
Article 

Using enhanced sparrow search algorithm-deep 

extreme learning machine model to forecast end-

point phosphorus content of BOF 

Lingxiang Quan1, Ailian Li1*, Guimei Cui1, Shaofeng Xie2 

1   School of Information Engineering, Inner Mongolia University of Science and 

Technology, Baotou 014010, China; qlx301103@163.com (L.Q.); 

cguimei1@163.com (G.C.) 

2 Department of Infrastructure, Inner Mongolia University of Science and 

Technology, Baotou 014010, China; 759124819@qq.com 
* Correspondence: E-mail: xsfls854598@126.com 

Abstract ： An effective technology for predicting the end-point 

phosphorous content of basic oxygen furnace (BOF) can provide 

theoretical instruction to improve the quality of steel via controlling the 

hardness and toughness. Given the slightly inadequate prediction 

accuracy in the existing prediction model, a novel hybrid method was 

suggested to more accurately predict the end-point phosphorus content 

by integrating an enhanced sparrow search algorithm (ESSA) and a 

multi-strategy with a deep extreme learning machine (DELM) as ESSA-

DELM in this study. To begin with, the input weights and hidden biases 

of DELM were randomly selected, resulting in that DELM inevitably had 

a set of non-optimal or unnecessary weights and biases. Therefore, the 

ESSA was used to optimize the DELM in this work. For the ESSA, the 

Trigonometric substitution mechanism and Cauchy mutation were 

introduced to avoid trapping in local optima and improve the global 

exploration capacity in SSA. Finally, to evaluate the prediction efficiency 

of ESSSA-DELM, the proposed model was tested on process data of the 

converter from the Baogang steel plant. The efficacy of ESSA-DELM was 

more superior to that of other DELM-based hybrid prediction models 

and conventional models. The result demonstrated that the hit rate of 

end-point phosphorus content within ±0.003%, ±0.002%, and ±0.001% 

was 91.67%, 83.33%, and 63.55%, respectively. The proposed ESSA-

DELM model could possess better prediction accuracy compared with 

other models, which could guide field operations. 

Keywords: End-point phosphorus content; Deep extreme learning 

machine; Sparrow search algorithm; Trigonometric substitution; 

Cauchy mutation 

 

1. Introduction 

In the basic oxygen furnace (BOF) steelmaking process, 

phosphorus in the steel is a harmful element for steel grades, 

reducing the toughness and plasticity of the steel and affecting 

the quality of the steel [1, 2]. Therefore, all-steel grades must 

remove the phosphorus content during the converter smelting 

process within the specified range of the steel grade. Hence, it is 
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significant to accurately forecast and control the end-point 

phosphorus content of BOF [3]. 

Recently, some machine learning models have been used to 

predict the end-point phosphorus content of BOF. Among of 

them, the BP neural network (BPNN) [4] is the most widely used. 

Li et al. [5] developed an L-M algorithm based on a BPNN to 

predict the phosphorus content at the end of the converter 

steelmaking. He et al. [6] set up a principal component analysis 

(PCA)-BP model for end-point phosphorus content prediction. 

Zhu et al. [7] established a Prediction model of end-point 

phosphorus content for BOF based on monotone-constrained 

BPNN. The above hybrid BPNN prediction model improves the 

prediction accuracy to some extent compared with traditional 

BPNN, but it is still insufficient. The main reason is that the 

BPNN needs to set a large number of network training 

parameters, resulting in slow training speed performance and 

poor generalization ability. 

Extreme learning machine (ELM) proposed by Huang et al. 

is a single-layer feedforward neural networks (SLFNs) [8, 9]. ELM 

possesses the advantages of fast solution speed, high accuracy, 

and simple parameter setting compared to BPNN. And ELM has 

been applied in many fields, such as wind power prediction, 

bearing fault diagnosis, and pattern clustering [10-12]. 

Nevertheless, the ELM is randomly generated due to its input 

weights and thresholds, and has only one hidden layer, resulting 

in the robustness of the model being poor. 

Based on extreme learning machine-autoencoder (ELM-AE), 

deep extreme learning machine (DELM), named multi-layer 

extreme learning machine (ML-ELM) is proposed by Kasun et al. 

[13]. DELM does not need to be fine-tuned [14]. And it need less 

training time than deep learning. Furthermore, DELM shows 

excellent generalization performance like deep learning. So 

DELM is employed to construct a prediction model of the end-

point phosphorus content of BOF in this study. 

Nevertheless, the input weights and hidden biases of DELM 

are randomly generated. DELM inevitably acquires a set of non-

optimal or unnecessary weights and biases [14]. In addition, 

DELM may be trapped in an overfitting problem in all training 

data as well. To tackle these problems of the DELM model for the 

improvement of the prediction capability, this paper intends to 

employ a new optimization algorithm in the literature. Recently, 

many optimization algorithms have been developed in various 

applications, like power Load Forecasting [15], life prediction of 

lithium batteries [16], brain tumor diagnosis [17], and polymer 

electrolyte fuel cell (PEMFC) stack [18]. 

