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Abstract: Concrete condition assessing penetrometers need to be able to distinguish between making
contact with a hard (concrete) surface as opposed to a semi-solid (corroded concrete) surface. If a hard
surface is mistaken for a soft surface, concrete corrosion may be over-estimated, with the potential for
triggering unnecessary remediation works. Unfortunately, the variably-angled surface of a concrete
pipe can cause the tip of a force-sensing tactile penetrometer to slip and thus to make this mistake.
We investigated whether different shaped tips of a cylindrical penetrometer were better than others
at maintaining contact with concrete and not slipping. We designed a range of simple symmetric tip
shapes, controlled by a single superellipse parameter. We performed a finite element analysis of these
parametric models in SolidWorks before machining in stainless steel. We tested our penetrometer
tips on a concrete paver cut to four angles at 20° increments. The results indicate that penetrometers
with a squircle-shaped steel tip (a=b=1,n=4) have the least slip, in the context of concrete condition
assessment.
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1. Introduction

The worldwide costs for managing millions of kilometres of corroding and deteriorating concrete
sewers are tremendous. For example, In 2002, in the United States, the estimated asset loss was $14
billion per year [1]. More recently, in 2019, in Germany, the estimated annual replacement cost was $4
billion [2]. Consequently there has been a considerable investment in a range of technologies to assess
the condition of concrete sewer (wastewater) pipes [3].

The concrete corrosion in these sewer assets is caused by biogenic hydrogen sulphide produced
by the Acidithiobacillus thiooxidans sulphide-oxidising micro-organisms [4,5]. The rate of corrosion is
non-linear and varies with temperature, pH and environmental factors within the sewer, but can occur
quite rapidly with up to 10mm per year previously observed [4]. The crown/obvert region of the pipe
has been characterised as the region that suffers most heavily from corrosion [6,7].

Given the potential degraded pipe structural integrity and the high cost of replacement accurate
condition assessment becomes a high priority for water authorities. Traditional condition assessment
approaches have included: visual (CCTV) acoustic, electrical and electromagnetic [8,9]. Although
visual inspection is very useful for some aspects of condition assessment (e.g. crack detection) [10]
it is less reliable in detection of corrosion. Likewise, there has been criticism of subjectivity of the
other approaches [11] which has led to the extraction of core samples which are drilled out of the pipe
[12]. Although it is expensive to perform this core drilling, the structural strength and composition of
the samples points to thickness of the remaining un-degraded concrete is an optimum parameter for
condition assessment [13]. The slow, expensive and destructive nature of the core drilling operation
mean that it is not viable for wide-scale condition assessment. One recent experimental laboratory
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technique characterised material hardness (and thereby corrosion) as the resistance as a drill bit makes
contact with the surface of the concrete [14].

Previously, we introduced a novel approach to sewer concrete pipe condition assessment using
semi-automated penetration testing [15,16], which involves driving an instrumented rod into a material
of interest. Penetration testing itself has a long history. In the 1950’s the Delft Soil Mechanics Laboratory
developed the gold standard for soil testing using a penetrometer with a cone-shaped tip [17]. Over
time, penetration testing has come to be seen as a proven, simple, quick and cheap means for in-situ
field measurement for a range of applications [18].

The primary advantage of assessing the condition of a concrete surface by touch is that looks can
sometimes be deceiving, particularly under variable lighting [19]. On the other hand, the primary
disadvantage of assessing the condition of a concrete surface by touch is the need for the touching
to be done by a person in a sewer. There are significant risks associated with a person needing to
do confined-space entry in a concrete sewer, and the associated occupational health and safety costs
can be high enough to preclude wide-scale concrete condition assessment by this means [20]. On
the other hand, remote-controlled tools that can touch the concrete, such as a penetrometer, that are
safe and relatively cheap to operate, can provide data to assist maintenance planning for urban water
infrastructure [21].

For our previous penetrometer [16], we chose to use a 45° conical tip, discounting the option of a
flat tip for two reasons. First, that we wanted the tip to pass through the corroded concrete to hard
concrete, as opposed to compressing the corroded concrete mix into the solid concrete. Second, we felt
that ongoing use of the tip on variably-angled concrete would grind away the flat edge, and potentially
introduce some measurement inconsistency depending on the orientation of the device. During field
testing however, we observed that the tip skidded, giving false readings, on incident angles greater
than 45°. The aim of this paper is therefore to explore the surface contact maintaining capability of
other shapes.

