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Abstract

New setting is introduced to study chromatic number. vital chromatic number and
n-vital chromatic number are proposed in this way, some results are obtained. Classes
of neutrosophic graphs are used to obtains these numbers and the representatives of the
colors. Using colors to assign to the vertices of neutrosophic graphs is applied. Some
questions and problems are posed concerning ways to do further studies on this topic.
Using vital edge from connectedness to define the relation amid vertices which implies
having different colors amid them and as consequences, choosing one vertex as a
representative of each color to use them in a set of representatives and finally, using
neutrosophic cardinality of this set to compute vital chromatic number. This specific
relation amid edges is necessary to compute both vital chromatic number concerning
the number of representative in the set of representatives and n-vital chromatic number
concerning neutrosophic cardinality of set of representatives. If two vertices have no
vital edge, then they can be assigned to same color even they’ve common edge. Basic
familiarities with neutrosophic graph theory and graph theory are proposed for this
article.
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1 Background )
Fuzzy set in Ref. [15], neutrosophic set in Ref. [2], related definitions of other sets in 2
Refs. [2,13,14], graphs and new notions on them in Refs. [5—11], neutrosophic graphs
in Ref. [3], studies on neutrosophic graphs in Ref. [1], relevant definitions of other 4
graphs based on fuzzy graphs in Ref. [12], related definitions of other graphs based on s
neutrosophic graphs in Ref. [1], are proposed. 6

In this section, I use two subsections to illustrate a perspective about the 7
background of this study. 8
1.1 Motivation and Contributions o
In this study, there’s an idea which could be considered as a motivation. 10
Question 1.1. Is it possible to use mixed versions of ideas concerning “connectedness”, u
“neutrosophic graphs” and “neutrosophic coloring” to define some notions which are 12
applied to neutrosophic graphs? 13
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It’s motivation to find notions to use in any classes of neutrosophic graphs. 14
Real-world applications about time table and scheduling are another thoughts which 15
lead to be considered as motivation. Connections amid two items have key roles to 16

assign colors. Thus they’re used to define new ideas which conclude to the structure of 1
coloring. The concept of having vital edge from connectedness inspires me to study the 1
behavior of vital edge in the way that, both vital chromatic number and n-vital number 19

are the cases of study. 2

The framework of this study is as follows. In the beginning, I introduced basic 2
definitions to clarify about preliminaries. In section “Definitions and Clarification”, new 2
notion of coloring is applied to the vertices of neutrosophic graphs. Vital edge from 23

connectedness has the key role in this way. Classes of neutrosophic graphs are studied 2
in the terms of vital edges. In section “Applications in Time Table and Scheduling”, one 25
application is posed for neutrosophic graphs concerning time table and scheduling when 2

the suspicions are about choosing some subjects. In section “Open Problems”, some 27
problems and questions for further studies are proposed. In section “Conclusion and 2
Closing Remarks”, gentle discussion about results and applications are featured. In 2
section “Conclusion and Closing Remarks”, a brief overview concerning advantages and 3o
limitations of this study alongside conclusions are formed. 31
1.2 Preliminaries 2

Definition 1.2. G : (V, E) is called a crisp graph where V is a set of objects and £ 3
is a subset of V' x V such that this subset is symmetric. 3

Definition 1.3. A crisp graph G : (V, E) is called a neutrosophic graph G : (o, i) 35

where o = (01,09,03) : V. — [0,1] and p = (u1, p2.p3) : E — [0, 1] such that 36
w(zy) < o(x) ANo(y) for all zy € E. 7
Definition 1.4. A neutrosophic graph is called neutrosophic empty if it has no 38
edge. It’s also called neutrosophic trivial. A neutrosophic graph which isn’t 39
neutrosophic empty, is called neutrosophic nontrivial. 40

