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Abstract: The efficacy of predicting geochemical parameters with a 2-chain workflow using spectral 

data as the initial input is evaluated. Spectral measurements spanning the approximate 400-

25000nm spectral range are used to train a workflow consisting of a non-negative matrix function 

(NMF) step, for data reduction, and a random forest regression (RFR) to predict 8 geochemical pa-

rameters. Approximately 175000 spectra with their corresponding chemical analysis were available 

for training, testing and validation purposes. The samples and their spectral and chemical parame-

ters represent 9399 drillcore. Of those, approximately 20000 spectra and their accompanying analy-

sis were used for training and 5000 for model validation. The remaining pairwise data (150000 sam-

ples) were used for testing of the method. The data are distributed over 2 large spatial extents (980 

km2 and 3025 km2 respectively) and allowed the proposed method to be tested against samples that 

are spatially distant from the initial training points. Global R2 scores and wt.% RMSE on the 150000 

validation samples are Fe(0.95/3.01), SiO2(0.96/3.77), Al2O3(0.92/1.27), TiO(0.68/0.13), CaO(0.89/0.41), 

MgO(0.87/0.35), K2O(0.65/0.21) and LOI(0.90/1.14), given as Parameter(R2/RMSE), and demonstrate 

that the proposed method is capable of predicting the 8 parameters and is stable enough, in the 

environment tested, to extend beyond the training sets initial spatial location. 
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1. Introduction 

The routine collection of spectral reflectance measurements from drillcore and/or la-

boratory ready samples is now common enough that it is natural to assess the feasibility 

of using the spectral measurements for quantitative prediction. This action is already per-

formed in various guises with the selected methodology generally based around the de-

sired outcome.  

Relatively simple spectral indices have been routinely used within the spectral re-

mote sensing community with great success for many years [1–5] and more recently with 

proximal spectral sensing of drillcore samples within the exploration community [6–10].  

The latter has been driven by the proliferation of hand-held and benchtop spectrometers 

that have successfully lowered the barrier to entry and provided a means of leveraging 

such data for more sophisticated qualitative and quantitative methodologies to aid in the 

exploration task.   

Due to the ease with which spectral data can be collected, and the fast turnaround of 

higher order products generated from said reflectance data, it can be highly beneficial in 

providing a means of early confirmation and assessment of a variety of results that may 

aid in the exploration decision making process [11,12]. 

While questions pertaining to mineral identification in various mineral systems can 

be addressed with indices-based methods the approach used to relate the bulk, or 
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volumetric, properties of a geological sample to its spectrum require more sophisticated 

methodologies.  

Volume based assessment of geological samples is generally derived from a lab-

based analysis of the sample which comes with an inherent cost and turnaround time. 

While the cost and turnaround time of accessing results from laboratory samples are gen-

erally accounted for it does not mean that earlier access to that knowledge would not aid 

an explorer or decision maker. An earlier preliminary result may, for example, aid in the 

earlier definition of an existing economic ore body and allow preplanning prior to labor-

atory based confirmation. Alternatively, it may assist in the process of apportioning which 

samples are best suited for a deeper laboratory analysis and/or the actual sampling fre-

quency best suited to answering the question at hand. 

The use of a partial least squares [13] models for regression analysis relating to geo-

chemical properties is well established [14–17]. These models are generally singular out-

put models and require as many models as the number of parameters that are to be pre-

dicted. This use of random forest models [18] have been gaining popularity and applied 

successfully to both classification [19–21] and regression [22,23] problems.  As well as 

proving to be easily implemented and robust they can also make multioutput predictions 

and therefore reduce the need for multiple models. 

In this study we will investigate a methodology that uses a 2-step process to ascertain 

if wt. % estimates from whole-rock geochemistry are reliably predictable from spectral 

measurements of drillcore samples prepared as pulps. The 2-step process makes use of a 

dimensionality reduction step followed by a multioutput decision tree approach to pre-

dict the wt.% of 8 different whole-rock parameters, the majors and LOI, and its predictive 

effectiveness when applied to a testing set that encompasses a spatial extent extending 

beyond the initial training and test dataset. 

2. Materials 

The data used in the study are proprietary and are therefore subject to constraints. 

Namely, the spatial location of the data source cannot be provided without revealing pro-

prietary information.  