This paper is structured as follows. In Section 2 we discuss the design for our penetrometer tips
and our analysis of this design in SolidWorks. In Section 3 we discuss our experiments for analysing
the behaviour of the penetrometer tip using an Instron 5980 Test Machine. Subsequently, in Section 4
we analysed the results of tip experiment graphs, which show that a squirle-shaped tip maintains the
greatest contact over the test set. Finally, we reflect on the degree to which our requirements were met
and discuss future directions.

2. Design

In this paper we define tip shape in terms of the superellipse [22], a generalised 2D closed curve
equation, with —a < x < 4+gand 0 <y <b,and 0 < n.

xn yﬂ
bl Jm—1
)

Special cases of this equation yield different shapes by modifying a small number of parameters (eg.
n), as shown below in Figure 1. Materials analysis can therefore be related to a small number of
parameters. We had two shape groups, distinguished only by b = 1, see Figure 1, and b = 2, see Figure
2, which is an extruded version of the first shape group.

Before milling the tips we performed a Finite Element Analysis (FEA) because we did not want to
create tips that were easily destroyed. We modelled using a 250N load using SolidWorks which is the
max load force to be applied in our experimental analysis. Figure 3 shows the FEA results at different
contact angles, all tips in all configurations were found to be well below the yield stress of the material
of 275MPa.
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Figure 1. Special case superellipses witha =b =1

3. Experiments

We investigated the ability of our stainless steel penetrometer tips to maintain contact with
concrete at different incident angles using an Instron 5980 Test Machine. It was configured to drive the
tip with a penetration velocity of 0.Imm per second to record sufficient samples, and to stop driving at
250N detected, below the tensile strength of stainless steel. In order to investigate a reasonable range
of incident angles, we waterjet cut a piece of concrete paver aggregate at five incident angle steps (0°,
20°, 40°, 60°, 80°) as shown in Figure 4.

4. Results

We recorded the depth at which the Instron drives the specially-shaped stainless steel tip into the
surface of the cut concrete paver before stopping (x axis) against the force required (y axis) to maintain
the displacement rate. An example of the ideal behaviour is shown in Figure 5, which is where a
45° angled tip is driven against concrete angled at 0° (flat). Note the plateau of inelastic deformation
around 80N, which was visible for sharp tips, less so for rounder tips. The reason that this graph is
shown with such a wide horizontal scale is because all results are shown on graphs with the same
scale and some results are quite wide.

We now show the results of our experiments for our penetrometer tips, reporting each tip and
angle combination. We did multiple measurements for a few tips and found the results similar enough
that a single measurement would suffice. In addition, while we cut our concrete paver to five angles,
we do not report results on all angles. The results against lower angles (0° and 20°) were similar for all
tips. For the majority of these experiments we report against three angles (40°, 60° and 80°). Where
angle measurements were excluded it was due to surface geometry making them unsuitable.

For our default flat (n = 0) tip, Figure 6 shows that it skidded against the 40° concrete around 180N.
It also performed relatively poorly against the 80° concrete, skidding past 3mm before maintaining
contact, then periodically skidding as the force increased to maximum around an 8mm extension.

For our basic concave (b = 1,n = 0.5) tip, Figure 7 shows good performance for 40°. Its performance
at 60° is not better than the basic concave tip. On the other hand, its performance against 80° is better
than the concave tip but worse than the extruded concave tip.

For our extruded concave (b = 2,n = 0.5) tip, Figure 8 shows a much better performance of this tip
against the 80° concrete, as compared to the two previous tips, with a maximum extension of around
5mm. However, the tip performed slightly worse than the basic concave tip against both the 40° and
60° angled pavers.

For our basic angle (b = 1,n = 1) tip, Figure 9 shows that it ramped up earlier than the flat tip on
the 80° concrete, on a similar trajectory to the 60° response around a 2mm extension, however, it then
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Figure 2. Special case superellipses witha = 1,b = 2

responded much more wildly than the flat tip and extended further. It also skidded against the 40°
concrete at a higher force than the flat tip.

