) + σ(x2) + · · ·+ σ(xt).

256

Proposition 5.13. Let N = (σ, µ) be neutrosophic t−partite which is fixed-vertex and
complete. Then n-vital chromatic number is

min
x1,x2,··· ,xt∈V, xixj∈E

σ(x1) + σ(x2) + · · ·+ σ(xt).

Proof. Assume N = (σ, µ) is neutrosophic t−partite which is fixed-vertex and complete.
Then by it’s fixed-vertex and complete, it’s it’s fixed-edge and complete. By Proposition
(5.12), n-vital chromatic number is

min
x1,x2,··· ,xt∈V, xixj∈E

σ(x1) + σ(x2) + · · ·+ σ(xt).

257

Proposition 5.14. Let N = (σ, µ) be neutrosophic wheel which is fixed-vertex and
neutrosophic strong. Then n-vital chromatic number is

min
y,z∈V,yz∈E

σ(c) + σ(y) + σ(z).

Or
min

y,z∈V,yz,zt∈E
σ(c) + σ(y) + σ(z) + σ(t).

Proof. Consider N = (σ, µ) is neutrosophic wheel which is fixed-vertex and
neutrosophic strong. By fixed-vertex and neutrosophic strong, it’s fixed-edge. By it’s
fixed-edge and applying Proposition (3.7), all edges are vital. Center is connected to
non-center vertices. So center uses unique color. Non-center vertices form a cycle. If the
cycle is even, then n-vital chromatic number is

min
y,z∈V,yz∈E

σ(c) + σ(y) + σ(z).
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If it’s odd, then n-vital chromatic number is

min
y,z∈V,yz∈E

σ(c) + σ(y) + σ(z).

Or
min

y,z∈V,yz,zt∈E
σ(c) + σ(y) + σ(z) + σ(t).

258

Proposition 5.15. Let N = (σ, µ) be neutrosophic wheel which is fixed-edge and
neutrosophic strong. Then n-vital chromatic number is

min
y,z∈V,yz∈E

σ(c) + σ(y) + σ(z).

Proof. Assume N = (σ, µ) is neutrosophic wheel which is fixed-edge and neutrosophic
strong. By it’s fixed-edge and neutrosophic strong, it’s fixed-vertex and neutrosophic
strong. By Proposition (5.14),

min
y,z∈V,yz∈E

σ(c) + σ(y) + σ(z).

Or
min

y,z∈V,yz,zt∈E
σ(c) + σ(y) + σ(z) + σ(t).

259

The relation amid neutrosophic chromatic number and main parameters of 260

neutrosophic graphs is computed. 261

Proposition 5.16. Let N = (σ, µ) be a neutrosophic strong. Then vital chromatic 262

number is at most ∆ + 1 and at least 2. 263

Proof. Neutrosophic strong is neutrosophic nontrivial. So it isn’t neutrosophic empty 264

which induces there’s no edge. It implies chromatic number is two. Since chromatic 265

number is one if and only if N = (σ, µ) is neutrosophic empty if and only if N = (σ, µ) 266

is neutrosophic trivial. A vertex with degree ∆, has ∆ vertices which have common 267

edges with them. If these vertices have no edge amid each other, then chromatic number 268

is two especially, neutrosophic star. If not, then in the case, all vertices have edge amid 269

each other, chromatic number is ∆ + 1, especially, neutrosophic complete. 270

Proposition 5.17. Let N = (σ, µ) be a neutrosophic r−regular. Then vital chromatic 271

number is at most r + 1. 272

Proof. N = (σ, µ) is a neutrosophic r−regular. So any of vertex has r vertices which 273

have common edge with it. If these vertices have no common edge with each other, for 274

instance neutrosophic star, chromatic number is two. But since the vertices have 275

common edge with each other, chromatic number is r + 1, for instance, neutrosophic 276

complete. 277

6 Applications in Time Table and Scheduling 278

Designing the programs to achieve some goals is general approach to apply on some 279

issues to function properly. Separation has key role in the context of this style. 280