Definition 1.5. A neutrosophic graph G : (o, 1) is called a neutrosophic complete

where it’s complete and u(xy) = o(x) A o(y) for all zy € E. 2
Definition 1.6. A neutrosophic graph G : (o, u) is called a neutrosophic strong P
where pu(zy) = o(x) Ao(y) for all zy € E. “
Definition 1.7. A path vg,v1,--- ,v, is called neutrosophic path where a5
w(viviy1) >0, i =0,1,--- ,n— 1. i-path is a path with 7 edges, it’s also called length 4
of path. a7
Definition 1.8. A crisp cycle vy, vy, -+ ,v,, v is called neutrosophic cycle where a8
there are two edges zy and uv such that p(zy) = p(ww) = N\i_g ;... 1 #(Vivi1). 49
Definition 1.9. A neutrosophic graph is called neutrosophic t-partite if V' is 50
partitioned to t parts, V1, Va,---,V; and the edge xy implies x € V; and y € V; where 51

i # j. If it’s neutrosophic complete, then it’s denoted by Koy, 5y,... o, Where o; iscon V; =
instead V' which mean x ¢ V; induces o;(z) = 0. If ¢ = 2, then it’s called neutrosophic s
complete bipartite and it’s denoted by K, ., especially, if |[Vi| = 1, then it’s called 54

neutrosophic star and it’s denoted by S; ,,. In this case, the vertex in V; is called 55
center and if a vertex joins to all vertices of neutrosophic cycle, it’s called 56
neutrosophic wheel and it’s denoted by Wi o,. 57

Definition 1.10. Let G : (o, 1) be a neutrosophic graph. For any given subset N of V, s
Yneno(n) is called neutrosophic cardinality of N and it’s denoted by |N|,,. 59
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Definition 1.11. Let G : (o, 1) be a neutrosophic graph. Neutrosophic cardinality of e

V is called neutrosophic order of G and it’s denoted by O, (G). 61
Definition 1.12. Let G : (o, 1) be a neutrosophic graph. The number of vertices is 62
denoted by n and the number of edges is denoted by m. 63

Definition 1.13. Let N = (o, 1) be a neutrosophic graph. It’s called neutrosophic 6
connected if for every given couple of vertices, there’s at least one neutrosophic path s

amid them. 66
Definition 1.14. Let N = (o, u) be a neutrosophic graph. Suppose a path 67
P :vg,v1,+ ,Up_1,0y from vy to vy. ming—g 12,.. n—1 #(Vivi41) is called 68
neutrosophic strength of P and it’s denoted by S, (P). 60
Definition 1.15. Let N = (o, 1) be a neutrosophic graph. The number of maximum 70
edges for a vertex, amid all vertices, is denoted by A(N). n
2 Definitions and Clarification 7

Definition 2.1. Let N = (o, 1) be a neutrosophic graph. A neutrosophic edge zy is 73
called vital if deletion of zy has no change on its connectedness which is a maximum 7

strength of paths amid them. o)
Definition 2.2. Let N = (0, 1) be a neutrosophic graph. A vertex which has common
vital edge with another vertex, has assigned different color from that vertex. The 7
number of different colors, is called vital chromatic number and its neutrosophic 78
cardinality is called n-vital chromatic number. 79
Example 2.3. Assume Figure (1) with respect to first order. 8
(7) : Only vital edge is nang. Other edges aren’t vital. 81
(ii) : The vertices ny and ng have different colors. 8
(7i7) : The vertex ny could get any color. 8
(iv) : The vertex n; has no vital edge with any given vertex. 84
(v) : The set of representatives of colors is {ni,na}. 8
(vi) : Amid ny and ng, ng has minimum value. 86
(vit) : Deletion of edge ning has no change in the connectedness of obtained &
neutrosophic graph. 88
viit) : The vital number is two. 89
ii3) : The vital ber is t
(iz) : n-vital chromatic number is 2.57. %
3 Basic Properties a
Proposition 3.1. Let N = (o, ) be a neutrosophic cycle. Then all edges are vital. o
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n2(0.74, 0.64, 0.46)

(0.74,0.47,0.31) (0.37,0.46,0.24)

(0.55,0.64, 0.26)

n1(0.99,0.47,0.31) ng(0.84,0.94, 0.27)

Ny
Figure 1. Neutrosophic graph Nj is considered with respect to first order. It’s complete

but it isn’t neutrosophic complete. It’s cycle but it isn’t neutrosophic cycle. It’s
neutrosophic 3-partite but it isn’t neutrosophic complete 3-partite.

Proof. Consider N = (o, ) be a neutrosophic cycle. Hence, there are at least two edges
which are weakest, it means there are zy, uv € F such that

pluv) = p(zy) = min p(e).
In other hand, for every given vertices x and vy, there are two paths from x to y. So for
every given path,
S(P) = min p(e).
eckE

Thus for every z,y € V,xzy € E, the value u(xy) forms the connectedness amid x to y. o

Therefore connectedness amid any given couple of vertices, doesn’t change when they o
form an edge and they’re deleted. It induces every edge is vital. O o
Proposition 3.2. Let N = (o, u) be a neutrosophic complete which is neither %
neutrosophic empty nor neutrosophic path. Then all edges are vital. o7

Proof. Suppose N = (o, 1) is a neutrosophic complete which is neither neutrosophic
empty nor neutrosophic path. If z,y € V, then xy € E. Thus P : x,y is a path for every
given couple of vertices. Hence

S5(P) = p(zy).