For our extruded angle (b = 2,n = 1) tip, Figure 10 shows that it performed no better than the basic
angle tip. Against the 80° concrete it ramps up at a similar point, but it has a considerably larger final
extension.

For our basic convex (b = 1,n = 1.5) tip, Figure 11 shows reasonable performance against 40° and
60° concrete. There is a slightly greater extension than the extruded angle tip against the 80° concrete,
there are a few larger troughs before the force climbs vertically.

For our extruded convex (b = 2,n = 1.5) tip, Figure 12 shows that it performs about the same as
the basic convex tip against 40° and 60° concrete. At first glance it appears to perform significantly
worse against 80° concrete, given the long wild tail. However it does ramp up to around 50N much
earlier than most of the previous tips except for the basic concave tip.

For our basic round (b = 1,n = 2) tip, Figure 13 shows a very similar performance to the basic
convex tip.
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Figure 3. Tip FEA Analysis

Figure 4. A photo of the Instron driving a tip against concrete
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Figure 6. Flat tip

For our extruded round (b = 2,n = 2) tip, Figure 14 shows that it performs similarly to the extruded
convex tip, except its performance against 60° concrete is more similar to its performance against 40°
concrete.
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For our basic squircle (b = 1,n = 4) tip, Figure 15 shows similar performance to the basic convex
tip against 40° concrete. It also shows similar performance to the extruded round tip against 60°
concrete. However, the gradient of its performance against 80° concrete is the steepest of all the tips,
however it slips above 200N.

For our extruded squircle (b = 2,n = 4) tip, Figure 16 shows that it performs similarly to the basic
squircle with a steep starting ramp except that its length before slipping is shorter.

These eleven graphs show much more similar performance by the tips against the 40° and 60°
than against the 80° concrete. In Figure 17 we now compare the better performers against 80° with a
much smaller horizontal scale, prioritising tips that have a steeper initial gradient from zero (eg. Figure
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Figure 14. Extruded round tip

16 over tips which have a flatter initial gradient (eg. Figure 13). A steeper gradient can be identified
faster by a force sensing device in comparison to a flatter gradient. Note that the colours no longer
correspond with angles.

Figure 17 shows that the extruded tips performed better overall than the basic tips with steeper
response gradients. The extruded concave tip (black) starts with the steepest gradient both at the start
and particularly around a extension of 3mm. However the middle section from approximately 0.1mm
to 2.8mm has a lower gradient which is also bumpier than the three other curves. The extruded squircle
tip has the second steepest early gradient (dark blue), which rises above 50N at a Imm extension but
then slips below 50N at 3mm, behaving similarly and better than the extruded round tip (light green).
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Figure 15. Basic squircle tip
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Figure 16. Extruded squircle tip
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Figure 17. Steeper gradients against 80°

The squircle tip (light blue) exceeds 50N second and climbs with minor slips until it crosses the extruded
concave (black) tip around 3mm but slips above 200N.

Figure 18 shows that three tips converge first around 50N, the squircle, concave, and round tips. The
extruded squircle and extruded convex tips then have the next best performance, with reasonably similar
paths. The data is similar to the 80° data in that the squircle grips better than the extruded squircle.

5. Conclusion

A simple parameterised representation of penetrometer tip shape was introduced, and the ability
of our shaped-as-X steel tips to maintain indentation contact with concrete at different incident angles
was investigated.

While our modelling of the concave tip suggested that it would be fragile, in the laboratory setting
it did not break against the concrete at any angle, and performed quite competitively against the higher
angles. However, in deploying in a field environment, we would prefer not to use this tip for two
reasons: we believed that it is more likely to break, and because a sharp tip potentially creates a safety
hazard.
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Figure 18. Steeper gradients against 60°

Consequently, we selected the basic squircle (a=1,b=1,n=4) as the best performer at maintaining
surface contact through its changing curvature. In terms of selecting a force sensor to detect a solid
surface, we chose a force sensor rated at 50N, which gives us a maximum overextension of up to 2mm.
We plan to investigate other parameters such as material and shape complexity to further improve our
penetrometer design.
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