The data itself represent pulps collected from multiple drillcore which are distributed 

over 2 large spatial extents of approximately 360 km2 and 1120 km2 respectively. In this 

study a reference to drillcore sample is given to mean spectral sample as measured from 

a pulp. The complete dataset is comprised of 7 individual datasets that are made up of 

spectral measurements and whole rock geochemistry (Fe, SiO2, Al2O3, TiO2, CaO, MgO, 

K2O and LOI).  

Other variables included in the whole rock geochemistry were P, S and Mn but are 

not used in this study as they failed to produce a working model. The entire dataset com-

prises approximately 175K samples (approximately 25000 per dataset) with dataset 1 ran-

domly split into 20000 and 5000 samples for training and validation respectively. The re-

maining 6 datasets (approximately 150K samples) were held out for testing. Table 1 gives 

the summary statistics comprised of the mean, standard deviation, 50% and 75% quartiles, 

and the maximum value of the 7 datasets and the 8 geochemical parameters examined in 

the study 

Table 1. The summary statistics comprised of the mean, standard deviation, 50% and 75% quartiles, and the maximum value of the 

7 datasets and the 8 geochemical parameters examined in the study.  
  

Fe SiO2 Al2O3 TiO2 CaO MgO K2O LOI 

Train/Val mean 41.70 24.53 4.94 0.23 1.31 1.05 0.24 7.34 

  std 18.67 21.91 5.98 0.39 5.17 3.46 0.73 7.44 

  50% 43.85 16.16 2.49 0.08 0.04 0.09 0.01 5.68 

  75% 58.74 44.53 6.48 0.27 0.09 0.25 0.05 8.74 

  max 69.15 98.70 53.38 8.63 52.47 22.00 9.36 84.79 

Set 2 mean 41.18 25.83 5.32 0.27 0.98 0.80 0.17 7.21 
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std 17.62 21.95 6.29 0.42 4.47 3.05 0.56 7.05  
50% 41.74 18.93 2.71 0.09 0.04 0.08 0.01 5.63  
75% 57.29 46.14 7.25 0.34 0.08 0.19 0.04 8.94  
max 69.29 96.51 55.92 10.10 39.70 21.50 12.10 73.82 

Set 3 mean 43.68 22.92 4.08 0.19 0.99 0.81 0.17 7.64  
std 17.66 22.33 4.92 0.33 4.25 2.75 0.56 6.33  
50% 47.90 11.87 2.30 0.08 0.04 0.09 0.01 6.34  
75% 59.18 42.94 5.14 0.20 0.09 0.22 0.04 9.21  
max 68.13 96.76 51.72 7.76 49.87 20.80 11.60 73.23 

Set 4 mean 45.66 23.01 4.78 0.20 0.11 0.14 0.12 5.83  
std 16.12 20.52 5.70 0.31 0.96 0.57 0.44 3.05  
50% 48.99 15.94 2.50 0.08 0.03 0.06 0.01 5.36  
75% 59.56 40.11 6.07 0.24 0.05 0.10 0.03 7.81  
max 68.77 97.65 39.19 6.84 48.73 18.50 7.65 42.96 

Set 5 mean 43.36 25.37 4.57 0.22 0.34 0.32 0.13 6.44  
std 15.68 21.05 5.42 0.33 2.68 1.76 0.41 4.61  
50% 44.33 19.45 2.36 0.08 0.01 0.05 0.01 5.64  
75% 57.46 44.26 6.29 0.29 0.03 0.11 0.03 8.43  
max 67.32 97.73 51.14 5.96 40.53 21.00 6.85 47.01 

Set 6 mean 43.00 23.52 5.67 0.31 0.48 0.59 0.24 6.85  
std 17.34 21.43 6.16 0.48 2.76 2.11 0.67 4.83  
50% 45.74 14.59 3.15 0.12 0.02 0.06 0.01 6.10  
75% 58.11 43.35 8.75 0.46 0.06 0.21 0.10 9.09  
max 69.49 96.89 51.29 25.20 42.55 20.70 6.49 46.89 

Set 7 mean 41.25 26.53 5.32 0.28 0.56 0.71 0.28 6.41  
std 17.46 21.85 6.14 0.45 2.96 2.29 0.74 5.33  
50% 41.30 20.73 2.70 0.10 0.03 0.10 0.01 5.40  
75% 56.80 46.11 7.82 0.36 0.09 0.34 0.08 8.80  
max 69.49 97.66 48.03 8.63 37.42 20.40 7.07 46.76 

 

The spectral data collected from any given pulp sample was via 2 different spectral 

instruments. The first is the HyLogger [24–26] which collected data in the 350-2500nm 

spectral range and whose spectral outputs are given with a 4nm sampling interval, and 

the second, a Fourier Transform Interferometer for spectral collection from 2000nm-

25000nm with a spectral sampling interval of 3.857 cm-1. To create a single spectrum the 

FTIR data from 2000-2500nm was disregarded and the remaining spectral signal ap-

pended to the HyLogger spectrum.  