Based on sparrow predation and anti-predation behavioral 

traits, sparrow search algorithm (SSA) is a new intelligent 

optimization method constructed by XUE [19]in 2020, which is 

established. Compared with the existing optimization algorithms, 

SSA has a better optimization ability and faster efficiency. 

However, similar to other algorithms, there are still some 

shortcomings in SSA, such as loss of population diversity in the 

later iteration and easily being stuck in local optimum and search 

stagnation. To mitigate the aforementioned issues and improve 
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the global optimization ability, various improvement 

mechanisms have been presented. Liu et al. [20] adopted 

adaptive weight parameters to balance the search and 

exploitation capability of the sparrow search algorithm, 

improved the ability of SSA to get rid of stagnation with the help 

of the Cauchy-Gaussian mechanism. Yuan et al. [21] introduced 

a center of gravity inverse learning mechanism to initialize the 

population, added weight factors to update the follower 

positions in the sparrow algorithm to enhance the global 

exploration capability of SSA, and finally introduced a mutation 

strategy in the follower positions to increase the likelihood of SSA 

in escaping local extremes. Therefore, to furthermore overcome 

the problems associated with standard SSA, an Enhanced SSA 

(ESSA) is put forward based on Trigonometric substitution (TS) 

strategy and Cauchy mutation. 

Considering the above mentioned, based on deep extreme 

learning machine and enhanced sparrow search algorithm 

(ESSA-DELM), a prediction model of end-point phosphorus 

content of BOF was proposed in this paper. The many input 

weights and biases of the DELM were optimized by ESSA. For 

ESSA, the Trigonometric substitution strategy and Cauchy 

mutation were adopted to solve the inadequacy of the SSA global 

optimization search. Finally, some DELM-based hybrid 

prediction models and conventional models were applied to 

validate the performance of ESSA-DELM, and the result proved 

that the performance of ESSA-DELM was significantly superior 

to that of the other models. The main contributions of this study 

are: 

(a) TS and Cauchy mutation are applied to enhance the 

optimization capacity of SSA. 

(b)  The proposed ESSA is used to optimize the weights and 

biases randomly generated by DELM. 

(c)     The established ESSA-DELM will be used to predict the end-

point phosphorus content of BOF.  

The rest of the study is organized as follows. A brief 

description of the ELM model, DELM model, and optimization 

algorithms is given in Section 2. Section 3 evaluates the Enhanced 

Sparrow Search Algorithm (ESSA) and validates the proposed 

ESSA-DELM prediction model of end-point phosphorus in terms 

of performance. The summary and scope for future study are 

shown in Section 4. 

2. Methodology and model development 

2.1. Extreme learning machine (ELM) 

ELM is a type of single hidden layer feed-forward network 

(SLFN) [8]. As shown in Figure 1, given training dataset 

{( , ) 1, 2, , }, ,g c

i i i ix y x R y R i N  = ∣  , where N   signifies the 

number of samples,  g  and c signifies the dimension number of 

input vector x and output vector y respectively, the output of 

ELM with l  hidden neurons can be described as: 
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Figure 1. ELM structure diagram 
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where H  signifies the hidden layer output matrix. The output 

weight matrix    of the ELM model can be calculated by a 

generalized inverse matrix of the hidden layer. 

 H Y +=  (3) 

where H + describes Moore-Penrose generalized inverse matrix. 

2.2. Deep Extreme learning machine (DELM) 

2.2.1. Extreme learning machine-autoencoder algorithm (ELM-AE) 

The ELM-AE [19] is a neural network that can both 

reproduce the input data and autoencoder, established by Kasun 

et al. [9], possessing the characteristics of fast computation and 

high accuracy rate as well as ELM. Furthermore, similar to the 

ELM, ELM-AE contains an input layer, a single hidden layer, and 

an output layer, and the major difference is that the output layer 

of ELM-AE and the input layer are identical [22]. 

Given there are N   distinctive data sets

, ( 1,2, , )i g jx R R i N  =  , where n   defines the number of the 

           

            

            

  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 December 2021                   doi:10.20944/preprints202112.0192.v1

https://doi.org/10.20944/preprints202112.0192.v1


 

 

features. The outputs of the hidden layer for ELM-AE can be 

represented as: 

 ( )h g ax b= +  (4) 

where , 1T Ta a I b b= =  , the mathematical relationship between 

the outputs of the hidden layer and the outputs of the output 

layer can be expressed as: 

 ( ) , 1, 2, ,T

i ih x x i N = =  (5) 

where β represents the output weight of the output layer. 

2.2.2. Deep Extreme learning machine (DELM) 

DELM introduces ELM-AE to train the parameters of all the 

hidden layers. Simultaneously the hidden layer activation 

functions of DELM can be linear or nonlinear piecewise [14]. 