Therefore, connectedness > p(zy). In other hands, assume P’ : x,--- ,y is an arbitrary
path from z to y. By N = (0, ) is a neutrosophic complete, N = (o, ) is a
neutrosophic strong. By N = (o, 1) is a neutrosophic strong,

S(P') < p(zy).

Then connectedness < S(P). It implies connectedness < p(zy). To sum it up, o8
connectedness = p(zy). It induces xy is vital. O o
Proposition 3.3. Let N = (o, 1) be a neutrosophic graph which is fized-edge and 100
which is neither neutrosophic empty nor neutrosophic path. Then all edges are vital. 101
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Proof. Assume N = (o, i) is a neutrosophic graph which is fixed-edge and which is
neither neutrosophic empty nor neutrosophic path. ByN = (o, i) is a fixed-edge,

Ve,e' € E, u(e) = u(e’).
It induces for every given edge e and every given paths P, P’/

S(P) = S(P') = u(e)-

It implies connectedness is fixed and it equals to u(e) where e € E. Therefore, the 102
deletion of e has no change on connectedness amid every couple of vertices. It means 103
every edge is vital. O 1os
Proposition 3.4. Let N = (o, u) be a neutrosophic graph which is neither 105
neutrosophic empty nor neutrosophic path. Then there’s at least one vital edge. 106

Proof. Consider N = (o, u) is a neutrosophic graph which is neither neutrosophic empty
nor neutrosophic path. Assume N = (o, 1) is a neutrosophic graph which is either
fixed-edge or fixed-vertex and neutrosophic strong. Hence, all edges have same value. It
means

Ve,e' € E, u(e) = u(e).

It induces for every given edge e and every given paths P, P’
S(P) = S(P') = ule).

It implies connectedness is fixed and it equals to u(e) where e € E. Therefore, the
deletion of e has no change on connectedness amid every couple of vertices. It means
every edge is vital. In other hand, suppose otherwise. So by |F| > 2, there’s one edge e
such that for every edge e’ # e,

pue) > pu(e’).
Let a number p(e’) be

min ule).
Then connectedness is > p(e’). But there’s a cycle which implies |E| > 3. It induces 107
there are at least two paths corresponded to e’. By u(e) > p(e’), connectedness > p(e’). 10
It implies corresponded connectedness to €’ isn’t changed when the deletion of €’ is 100
done. Thus the edge ¢’ € E is vital. O 1o
Proposition 3.5. Let N = (o, ) be a neutrosophic strong which is fized-vertex and m
which is neither neutrosophic empty nor neutrosophic path. Then all edges are vital. 112

Proof. Assume N = (o, 1) is a neutrosophic strong which is fixed-vertex and which is
neither neutrosophic empty nor neutrosophic path. Thus by N = (o, u) is a
neutrosophic fixed-vertex, for all v,v’ € V,

o(v) = o(v).

By N = (o, i) is a neutrosophic strong, for all e,e’ € V,

u(e) = p(e).
It induces for every couple of vertices which form an edge, connectedness amid them is 13
same and equals p(e) where e is a given edge. It implies at least there are two paths 114
with strength p(e). Thus deletion of every edge has no change on connectedness amid 15
its vertices. Therefore, every edge is vital. O 1
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Proposition 3.6. Let N = (o, 1) be a neutrosophic graph which is fized-vertex and 17
complete. Then all edges are vital. 118

Proof. By N = (o0, ) is neutrosophic complete, N = (o, i) is neutrosophic strong. By 1
N = (o, ) is a neutrosophic graph which is fixed-vertex, complete and applying 120
Proposition (3.5), all edges are vital. O =

Proposition 3.7. Let N = (o, 1) be a neutrosophic graph which is fized-edge. Then all 12
edges are vital. 123

Proof. Suppose N = (o, 1) is a neutrosophic graph which is fixed-edge. Then for every
edges e and €/,

pu(e) = pu(e’).
It means all paths has same strength which is the value of an edge since all edges have 12
same values. It means the connectedness amid all given couple of vertices is the same. 15
There are at least two paths. So deletion any edge has no change on the connectedness 1
amid all given couple of vertices. O