3. Methods 

The task is to assess the feasibility of predicting whole rock geochemistry parameters 

with spectral data used as the driving input to the model/s. The combined HyLogger and 

FTIR spectral data comprise 1476 spectral bands. To reduce computational overhead and 

to reduce the dimensionality of the spectra we firstly use a non-negative matrix factorisa-

tion (NMF) model [27] and follow that with a random forest regression (RFR) model [18] 

to make our prediction. The model implementations for the NMF and RFR are provided 

by the python scikit-learn library [28]. 

3.1 NMF 

The NMF model is a method of representing data as a linear representation using 

non-negativity constraints. The imposed non-negative constraint leads to a part-based 

representation that allows only additive, not subtractive, combinations of the original data 
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[27,29]. Using the NMF in the first step allows us to reduce the dimensionality of the input 

data to manageable levels that can be used as input to the regression model.  

In the 2-step process used herein we firstly reduce the spectral data to a series of 

components with an NMF model where the components are the representation of the ad-

ditive parts comprising the training signals. Due to the non-negative nature of the com-

ponents they can have a physically interpretable correspondence [30,31], or when the 

components are predefined such that the components represent spectral endmembers the 

parts based weights returned are indicative of the proportions of those endmembers and 

hence can be used in a linear spectral unmixing [32–36].  

The 20000 spectra selected for training were firstly used in the construction of a series 

of NMF models where the number of components used in each model differed. e.g. 5, 10, 

15, …, 30 components. In this study a reconstruction R2 score of 0.99 was sought on the 

transformed spectra and inverse transformed NMF values. By this it means that a given 

NMF model is generated for a given number of components and the 5000 validation spec-

tra transformed into the NMF space and the inverse transformed applied, and the result-

ing spectra compared to the original testing spectra and the R2 calculated. The high valued 

constraint on the R2 of the reconstruction is set so we are confident that the components 

are representative of the measured spectra and are a compressed version of the original 

dataset. In this study 25 components satisfied the criteria of a 0.99 R2. The NMF model 

was then established for 25 components and saved so it could be used to transform any of 

the remaining spectra.  

Although it isn’t explored further, and as noted earlier, the 25 components can be 

considered as spectral end-members of the training set [32–34,37] where the components, 

in this case, are a representation of spectral endmembers of the dataset and the weighting 

values returned in the transform the proportion of each endmember required to produce 

the measured spectrum. In terms of physical size on disk the trained NMF model occupies 

approximately 300 KB of space.  

 

3.2 RFR 

With a dimensionality step in place via an NMF model the resulting 25 weighting 

values output for a given sample are used as the input features to the RFR model to pro-

vide the actual prediction value. In a regression scenario random forests, or random deci-

sion forests, are an ensemble method that use a collection of decision tress to output the 

mean prediction of the individual trees [18]. The benefit of using random forests is they 

are generally considered robust and self-correcting so can reduce the overfitting often ob-

served in individual decision trees [18,38]. 

While several implementation parameters can be used to construct an RFR model we 

have opted to use the defaults as set in the scikit-learn library except for the maximum 

depth of the decision trees.  In the final RFR model the maximum depth of an individual 

tree was set at 16.  

The latter value was determined by increasing the maximum depth of the RFR model 

until the R2 score of the predictors was found to be minimally different to an RFR model 

with an unbounded maximum depth on the decision trees. The resulting RFR model was 

then trained and validated with the 20000 and 5000 spectral samples respectively and 

saved for future use with the remaining validation data. The physical size of the RFR 

model on disk is 130 MB.  

In summary the application of the 2-step methodology after training and validation 

is as follows: 

1. Set any spectral reflectance values that are less than zero to zero (potential measure-

ment errors). This is a requirement since the NMF cannot work with negative inputs. 

2. Transform the Nx1476 individual spectra via the precomputed NMF model to the 

Nx25 sample space, where N is the number of spectral samples. 