When the number of nodes in the  thk  hidden layer is equivalent 

to the number of the 1 thk − hidden layer, it could be concluded 

that the activation function g(x) remains linear, else g(x) should 

be nonlinear piecewise. So the output of the  thk  hidden layer 

may be expressed as follows:  

 ( )( )1

T
k

k kH g H −=  (6) 

where kH signifies the output matrix of DELM  thk  hidden layer 

(when 1 0k − =  , this layer denotes the input layer, and kH  

describes the input of DELM) 

 

Figure 2. Structure of DELM. 

2.3. Sparrow search algorithm (SSA) 

Sparrows colony primarily consists of discoverers and 

followers during the foraging process. The discoverer provides 

the searching zone and direction for the sparrow colony because 

of its better fitness value, whereas the follower exploits the 
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location of the discoverer to obtain food [19]. When a sparrow 

colony perceives threat and the alarm value is higher than the 

security value, it will engage in anti-predatory behavior. SSA can 

be simply abstracted into a discoverer-followers-early warning 

model. 

 21

2

expt

idt

id

t

id

i
X R ST

X T

X Q L R ST

+

 − 
   

=  
 +  

 (7) 

where t   means the current iteration; T  denotes the maximum 

number of iterations;   shows the current position information 

of the  thi sparrow in the  thd dimension; describes a random 

number in 0,1 )  ; Q is a random number obeying normal 

distribution; L  signifies a 1 d  matrix with all parameters being 

1; 2 [0,1]R   and [0.5,1]ST    represents the alarm value and 

security threshold, respectively. When 2R ST  , It denotes a 

secure hunting environment. If 2R ST  , it indicates that some 

sparrows have detected the predator around them and all 

sparrows must migrate to safer areas as soon as possible [19]. 

All sparrows are followers except all discoverers in 

population. Followers update their position and describe as 

follows: 
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where worstX  signifies the worst global position; pX  denotes the 

optimal position occupied by the discoverer; A  is a 1 d  matrix 

with random elements of 1 or -1, and 1( )T TA AAA+ −=  . When 

/ 2i n , it means that the  thi  followers with low fitness need to 

fly to other locations for food because it is in a state of hungry.  

Given the presence of predator, 10% ~ 20% of sparrow 

colonies are responsible for scouting and warning, with the 

location updated as follows: 
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∣  (9) 

where   is the step correction parameter, which obeys the 

standard normal distribution; bestX  signifies the current global 

best position; 1,1K −   describes a uniform random number; e  

is the smallest constant to avoid a zero denominator; if  denotes 

the fitness value of the current sparrow; gf   and wf   are the 

current global best fitness and worst fitness, respectively.   

denotes a minimal constant, this study takes 10e-50 = . 

2.4. Enhanced Sparrow Search Algorithm 

To overcome the convergence stagnation and being trapped 
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into local convergence of standard SSA, this paper presents 

Enhanced Sparrow Search Algorithm (ESSA), incorporating 

Trigonometric substitution strategy (TS) and Cauchy mutation 

strategy. On the one hand, TS is introduced to balance the 

development and exploration ability of SSA, and additionally, a 

step search factor and a position inertia factor are introduced to 

further strengthen the seeking ability of algorithm. On the other 

hand, the sparrow individuals are perturbed by using the 

Cauchy mutation to enhance the global searching capability of 

SSA. The flowchart of the proposed ESSA is shown in Figure 3. 

2.4.1 Trigonometric substitution strategy (TS) 

The TS strategy mainly uses the sine function [23] to update 

the current position of discoverers, which makes the sparrow 

position change continuously to improve the exploitation and 

exploration ability of SSA, thus improving the global searching 

capability. The update formula of discoverers is as follow: 

 1 1

1 3 1 1 2 2sin sin   t t t t

id id p idX X R R R x X x X R ST+ +=  +    −    (10) 

where 1 [0,2 ]R    is a random number, which determines the 

moving distance of  thi   individual at the  thd  iteration; 

3 [0, ]R   represents a random number, which controls the 

moving direction of the  thi  individual at the iteration;

1 (1 ) 2x   = − + −  and 2 2x   = − +  are coefficients obtained 

from the gold partition number ( 5 1) / 2 = − , which narrow the 

search space of the algorithm and guide individuals to gradually 

converge to the optimal value. 

To further balance the global exploring and exploiting, the 

new update of R3 with the following nonlinear adaptive changes 

is as follow [24]: 
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where   and   are weight coefficients, and 3 = , 5 = . Eq. (11) 

shows that inertia weights are negatively correlated with the 

number of iterations. In the later stage of the search, a smaller 

inertia weight can be used to seek the optimal value within a 

narrower area, thus accelerating the convergence speed.  

  Considering that the population individual position 

update is affected by the current position during the whole 

search process, a nonlinear position inertia factor w   is 

introduced to further improve the searching ability of sparrows, 

which shows a positive correlation with the iteration in Eq. (12). 