4 Vital Chromatic Number 128

Proposition 4.1. Let N = (o, 1) be a neutrosophic graph which is neither neutrosophic 12
empty nor neutrosophic path. Then vital chromatic number is at most n and at least 1. 130

Proof. These bounds are sharp and tight as they’ll be shown in upcoming results. If 131
there’s no edge, then vital chromatic number is 1 but if the number of vertices are n 132
and they’re connected to each other, then vital chromatic number is n. O 1
4.1 Largest Vital Chromatic Number 134
Proposition 4.2. Let N = (o, u) be a neutrosophic complete which is neither 135
neutrosophic empty nor neutrosophic path. Then vital chromatic number is n. 136

Proof. Consider N = (o, ) is a neutrosophic complete which is neither neutrosophic
empty nor neutrosophic path. By Proposition (3.2), all edges are vital. By N = (o, 1)
isn’t a neutrosophic path, there are at least two path amid two given edges. In other
words, there is at least one cycle. By N = (o, 1) is a neutrosophic complete, all vertices
are connected to each other. It implies,

Yu,v' € V,m' € E.

It induces all vertices have different colors. The number of vertices are n. So vital 137
chromatic number is n. O 13

Proposition 4.3. Let N = (o, 1) be a neutrosophic path. Then vital chromatic number 13
aren’t computable. 140

Proof. Assume N = (o, 1) is a neutrosophic path. Then there’s only one path amid two  1a
given vertices. So deletion of an edge makes the connectedness amid its vertices, to be 1
incomputable. O s

Proposition 4.4. Let N = (o, 1) be a neutrosophic star. Then vital chromatic number 14

aren’t computable. 145
Proof. Consider N = (o, ) is a neutrosophic star. Hence there’s only one path amid 146
two given vertices. Thus deletion of an edge makes the connectedness amid its vertices, 1
to be incomputable. O s
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4.2 Smallest Vital Chromatic Number 149
Proposition 4.5. Let N = (o, 1) be a neutrosophic empty. Then wvital chromatic 150
number is 1. 151

Proof. Let N = (o, i) be a neutrosophic empty. Then there’s no edge. It implies all 152
vertices have same colors where the minimum number of colors are applied. Thus vital s

chromatic number is 1. O s
Proposition 4.6. Let N = (o, ) be a neutrosophic graph which is neither 155
neutrosophic empty nor neutrosophic path. Then vital chromatic number isn’t 1. 156

Proof. Assume N = (o, ) is a neutrosophic graph which is neither neutrosophic empty 1sr

nor neutrosophic path. By Proposition (3.4), there’s at least one vital edge. T
Proposition 4.7. Let N = (o, 1) be a neutrosophic cycle. Then vital chromatic 159
number is at least 2 and at most 3. 160

Proof. Suppose N = (o, 1) is a neutrosophic cycle. There’s at least amid two vertices.  1a
By Proposition (3.1), all edges are vital. So at least the colors of two vertices are 162
different. It implies vital chromatic number is at least 2. By applying colors on vertices 163
in alternative ways, at most two vertices have common edges with same color. Hence 164
vital chromatic number is at most 3. T

Proposition 4.8. Let N = (o, 1) be an even neutrosophic cycle. Then vital chromatic — 1ss

number is 2. 167
Proof. Assume N = (o, u) is an even neutrosophic cycle. By Proposition (4.6), vital 168
chromatic number is at least 2. By applying coloring on vertices in alternative ways, two 160
vertices with common edge, has different colors. Since the cycle has even number of 170
edges. Thus vital chromatic number is 2. O m

Proposition 4.9. Let N = (o, ) be an odd neutrosophic cycle. Then vital chromatic w2

number is 3. 173
Proof. Consider N = (o, 1) is an odd neutrosophic cycle. By Proposition (3.1), all 174
edges are vital. So by using coloring in alternative way, there are two vertices which 175
have common edge and have same color. Thus vital chromatic number is 3. T

Proposition 4.10. Let N = (o, ) be a neutrosophic bipartite which is fized-edge and
complete. Then wital chromatic number is 2. 178