3. Input the Nx25 NMF transformed spectra into the precomputed RFR model and re-

trieve the estimated parameter values for Fe, SiO2, Al2O3, TiO, CaO, MgO, K2O and 

LOI. 
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4. Results 

The results contained herein are split into 3 subsections. Namely, spectral, global, 

and downhole. Each subsection focuses on an aspect of the data and/or its relevance to 

the results. The spectral subsection will look at spectra associated with the 8 geochemical 

parameters and the potential minerals associated with said parameters. The global sub-

section looks at the performance of the prediction model as it applies to the entire collec-

tion of validation data. Lastly, the downhole subsection presents a downhole comparison 

of predicted results against the measured response of 4 drillcore.  

4.1 Spectral 

To gauge the potential differences in the spectra associated with a given element, 

validation dataset four was used to retrieve the spectra corresponding to each of the 8 

geochemical parameters being at their maximum values. These spectra are shown in Fig-

ure 1 where the parameter and value of the maximum for the spectral sample is provided 

in the legend. To distinguish between the absorptions more easily across the 400-25000nm 

spectral range two separate plots are shown.  The upper plot covers the 400-6000nm and 

the lower plot the 6000-25000nm spectral region. These spectra are not presented to pro-

vide an in-depth analysis of the full suite of potential minerals that might be encountered 

but rather to ascertain if the mineral types are at least consistent with what might be ob-

served when the given geochemical parameter is at a maximum.  

 

Figure 1. Indicative spectra selected from dataset 4 corresponding to the maximum value of a given geochemical parameters. The 

spectra are indicators only of the potential differences in reflectance that might be associated with a given parameter. It is expected, 

and confirmed, that certain whole-rock parameters will be consistent with given mineral assemblages. Complementary to this 
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figure is Table 2 which provides a summary of some of the major absorption/emission features of minerals present in the study 

area and noted within the spectra.  

 

Complementary to Figure 1 is Table 2 which provides a summary of some of the 

major absorption/emission features of minerals present in the study area. It is noted that 

respective absorption bands can be present in minerals that are not listed in table. The 

lower and upper wavelength positions are only given for absorption bands where related 

compositional changes occur otherwise, an estimated central location is provided. 

Table 2. A summary of some of the major absorption/emission features of minerals present in the study area. It is noted that 

respective absorption bands can be present in minerals that are not listed in table. The lower and upper wavelength positions are 

only given for absorption bands where related compositional changes occur otherwise, an estimated central location is provided.  

Label 

Dominant mineral 

group compo-

nent/Group Assignment Literature nm/cm-1 

A iron oxide/Hematite 

Fe3+CFA (6A1> 

4T1) [39] 877/11403 

B kaolin group/Kaolin n+dAl2OHi  [40] 2209/4527 

C kaolin group/Kaolin nAl2OHo  [40] 2705/3697 

D kaolin group/Kaolin nAl2OHi [40] 2761/3622 

E 

Mg-rich Calcium car-

bonate/Dolomite 3n3CO3 [41] 

2312-2323/4325-

4305 

F 

Calcium car-

bonate/Calcite 3n3CO3 [41] 2340/4237 

G 

Mg-rich Calcium car-

bonate/Dolomite 2n3+n1 [41] 

2505-2518/3992-

3971 

H 

Calcium car-

bonate/Calcite 2n3+n1 [41] 

2530-2541/3953-

3935 

I 

Mg-rich Calcium car-

bonate/Magnesite "n3peak"CO3 [7] 6405/1561 

J 

Calcium car-

bonate/Dolomite "n3peak"CO3 [7] 6490/1541 

K Quartz/Quartz n(Si-O-Si) [42] 8150/1227 

L quartz/Quartz n(Si-O-Si) [42] 8598/1163 

M 

Quartz/Vitreous Sil-

ica n(Si-O-Si) [43] 9025/1108 

N 

kaolin group/Kaolin 

Group nSi-O [44]  9891/1011 

O 

Mg-rich Calcium car-

bonate/Magnesite "n2peak"CO3 [7] 11058/904 

P 

Calcium car-

bonate/Dolomite "n2peak"CO3 [7] 11236/890 

Q 

Mg-rich Calcium car-

bonate/Ankerite "n4trough"CO3 [7] 13656/732 

R 

Calcium car-

bonate/Calcite "n4trough"CO3 [7] 13942/717 

S iron oxide/Hematite 

Fe-O lattice vi-

bration [45]  16393/610 

T iron oxide/Hematite 

Fe-O lattice vi-

bration [45] 22026/454 
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In Figure 1 the spectra named Fe, Al2O3 and TiO2 display iron oxide absorptions that 

are characterised by crystal field interactions around 900 nm [46,47] and are indicative of 

hematite and goethite. The spectrum associated with the greatest amount of Fe in this case 

does not appear to have the greatest 900nm absorption depth, as compared to the Al2O3 

and TiO2 spectra, and is seemingly free from indicative kaolin group absorptions located 

at 2206nm [40,47]and 2705nm [40] and 2761nm [40] which are present in the Al2O3 and 

TiO2 spectra. The Fe spectrum in this case, and because of the lack of other mineral ab-

sorptions, is probably a relatively pure Fe sample. 