Separating the duration of work which are consecutive, is the matter and it has 281

important to avoid mixing up. 282
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Step 1. (Definition) Time table is an approach to get some attributes to do the 283

work fast and proper. The style of scheduling implies special attention to the 284

tasks which are consecutive. 285

Step 2. (Issue) Scheduling of program has faced with difficulties to differ amid 286

consecutive section. Beyond that, sometimes sections are not the same. 287

Step 3. (Model) As Figure (2), the situation is designed as a model. The model uses 288

data to assign every section and to assign to relation amid section, three numbers 289

belong unit interval to state indeterminacy, possibilities and determinacy. There’s 290

one restriction in that, the numbers amid two sections are at least the number of 291

the relation amid them. Table (1), clarifies about the assigned numbers to these 292

situation.

Figure 2. Black vertices are suspicions about choosing them.

Table 1. Scheduling concerns its Subjects and its Connections as a Neutrosophic Graph
in a Model.

Sections of T s1 s2 s3 s4 s5 s6 s7 s8 s9, s10
Values 0.1 0.8 0.7 0.8 0.1 0.3 0.6 0.5 0.2

Connections of T s1s2 s2s3 s3s4 s4s5 s5s6 s6s7 s7s8 s8s9 s9s10
Values 0.1 0.6 0.4 0.1 0.1 0.2 0.4 0.2 0.1

293

Step 4. (Solution) As Figure (2) shows, neutrosophic model, proposes to use vital 294

chromatic number which is incomputable in the case which is titled T ′. In this 295

case, i1 and c1 aren’t representative of these two colors and n-vital chromatic 296

number is incomputable. The set {i1, c1} doesn’t contain representatives of colors 297

which pose vital chromatic number and n-vital chromatic number. Thus the 298

decision amid choosing the subject c1 an c2 isn’t concluded to choose c1. To get 299

brief overview, neutrosophic model uses one number for every array so 0.9 means 300

(0.9, 0.9, 0.9). In Figure (2), the neutrosophic model T introduces the common 301

situation. The representatives of colors are i2 and c1. Thus vital chromatic 302

number is two and n-vital chromatic number is 1.4. Thus suspicion about choosing 303

i1 and i2 is determined to be i2. The sets of representative for colors are {i2, c1}. 304

7 Open Problems 305

The two notions of coloring of vertices concerning vital chromatic number and n-vital 306

chromatic number are defined on neutrosophic graphs when connectedness and as its 307
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consequences, vital edges have key role to have these notions. Thus 308

Question 7.1. Is it possible to use other types edges via connectedness to define vital 309

chromatic number and n-vital chromatic number? 310

Question 7.2. Are existed some connections amid the coloring from connectedness 311

inside this concept and external connections with other types of coloring from other 312

notions? 313

Question 7.3. Is it possible to construct some classes neutrosophic graphs which have 314

“nice” behavior? 315

Question 7.4. Which applications do make an independent study to apply vital 316

chromatic number and n-vital chromatic number? 317

Problem 7.5. Which parameters are related to this parameter? 318

Problem 7.6. Which approaches do work to construct applications to create 319

independent study? 320

Problem 7.7. Which approaches do work to construct definitions which use all three 321

arrays and the relations amid them instead of one array of three arrays to create 322

independent study? 323

8 Conclusion and Closing Remarks 324

This study uses mixed combinations of vital chromatic number and n-vital chromatic 325

number to study on neutrosophic graphs. The connections of vertices which are clarified 326

by vital edges from connectedness, differ them from each other and and put them in 327

different categories to represent one representative for each color. Further studies could 328

be about changes in the settings to compare this notion amid different settings of graph 329

theory. One way is finding some relations amid array of vertices to make sensible 330

definitions. In Table (2), some limitations and advantages of this study is pointed out.

Table 2. A Brief Overview about Advantages and Limitations of this study

Advantages Limitations
1. Using connectedness for vital edges 1. Acyclic neutrosophic graphs

2. Using neutrosophic cardinality

3. Using cardinality 2. Connections with parameters

4. Characterizing smallest number

5. Characterizing biggest number 3. Star and path

331
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