A smaller w can lessen the impact of individual position updates 

on the current solution position and improve global searching 

ability in the early stages. Besides, the greater w can take 

advantage of the strong dependence of current location 

information on individual location updates in the later iterations 

of the algorithm, speeding up convergence. The position update 

of discoveries is presented in Eq. (13):    
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 1 1

1 3 1 1 2 2sin sin   t t t t

id id p idX w X R R R x X x X R ST+ +=   +    −    (13) 

2.4.2. Cauchy mutation strategy 

The description of Cauchy density function as Eq. (14): 

 
2 2

1
( ) , 0,

t
f x t x

x t
=  −   

+
 (14) 

where t   describes a proportional parameter. Its distribution 

function is: 

 
1 1

( ) arctan
2

x
F x

t

 
= +  

 
 (15) 

The Cauchy distribution, like the normal distribution, is a 

continuous type of probability distribution with a small 

magnitude at coordinate 0. It can form a large perturbation 

because the bilateral show a flat and long posture and converge 

to 0 with a slow speed. Since the Cauchy mutation originates 

from the Cauchy distribution, introducing the Cauchy mutation 

into the sparrow individual position update will generate a large 

perturbation, which will expand the scope of the algorithm to 

obtain the best solution, and then move away from the local 

optimum. Eq. (16) presents the position update of followers. 

 1

,    other()t t t

i j best bestX X gamrnd C X+ = + • •  (16) 

where C represents a Cauchy distributes random number; 

()gamrnd   is a gamma random number, which can further 

enhance the abruptness of the Cauchy mutation mainly by the 

jumpiness of the random number selection. 
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Figure 3. The flowchart of ESSA. 

3 Results and discussion 

3.1 The evaluation of ESSA 

To evaluate the performance of  ESSA, the proposed ESSA 

was compared with four traditional intelligent algorithms, 

including butterfly optimization algorithm(BOA)[25], sine cosine 

algorithm(SCA)[26], whale optimization algorithm(WOA)[27],  

sparrow search algorithm(SSA), and five advanced intelligent 

algorithms, like improved grey wolf optimizer (IGWO)[28], 

leader slime mould algorithm (LSMA)[29], leader Harris hawks 

optimization (LHHO)[30], adaptive opposition slime mould 

algorithm (AOSMA)[31], hybrid butterfly optimization 

algorithm with particle swarm optimization (HPSOBOA)[32]. 

Table 1 signifies the parameters settings for 10 algorithms. In 

addition, 9 classic test functions including 4 unimodal functions 

F1~F4 and 5 multimodal functions F5~F9 were employed to 

evaluate the properties of several algorithms (Table 2) [19,33]. To 

ensure the fairness of the experiment, the initial population size 

(uniformly randomly generated) was set to 50, the dimension of 

the solution space to be 30, and the maximum evaluation times 

to be 500. And each algorithm still runs 30 times independently 

in each classical test function. 
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Table 1. Parameter setting for compared algorithms. 

Algorithm Parameters 

BOA a = 0.1, c(0) = 0.01, p = 0.6 

SCA a=2 

WOA a1=[2 0]; a2=[-2 -1]; b = 1 

SSA 
ST=0.8; Proportion of discoverers PD=0.2; proportion of scouter 

SD=0.2 

IGWO a was linearly decreased from 2 to 0 

LSMA Z=0.03 

LHHO β=1.5 

AOSMA δ=0:03 

HPSOBOA 
afirst = 0.1, afinal = 0.3, c(0) = 0.01, p = 0.6, 

x(0) = 0.315, ρ = 0.295, c1 = c2 = 0.5 

ESSA 
ST=0.8; Proportion of discoverers PD=0.2; proportion of scouter 

SD=0.2; 3 = ; 5 =  

Table 2. Description of nine benchmark functions. 
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With the purpose of more visually illustrating the 

convergence of ESSA on different types of test functions, nine 

convergence trend graphs of SSA were presented in Figure 4. For 

better observation, the ordinate was the logarithm of base 10. 

When the curve is no longer shown with the increase of iteration 

number, it means that the algorithm has obtained the theoretical 
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optimal solution 0. 

   
            (a) F1             (b) F2             (c) F3 

   
            (d) F4            (e) F5            (f) F6 

   
            (g) F7             (h) F8            (i) F9 

         

Figure 4. Convergence curves of nine algorithms (a) F1; (b) F2; (c) F3; (d) F4; (e) F5; (f) F6; (g) F7; (h) F8; 

(i) F9.  

Figure 4 shows the convergence curves of the ESSA and 

other algorithms on the 9 classic test functions F1-F9. In dealing 

with unimodal function F1-F4, it is clear that ESSA has better 

convergence in the early stages of the iteration. On the other hand, 

some traditional algorithms fall into the local optimum solution 

too early at the beginning of the iteration like SSA, BOA, SCA, 

WOA. In addition, the ESSA has high fluctuations in the initial 

iterations when processing multimodal functions F5, F6, F8, F9, 

and all obtain a theoretical optimum (0). For F7, although the 
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results of the four algorithms are similar, ESSA shows a fast 

convergence speed compared to SSA, LSMA, LHHO, AOSMA, 

HPSOBOA. To summarize, the ESSA algorithm proposed in this 

paper outperforms other algorithms in terms of convergence 

speed and accuracy. 