Proof. Suppose N = (o, ut) is a neutrosophic bipartite which is fixed-edge and complete. 179
Thus strength of every path is as same as connectedness amid two vertices is. Thus all  1s0
edges are vital. By N = (o, u) is complete, all vertices from one part are connected to 1

all vertices of another part. Every part has no connection amid its vertices so all 182
vertices from every part, have same color. There are two parts. Thus vital chromatic 183
number is 2. T

Proposition 4.11. Let N = (o, ) be a neutrosophic bipartite which is fized-vertexr and 1ss

complete. Then vital chromatic number is 2. 186
Proof. By N = (o, ) is fixed-vertex and complete, N = (o, u1) is fixed-edge and 187
complete. Therefore, by Proposition (4.10), vital chromatic number is 2. O s

Proposition 4.12. Let N = (o, u) be a neutrosophic t—partite which is fized-edge and 15
complete. Then vital chromatic number is t. 190
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Proof. By N = (o, u) is fixed-edge, all edges have same value. Thus all paths have same 1o
strength. So connectedness amid two given vertices are same. Therefore all edges are 192

vital. Inside every part, there’s no edge amid two vertices. It induces the vertices of 103
every part have same color. There are ¢ parts. It implies ¢ different colors are applied. 10
Therefore vital chromatic number is ¢. T

Proposition 4.13. Let N = (o, ) be a neutrosophic t—partite which is fized-vertex 196
and complete. Then vital chromatic number is t. 197

Proof. 1t’s fixed-vertex and complete. So It’s fixed-edge and complete. By Proposition 10
(4.12), vital chromatic number is t. O 100

Proposition 4.14. Let N = (o, ) be a neutrosophic wheel which is fized-vertex and 200
neutrosophic strong. Then vital chromatic number is 3 or 4. 201

Proof. Consider N = (o, 1) is a neutrosophic wheel which is fixed-vertex and 202
neutrosophic strong. By it’s fixed-vertex and neutrosophic strong, it’s fixed-edge. Every 20
edges have same value. So strength of paths and connectedness are same and equal to 20
each other. Thus all edges are vital. Then the center has one color and since it’s 205
connected to all other vertices, the color of center is unique. Therefore, vital chromatic 206
number is at least 2. Non-center vertices form a path which are colored by two colors 207
when applying colors are in alternative ways. Thus vital chromatic number is 3 if the 20

non-center vertices form even color and vital chromatic number is 4 if the non-center 200
vertices form odd color. O 2
Proposition 4.15. Let N = (o, ) be a neutrosophic wheel which is fized-edge and an
neutrosophic strong. Then vital chromatic number is 3 or 4. 212
Proof. Consider N = (o, i) is a neutrosophic wheel which is fixed-vertex and 213

neutrosophic strong. It’s fixed-edge. Every edges have same value. So strength of paths 21
and connectedness are same and equal to each other. Thus all edges are vital. Then the s
center has one color and since it’s connected to all other vertices, the color of center is 26
unique. Therefore, vital chromatic number is at least 2. Non-center vertices form a path a7
which are colored by two colors when applying colors are in alternative ways. Thus vital 2

chromatic number is 3 if the non-center vertices form even color and vital chromatic 210
number is 4 if the non-center vertices form odd color. O 20
5 mn-Vital Chromatic Number -
Proposition 5.1. Let N = (o, ) be a neutrosophic graph which is neither o
neutrosophic empty nor neutrosophic path. Then n-vital chromatic number is at most 23
order of N which is neutrosophic cardinality of V. 224

Proof. Assume N = (o, ) is a neutrosophic graph which is neither neutrosophic empty 2
nor neutrosophic path. If all edges are vital and all vertices are connected to each other, 25
then vital chromatic number is n. Thus n-vital chromatic number is at most order of N 27

which is neutrosophic cardinality of V. O 2
5.1 Largest n-Vital Chromatic Number 29
Proposition 5.2. Let N = (o, 1) be a neutrosophic complete which is neither 230
neutrosophic empty nor neutrosophic path. Then n-vital chromatic number is order of N o
which is neutrosophic cardinality of V. 23
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Proof. Suppose N = (o, 1) is a neutrosophic complete which is neither neutrosophic 233
empty nor neutrosophic path. By it’s complete, then all vertices are connected to each 23
other and all edges are vital. Thus n colors are used. It means n-vital chromatic 235
number is order of N which is neutrosophic cardinality of V. O 23
Proposition 5.3. Let N = (o, ) be a neutrosophic path. Then n-vital chromatic 237
number aren’t computable. 238
Proof. Deletion of one edge, make N = (o, ) be in the situation where n-vital 230
chromatic number aren’t computable. Since there’s need to have at least two paths to 240
compute n-vital chromatic number. In other words, this notion is computable in 241
neutrosophic graph which has at least one cycle. O 2w
Proposition 5.4. Let N = (o, ) be a neutrosophic star. Then n-vital chromatic 23
number aren’t computable. 244