To further illustrate the effectiveness of ESSA, two criteria 

were taken for comparison: Average value (Ave) and Standard 

deviation (Std). Table 3 gives the comparative results between the 

ESSA algorithm and other algorithms in three dimensions.  

Table 3. Comparisons of ESSA and other algorithms on 9 test functions in three dimensions. 

  Dim=30 Dim=50 Dim=100 

Fun Algorithm Ave Std Ave Std Ave Std 

 BOA 3.29E-07 7.93E-08 4.28E-07 1.26E-07 4.36E-07 1.12E-07 

 SCA 7.87E+00 1.48E+01 8.41E+02 9.70E+02 1.12E+04 7.74E+03 

 WOA 1.07E-121 5.88E-121 1.45E-121 7.78E-121 3.71E-119 2.02E-118 

 SSA 1.37E-60 7.45E-60 9.25E-57 5.07E-56 1.73E-50 9.46E-50 

F1 IGWO 2.86E-28 9.79E-28 2.52E-20 2.13E-20 2.24E-12 1.32E-12 

 LSMA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

 LHHO 2.98E-147 1.16E-146 2.63E-142 1.39E-141 5.49E-137 3.01E-136 

 AOSMA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

 HPSOBOA 3.82E-152 9.02E-153 3.75E-152 1.00E-152 3.57E-152 1.57E-152 

 ESSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

 BOA 2.68E-10 4.27E-10 3.86E+23 1.59E+24 1.93E+49 6.36E+49 

 SCA 2.25E-02 2.39E-02 5.42E-01 5.66E-01 7.98E+00 7.06E+00 

 WOA 2.55E-69 1.14E-68 1.12E-66 5.63E-66 4.78E-68 1.65E-67 

 SSA 2.56E-31 1.15E-30 2.23E-29 1.21E-28 8.10E-29 4.19E-28 

F2 IGWO 6.06E-18 4.74E-18 4.95E-13 2.37E-13 1.42E-08 5.62E-09 

 LSMA 1.52E-261 0.00E+00 4.23E-287 0.00E+00 3.39E-241 0.00E+00 

 LHHO 7.03E-77 1.58E-76 5.60E-73 3.07E-72 4.01E-75 1.77E-74 

 AOSMA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

 HPSOBOA 2.46E-59 1.19E-58 5.06E-52 1.79E-51 1.54E+36 6.00E+20 

 FESSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

 BOA 1.95E-07 5.08E-08 2.18E-07 5.09E-08 2.72E-07 7.92E-08 

 SCA 7.94E+01 4.26E+01 5.04E+02 1.64E+02 2.56E+03 6.82E+02 

 WOA 1.28E+02 9.89E+01 5.08E+02 2.92E+02 2.44E+03 1.63E+03 

 SSA 3.71E-24 2.03E-23 2.85E-23 1.42E-22 7.96E-27 4.11E-26 

F3 IGWO 6.55E-06 1.21E-05 1.25E-01 1.36E-01 5.21E+01 2.88E+01 

 LSMA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

 LHHO 1.28E-103 6.98E-103 2.33E-97 1.28E-96 7.17E-86 3.92E-85 

 AOSMA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

 HPSOBOA 4.02E-153 1.19E-153 7.22E-153 6.77E-153 1.54E-152 1.57E-152 

 ESSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

 BOA 4.28E-05 6.65E-06 4.60E-05 9.44E-06 5.28E-05 8.93E-06 

 SCA 3.77E+00 1.37E+00 6.71E+00 8.54E-01 9.09E+00 1.92E-01 

 WOA 3.06E-01 7.19E-01 3.59E-01 6.60E-01 1.33E+00 1.56E+00 

 SSA 1.15E-29 4.84E-29 1.46E-29 8.02E-29 1.09E-26 5.97E-26 

F4 IGWO 2.33E-06 4.18E-06 2.16E-03 2.85E-03 4.82E-01 2.98E-01 

 LSMA 2.98E-212 0.00E+00 9.53E-205 0.00E+00 1.91E-194 0.00E+00 

 LHHO 1.26E-70 6.93E-70 4.09E-71 2.24E-70 4.41E-73 2.23E-72 

 AOSMA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

 HPSOBOA 1.04E-77 6.28E-79 1.03E-77 6.24E-79 1.07E-77 6.14E-79 

 ESSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

 BOA 3.64E-10 1.11E-09 2.24E-10 5.75E-10 1.04E-08 2.67E-08 

 SCA 3.77E+01 3.74E+01 1.18E+02 7.14E+01 2.43E+02 1.29E+02 
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 WOA 3.79E-15 1.44E-14 0.00E+00 0.00E+00 7.58E-15 2.88E-14 

 SSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

F5 IGWO 2.25E+01 9.70E+00 5.63E+01 3.49E+01 1.52E+02 1.17E+02 

 LSMA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

 LHHO 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

 AOSMA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

 HPSOBOA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

 ESSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

 BOA 8.45E-04 3.35E-03 4.97E-08 2.68E-07 2.30E-10 6.26E-10 

 SCA 6.33E+01 3.59E+01 2.12E+02 6.20E+01 4.61E+02 1.37E+02 

 WOA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

 SSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

F6 IGWO 5.75E+01 3.85E+01 6.91E+01 4.55E+01 2.60E+02 7.96E+01 

 LSMA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

 LHHO 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

 AOSMA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

 HPSOBOA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

 ESSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

 BOA 4.50E-05 8.19E-06 5.27E-05 1.16E-05 5.11E-05 8.94E-06 

 SCA 6.17E-01 1.05E+00 3.38E+00 1.62E+00 7.69E+00 1.91E+00 

 WOA 4.20E-15 2.63E-15 4.80E-15 3.00E-15 3.97E-15 2.59E-15 

 SSA 8.88E-16 0.00E+00 8.88E-16 0.00E+00 8.88E-16 0.00E+00 

F7 IGWO 5.61E-14 8.84E-15 1.78E-11 1.01E-11 1.01E-07 3.47E-08 

 LSMA 8.88E-16 0.00E+00 8.88E-16 0.00E+00 8.88E-16 0.00E+00 

 LHHO 8.88E-16 0.00E+00 8.88E-16 0.00E+00 8.88E-16 0.00E+00 

 AOSMA 8.88E-16 0.00E+00 8.88E-16 0.00E+00 8.88E-16 0.00E+00 

 HPSOBOA 8.88E-16 0.00E+00 8.88E-16 0.00E+00 8.88E-16 0.00E+00 

 ESSA 8.88E-16 0.00E+00 8.88E-16 0.00E+00 8.88E-16 0.00E+00 

 BOA 2.03E-07 1.32E-07 4.81E-07 2.80E-07 7.30E-07 2.84E-07 

 SCA 1.09E+00 9.09E-01 1.08E+01 1.04E+01 9.04E+01 4.65E+01 

 WOA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.70E-18 2.03E-17 

 SSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

F8 IGWO 2.55E-03 5.08E-03 6.75E-03 8.91E-03 3.58E-03 6.48E-03 

 LSMA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

 LHHO 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

 AOSMA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

 HPSOBOA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

 ESSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

 BOA 3.15E-05 1.39E-05 4.44E-05 9.45E-06 5.06E-05 8.89E-06 

 SCA 1.27E+00 3.17E+00 4.92E+00 3.58E+00 2.86E+01 1.56E+01 

 WOA 3.99E-71 8.38E-71 1.66E-69 5.27E-69 1.93E-69 5.10E-69 

 SSA 1.57E-08 4.11E-08 1.39E-06 3.76E-06 8.06E-06 3.86E-05 

F9 IGWO 3.76E-04 3.04E-04 1.17E-03 1.11E-03 4.22E-03 2.81E-03 

 LSMA 1.36E-254 0.00E+00 2.66E-225 0.00E+00 3.57E-252 0.00E+00 

 LHHO 3.41E-75 1.76E-74 6.02E-75 3.17E-74 5.78E-75 2.40E-74 

 AOSMA 0.00E+00 0.00E+00 1.78E-278 0.00E+00 0.00E+00 0.00E+00 

 HPSOBOA 1.31E-58 5.49E-58 3.44E-61 9.10E-61 4.61E-57 2.36E-56 

 ESSA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

The results on nine classic benchmark functions (F1-F9) in 

different dimensions are listed in Table 3. It could be observed 

that in the unimodal test function (F1-F4) and multimodal test 

function (F5-F6), the proposed ESSA achieves a theoretical 

optimum (0) except for F8 and minimum standard deviation (0) 

for all dimensions, suggesting that ESSA has strong ability on 

search accuracy and robustness compared with BOA, SCA, WOA, 
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SSA, IGWO, LSMA, LHHO, HPSOBOA. Whereas, AOSMA is 

equivalent to ESSA in terms of convergence accuracy and 

stability on nine classic test functions. However, as shown in 

Figure 4, it could be undoubtedly observed that the convergence 

speed of ESSA is faster than that of AOSMA, showing excellent 

competitiveness with advanced algorithms. 

From Table 3 and Figure 4, it could be deduced that the ESSA 

has better convergence capability and robustness compared with 

the other nine algorithms. The primary reason is that the TS 

mechanism introduces sine change to equilibrate the exploitation 

and exploration of the SSA, and further enhances the 

convergence speed of the algorithm by two nonlinear weights. In 

addition, the Cauchy mutation strategy helps the sparrow 

individuals with the current best fitness to further improve the 

global optimization capability of SSA. According to the above 

analysis, the performance of the ESSA algorithm performs best, 

and it was chosen for the following experiments. 