Proof. Assume N = (o, ) is a neutrosophic star. Then there’s only one path amid two s
given vertices. Deletion one edge causes the connectedness to be incomputable. Thus 2

n-vital chromatic number aren’t computable. O ow
5.2 Smallest n-Vital Chromatic Number 215
Proposition 5.5. Let N = (o, 1) be a neutrosophic empty. Then n-vital chromatic
number is

min o (z).

zeV

Proof. Suppose N = (o, 1) is a neutrosophic empty. Then there’s no edge. It induces
there’s no vital edge. So all vertices are colored by one color. Hence all vertices have
same color. It means the number of color is one. It induces the cardinality of set
includes the representative of color is one. To find the representative of color, we have 1
choice from n options. Thus n-vital chromatic number is

min o(x).

Proposition 5.6. Let N = (o, 1) be a neutrosophic graph which is neither
neutrosophic empty nor neutrosophic path. Then n-vital chromatic number isn’t

min o(x).
Proof. Consider N = (o, u) is a neutrosophic graph which is neither neutrosophic empty
nor neutrosophic path. Then there’s at least one edge. By Proposition (3.4), there’s at
least one vital edge. It induces the number of color is at least two. Therefore, the
cardinality of set of representative is at least two. It implies n-vital chromatic number
isn’t

min o(x).

Proposition 5.7. Let N = (o, u) be a neutrosophic cycle. Then n-vital chromatic
number is at least

w,yer‘lgnwlyEE U(l’) + U(y)
And at most

z,y,zGVgrl;Tgl;z,xzeE 0'(33) + O(y) T O(Z)
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Proof. Suppose N = (o, 1) is a neutrosophic cycle. By using alternative coloring of
vertices, two or three numbers of colors are used. So the cardinality of set of
representative is two or three. There are only these possibilities. Therefore n-vital
chromatic number is at least
min o(z)+o(y).
z,yeV, xyeE ( ) T (y)
And at most

:v,y,zGV,r‘Irlgi,rgl;z,mzeE O'(Z‘) + U(y) + U(Z)

Proposition 5.8. Let N = (o, u) be an even neutrosophic cycle. Then n-vital
chromatic number is

I‘Blin a(x) +o(y).

z,yeV, zyek

Proof. Assume N = (o, u) is an even neutrosophic cycle. If colors are applied on vertices
in alternative ways which cause two vertices with a common edge, have different colors,
then by it’s even neutrosophic cycle, the representatives of colors are two. Since there

are even edges which by Proposition (3.1), all are vital. It induces the cardinality of set
of representatives is two. Thus n-vital chromatic number is n-vital chromatic number is

ppcBin o o(z) +o(y).

D 252

Proposition 5.9. Let N = (o, ) be an odd neutrosophic cycle. Then n-vital chromatic
number is

by tn o(x)+o(y) +o(z).
Proof. Consider N = (o, i) is an odd neutrosophic cycle. Then number of edges are
odd. By Proposition (3.1), all edges are vital. Using different colors on the vertices
which have common edges, implies usage of three colors. Hence the set of
representatives has the cardinality three. To choose, the representatives, in every color,
minimum value of vertices, introduces the representative of specific color. Then n-vital
chromatic number is

oy Bin o(2) +o(y) +o(2).

D 253

Proposition 5.10. Let N = (o, u) be neutrosophic bipartite which is fized-edge and
complete. Then n-vital chromatic number is

z,yer\r/l,l{vlyGE CT(J?) * U(y)
Proof. Assume N = (o, u) is neutrosophic bipartite which is fixed-edge and complete.
It’s fixed-edge so all edges have same value and as its consequences, all paths have same
strength and all connectedness are same. Hence all edges are vital. By it’s complete, all
vertices from one part are connected to all vertices from another part. By it’s bipartite,
there are two colors to use on vertices such that every part has same color. So the set of
representatives has the cardinality two which implies n-vital chromatic number is

Lyer‘rfl,lra:lyeE O—(x) + U(y)
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Proposition 5.11. Let N = (o, ) be neutrosophic bipartite which is fized-vertex and
complete. Then n-vital chromatic number is

z,yer\gnzlyGE 0'(33) + U<y)
Proof. Assume N = (o, u) is neutrosophic bipartite which is fixed-vertex and complete.
By it’s fixed-vertex and complete, it’s fixed-edge and complete. By Proposition (5.10),
n-vital chromatic number is

ppchin o(x) + o(y).

D 255

Proposition 5.12. Let N = (o, ) be neutrosophic t—partite which is fized-edge and
complete. Then n-vital chromatic number is

I :glen‘l/ wiwjeEo(xl) +o(ze) + -+ o(xy).
Proof. Assume N = (o, p) is neutrosophic t—partite which is fixed-edge and complete.
All parts have same color on their vertices. By it’s fixed-edge and applying Proposition
(3.7), all edges are vital. Thus minimum number of colors is ¢t. And the set of
representatives has the cardinality ¢. It means n-vital chromatic number is

min o(x1) +o(xa)+ -+ o(xy).

T1,T2, 24 €V, T;x;ER
D 256

Proposition 5.13. Let N = (o, u) be neutrosophic t—partite which is fized-vertex and
complete. Then n-vital chromatic number is

o glelrxl/ xixjeEa(ml) +o(xg) + -+ o(xy).
Proof. Assume N = (o, p) is neutrosophic t—partite which is fixed-vertex and complete.
Then by it’s fixed-vertex and complete, it’s it’s fixed-edge and complete. By Proposition
(5.12), n-vital chromatic number is

min o(x1) +o(x2) + -+ olxy).

T1,T2, - ,2¢E€V, :Ei:EjEE

Proposition 5.14. Let N = (o, ) be neutrosophic wheel which is fized-vertez and
neutrosophic strong. Then n-vital chromatic number is
i o(e)+o(y) +o(2).
Or
i t).

poeiiin, o(e)+o(y) +o(z) +o(t)
Proof. Consider N = (o, i) is neutrosophic wheel which is fixed-vertex and
neutrosophic strong. By fixed-vertex and neutrosophic strong, it’s fixed-edge. By it’s
fixed-edge and applying Proposition (3.7), all edges are vital. Center is connected to
non-center vertices. So center uses unique color. Non-center vertices form a cycle. If the
cycle is even, then n-vital chromatic number is

JLuin  o(e)+o(y) +o(2).
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If it’s odd, then n-vital chromatic number is

JLlmin o(c) +o(y) +o(z).
Or

i t).
poeiin, o(e) +o(y) +o(z) +o(t)

Proposition 5.15. Let N = (o, ) be neutrosophic wheel which is fized-edge and
neutrosophic strong. Then n-vital chromatic number is

Jouin  o(e)+o(y) +o(2).

Proof. Assume N = (o, u) is neutrosophic wheel which is fixed-edge and neutrosophic
strong. By it’s fixed-edge and neutrosophic strong, it’s fixed-vertex and neutrosophic
strong. By Proposition (5.14),

min o(c) + o(y) + o(2).

y,zeV,yze £
Or

i t).

Comina(d) +a(y) +ol2) +o(t)
D 259
The relation amid neutrosophic chromatic number and main parameters of 260
neutrosophic graphs is computed. 261
Proposition 5.16. Let N = (o, ) be a neutrosophic strong. Then vital chromatic 262
number is at most A + 1 and at least 2. 263

Proof. Neutrosophic strong is neutrosophic nontrivial. So it isn’t neutrosophic empty 26

which induces there’s no edge. It implies chromatic number is two. Since chromatic 265
number is one if and only if N = (o, 1) is neutrosophic empty if and only if N = (o, 1) 26
is neutrosophic trivial. A vertex with degree A, has A vertices which have common 267

edges with them. If these vertices have no edge amid each other, then chromatic number s
is two especially, neutrosophic star. If not, then in the case, all vertices have edge amid 2o
each other, chromatic number is A + 1, especially, neutrosophic complete. O 20