3.2 Prediction model of end-point phosphorus content based on ESSA-

DELM 

With the intention of testing the performance of ESSA-

DELM, this study adopted the converter production data sets of 

Baogang steel plants to conduct experiments. The reactions that 

occurred in the converter are very complex, and end-point 

phosphorus content is affected by numerous influential factors. 

Therefore, the 10 variables as shown in Table 4 were selected as 

inputs of the model by incorporating scholarly research [7, 34] 

and SPSS data analysis.  

Table 4. Input variables for the model. 

Process parameter Units Process parameter Units 

Silicon content in hot metal % Oxygen supply time min 

Manganese Content in hot metal % Oxygen consumption N m3 

Phosphorus content in hot metal % Quicklime addition kg 

Sulfur content in hot metal % Dolomite addition kg 

Hot metal temperature ℃ Iron ball kg 

To validate that the prediction model based on ESSA-DELM 

has a better prediction accuracy and generalization performance, 

this paper introduced the BPNN model, ELM model, DELM 

model, BOA-DELM model, WOA-DELM model, SCA-DELM 

model, and SSA-DELM model to establish a prediction model of 

end-point phosphorus content, where 200 heat date were 

collected for the experiment including 140 heat for train data and 

60 for predict data. Through the experimental test, the hidden 

layer node of BPNN and ELM was set to 5 with one hidden layer, 

the hidden layer node of DELM, BAO-DELM, WOA-DELM, 

SCA-DELM, SSA-DELM, and ESSA-DELM were all set to 5 with 

ten hidden layers. The comparison of predicted value and actual 

value of end-point phosphorus content under 8 models are 

illustrated in Figure 4. 
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(a) (b)  

  
(c)  (d)  

  
(e)  (f)  

  
(g)  (h)  

Figure 5. Comparison of end-point phosphorus content between prediction value and actual value of 

eight models. (a) BPNN model; (b) ELM model; (c) DELM model; (d) BOA-DELM model; (e) WOA-DELM 
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model; (f) SCA-DELM; (g) SSA-DELM; (h) ESSA-DELM. 

From the scatter plot in Figure 5, the proposed ESSA-DELM 

is performed closer to the ideal line (y=x) between the actual and 

predicted values, and with fewer points outside of the error range 

from -0.003% to 0.003%. In addition, the prediction curves of the 

ESSA-DELM models follow the actual value better than the other 

seven models, as intuitively presented in Figure 6. And it is also 

observed that the ESSA-DELM model presents the minimum 

prediction errors as shown in Figure 7. Besides the prediction 

accuracy, namely the hit rate, is represented by the distribution 

ratio of the difference between the true value and predicted value 

in different error ranges. The hit rates of the eight models in error 

ranges [-0.001%,0.001%], [-0.002%,0.002%], and [–0.003%, 0.003%] 

are shown in Table 5 and Figure 8. 

 

Figure 6. End-point phosphorus content prediction in the testing phase by different models (a) BPNN 

model; (b) ELM model; (c) DELM model; (d) BOA-DELM model; (e) WOA-DELM model; (f) SCA-DELM 

model; (g) SSA-DELM model; (h) ESSA-DELM model.  
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Figure 7. Prediction error comparison of the eight models. 

 

Figure 8. Hit rates comparison of the eight models in three error ranges. 

Table 5 Hit rates of the eight models in different error range. 

 Hit rate 

Prediction model  
[-0.001%,0.001%] [-0.002%,0.002%] [-0.003%,0.003%] 

PNN 16.67% 35.00% 56.67% 

ELM 15.00% 43.33% 66.67% 

DELM 25.00% 56.67% 78.33% 

BOA-DELM 55.00% 81.67% 90.00% 

WOA-DELM 60.00% 78.33% 90.00% 

SCA-DELM 58.33% 76.67% 88.33% 

SSA-DELM 53.33% 80.00% 88.33% 

ESSA-DELM 63.33% 83.33% 91.67% 

From Table 5 and Figure 8, the hit rate based on ESSA-DELM 

model is 78.33% when the prediction errors are within ±0.003%; 
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the hit rate of the model is 56.67% when the prediction errors are 

within ±0.002%; the hit rate of the model is 25.00% when the 

prediction errors are within ±0.001%, which demonstrated the 

best prediction accuracy. The hit rates of BOA-DELM, WOA-

DELM, SCA-DELM, and SSA-DELM in the error range of [-

0.001%,0.001%], [-0.002%,0.002%], and [-0.003%, 0.003%] are 

significantly greater than those of the DELM model. It is visually 

demonstrated that the forecast precision of the model has been 

improved because of the integration of the intelligent algorithm 

with the DELM model. Furthermore, the DELM model displays 

the hit rate amongst the conventional models with 78.33%, 

56.67%, and 25.00% when the prediction errors are within 

±0.003%, ±0.002%, and ±0.001%, respectively. It could be 

observed that the DLEM model shows a higher hit rate compared 

with the ELM model, which also proves that the DELM model 

possesses superior prediction precision than the original ELM 

model. These results indicate that a better hit rate has been 

obtained by the ESSA-DELM model than another prediction 

model. 