Proposition 5.17. Let N = (o, ) be a neutrosophic r—regular. Then vital chromatic o

number is at most r + 1. 2
Proof. N = (o, p) is a neutrosophic r—regular. So any of vertex has r vertices which 273
have common edge with it. If these vertices have no common edge with each other, for 2
instance neutrosophic star, chromatic number is two. But since the vertices have 215
common edge with each other, chromatic number is r + 1, for instance, neutrosophic 216
complete. O o
6 Applications in Time Table and Scheduling -
Designing the programs to achieve some goals is general approach to apply on some 279
issues to function properly. Separation has key role in the context of this style. 280
Separating the duration of work which are consecutive, is the matter and it has 281
important to avoid mixing up. 282
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Step 1. (Definition) Time table is an approach to get some attributes to do the 283
work fast and proper. The style of scheduling implies special attention to the 284
tasks which are consecutive. 285

Step 2. (Issue) Scheduling of program has faced with difficulties to differ amid 286
consecutive section. Beyond that, sometimes sections are not the same. 287

Step 3. (Model) As Figure (2), the situation is designed as a model. The model uses 2
data to assign every section and to assign to relation amid section, three numbers 2s9
belong unit interval to state indeterminacy, possibilities and determinacy. There’s 200
one restriction in that, the numbers amid two sections are at least the number of 2a
the relation amid them. Table (1), clarifies about the assigned numbers to these 2
situation.

0.6

(0.9) s

1 3 in
(0;] 0.6 (0.8)

-
Figure 2. Black vertices are suspicions about choosing them.

Table 1. Scheduling concerns its Subjects and its Connections as a Neutrosophic Graph

in a Model.
Sections of T' S1 So S3 S4 S5 S6 S7 S8 S9, 810
Values 0.1 0.8 0.7 08 0.1 03 06 05 0.2
Connections of T’ S182 S283 5354 S485 S5S6 SeST S788 S8S9 59510
Values 0.1 0.6 04 0.1 0.1 02 04 02 0.1
293
Step 4. (Solution) As Figure (2) shows, neutrosophic model, proposes to use vital 204
chromatic number which is incomputable in the case which is titled 7. In this 205
case, 11 and c¢; aren’t representative of these two colors and n-vital chromatic 206
number is incomputable. The set {i1,¢1} doesn’t contain representatives of colors 2o
which pose vital chromatic number and n-vital chromatic number. Thus the 208

decision amid choosing the subject ¢; an ¢ isn’t concluded to choose ¢;. To get 209
brief overview, neutrosophic model uses one number for every array so 0.9 means 3w
(0.9,0.9,0.9). In Figure (2), the neutrosophic model T introduces the common 301
situation. The representatives of colors are i, and ¢;. Thus vital chromatic 302
number is two and n-vital chromatic number is 1.4. Thus suspicion about choosing 303
i1 and i is determined to be i5. The sets of representative for colors are {iz,c1}. 30

7 Open Problems 05

The two notions of coloring of vertices concerning vital chromatic number and n-vital 306
chromatic number are defined on neutrosophic graphs when connectedness and as its 307
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consequences, vital edges have key role to have these notions. Thus 308

Question 7.1. Is it possible to use other types edges via connectedness to define vital 300

chromatic number and n-vital chromatic number? 310
Question 7.2. Are existed some connections amid the coloring from connectedness 31
inside this concept and external connections with other types of coloring from other 312
notions? 313

Question 7.3. Is it possible to construct some classes neutrosophic graphs which have 3

“nice” behavior? 315
Question 7.4. Which applications do make an independent study to apply vital 316
chromatic number and n-vital chromatic number? 317
Problem 7.5. Which parameters are related to this parameter? 318
Problem 7.6. Which approaches do work to construct applications to create 310
independent study? 320

Problem 7.7. Which approaches do work to construct definitions which use all three

arrays and the relations amid them instead of one array of three arrays to create 2
independent study? 3
8 Conclusion and Closing Remarks 0

This study uses mixed combinations of vital chromatic number and n-vital chromatic = s
number to study on neutrosophic graphs. The connections of vertices which are clarified s
by vital edges from connectedness, differ them from each other and and put them in 327
different categories to represent one representative for each color. Further studies could s
be about changes in the settings to compare this notion amid different settings of graph s
theory. One way is finding some relations amid array of vertices to make sensible 330
definitions. In Table (2), some limitations and advantages of this study is pointed out.

Table 2. A Brief Overview about Advantages and Limitations of this study

Advantages Limitations
1. Using connectedness for vital edges | 1. Acyclic neutrosophic graphs

2. Using neutrosophic cardinality
3. Using cardinality 2. Connections with parameters

4. Characterizing smallest number

5. Characterizing biggest number 3. Star and path
331
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