To further verify the performance of the ESSA-DELM model, 

this study also adopted mean absolute error (MAE), the root 

mean square error (RMSE) and the mean absolute percentage 

error (MAPE), determination coefficient (R2), and Nash–Sutcliffe 

Efficiency (NSE) [35] as the evaluation criteria. The 

corresponding results among the eight prediction models are 

shown in Table 6. 
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where n  indicates the number of samples; iy   and ˆ iy   represents 

the actual value and predicted result of model respectively. 

Additionally, mean y  describes the average of input variables. The 

optimal values of these indices are presented in Table 6. The 

closer the NSE and R are to 1, the better the model performance. 
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Table 6.  Prediction performance of different models. 

Prediction model RMSE MAE MAPE R2 NSE 

BPNN 0.0042066 0.003285 21.51% 0.056638 -1.9951 

ELM 0.0028669 0.0024928 15.35% 0.11124 -0.39114 

DELM 0.0026365 0.0020723 13.65% 0.019823 -0.17656 

BOA-DELM 0.0016629 0.0012042 7.98% 0.56696  0.53197 

WOA-DELM 0.0016192 0.0011818 7.84% 0.55902 0.55625 

SCA-DELM 0.0016395 0.0012029 8.14% 0.55604 0.54504 

SSA-DELM 0.0016685 0.0012595 8.41% 0.59329  0.52879 

ESSA-DELM 0.0015366 0.001074 7.15% 0.61391 0.60034 

According to the statistical results derived from RMSE, 

MAE, MAPE, R2, and NSE metrics, in Table 6, DELM shows a 

better predictive performance with RMSE=0.0026365, 

MAE=0.0020723, MAPE=15.35%, R2=0.019823, and NSE=-0.17656 

compared with the conventional models like ELM and BPNN. 

Because of the introduction of SSA, SSA-DELM shows a better 

predictive performance with RMSE=0.0016685, MAE=0.0012595, 

MAPE=8.41%, R2=0.59329, and NSE=0.52879, compared with 

DLEM. However, compared with BOA-DELM, SCA-DELM, and 

WOA-DELM,  SSA-DELM shows no advantage in terms of RMSE, 

MAE, MAPE, and NSE performance, except for R2. Moreover, 

ESSA-DELM shows the best predictive performance with 

RMSE=0.0015366, MAE=0.001074, MAPE=7.15%, R2=0.61391, and 

NSE=0.60034 with the introduction of TS strategy and Cauchy 

mutation. It is obvious that ESSA-DELM outperforms BOA-

DELM, SCA-DELM, and WOA-DELM on RMSE, MAE, and 

MAPE, and it outperforms SSA-DELM in terms of R2. In this 

paper, the proposed ESSA-DELM prediction model obtain high 

prediction accuracy performance among all prediction models, 

which can offer a good reference for industrial operation. 

However, the R2 and NSE are not particularly high, because the 

markers determining the endpoint phosphorus content still 

interact with one another. In conclusion, ESSA-DELM 

demonstrated promising performance in phosphorus content 

prediction 

4. Conclusion 

This paper proposes the ESSA-DELM prediction model for 

the end-point phosphorus content of BOF. Nevertheless, given 

the numerous random input weights and biases in DELM model, 

the prediction precision will be degraded. Thus this research 

introduces an enhanced sparrow search algorithm to optimize. 

ESSA is obtained by introducing Trigonometric substitution and 

Cauchy mutation for enhancing the exploration and exploitation 

capacity of original SSA. Moreover, the superiority of the 

algorithm is verified by comparing SSA with other classic 

intelligent algorithms and advanced algorithms.  

Simultaneously, to evaluate the prediction accuracy, the 

BPNN, ELM, DELM, BOA-DELM, WOA-DELM, SCA-DELM, 

and SSA-DELM are adopted as a comparative prediction model. 

The 10 parameters that influence end-point phosphorus content 

are chosen as inputs, and the end-point phosphorus content is 
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chosen as output. Some performance evaluation criteria are 

applied for comparing the model predicted results to actual 

values. Finally, the experimental result indicates the hit rate of  

ESSA-DELM  within the error range of  ±0.003%, ±0.002%, and 

±0.001% is 91.67%, 83.33%, and 63.55%,  respectively, which has 

a higher hit rate than the other 7 models. In addition, the 

performance metrics (RMSE, MAE, MAPE, R2, NSE) of the ESSA 

model are superior to other predictive models. Obviously, the 

proposed ESSA-DELM model could obtain a better prediction 

performance and guide for controlling the end-point phosphorus 

content of BOF. In the future, since the values of NSE and R do 

not show very good performance, the converter data from 

different steel mills will be collected for further study.  
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