The CaO and MgO (and the sample with the highest LOI) samples are consistent with 

carbonates. Absorption features associated with carbonates are observed at approxi-

mately 2300nm [41,48], 2500nm [41], 3500nm, 4000nm, 4600nm and 6400-6500nm [7]. Cal-

cium dominated carbonates, such as calcite, have absorptions at longer wavelengths in 

the 2300nm and 2500nm spectral regions as opposed to those carbonates, such as siderite 

or magnesite, where Fe or Mg replaces the Ca, and the absorption features shift to shorter 

wavelengths [48–50].  

As noted, the Al2O3 spectrum display several absorptions commonly associated with 

kaolinite but also contain jarosite as defined by a distinct absorption at 2260nm [51]. The 

sample associated with the greatest TiO2 has weak kaolin group absorptions at 2160nm 

and 2200nm and around 2700nm. 

The spectrum relating to the highest valued SiO2 is devoid of discernible absorption 

features in the VNIR/SWIR but is distinguishable as a quartz sample by the notable peaks 

located at approximately 8500nm, 9000nm, 12500nm and 12800nm [42,43]. Lastly, the 

spectrum associated with the highest K2O value is almost free of any discernible absorp-

tion features with the exception being kaolin group absorptions around 2700nm. In this 

case the SWIR absorptions around 2200nm that are also associated with the kaolin group 

are not discernible.   

4.2 Global 

Table 3 and Figures 2-5 summarise the results of the 2-step workflow, namely NMF-

RFR referred to earlier. In Table 3, three separate values are referred to, namely the R2, the 

RMSE and the standard deviation of the RMSE. Column 1 names the dataset in question 

and lists the number of drillholes that are present in each dataset. Any row that refers to 

the training dataset are the values as returned by applying the models to the 5000 valida-

tion samples while the remaining datasets are the results of applying the models to the 

unseen testing datasets. The results listed for the “Training” dataset are those values as 

returned by the validation set (5000 samples) for the RFR model trained on the training 

set (20000 samples). All global averages given are the averages for the 6 testing datasets 

(given as Set2-Set7). In Figures 3 and 5 the results do not include any values from the 

training/validation dataset and are only comprised of results from testing datasets (Set2-

Set7). 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 December 2021                   doi:10.20944/preprints202112.0184.v1

https://doi.org/10.20944/preprints202112.0184.v1


 

Figure 2. The calculated R2 scores for each of the 6 testing datasets (sets 2-7) and the training and validation dataset (simply given 

as Training) for the 8 whole-rock parameters modeled. The training and validation data return high R2 scores overall which are 

found to generally decrease when the model was applied to the testing datasets. The reduction in the overall R2 scores was most 

pronounced in the TiO2, CaO, MgO and K2O parameters whose values low for most of the data and are considered as consisting of 

primarily background (refer to Figure 4).    

 

Figure 3. Measured whole-rock parameters versus the predicted value for the 8 geocheimical parameters used (wt.%). Each plot 

shows the combined measured versus predicted for the 6 valiation datasets only. The 1-to-1 line is shown in black for each plot. 

While CaO and MgO show what appear to be appreciable ranges the bimodal nature of the values is also observed with the bulk of 

the being primarily distributed around the origin i.e. background values (refer to Figure 4). 
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Figure 4. The empirical cumalative distribution of the 8 whole-rock geochemical parameters for the 6 validation datasets (sets 2-7) 

and the predicted values as returned by the proposed method. A succesful prediction over a given dataset should produce a 

distribution that is the same as the actual distribution. Generally small departures are noted and would indicate that the model is 

accurately reproducing the true distribution and values. It is noted that the distributions for TiO2, CaO, MgO and K2O show the 

range of values for these parameters is exteremely small and primarily confined to background. 

 

Figure 5. The RMSE (wt.%) distribution of the 8 whole-rock geochemistry parameters as calculated from the 6 validation datasets. 

In this case the RMSE is that reported on a per-drillhole basis so the spread of potential RMSE can be evaluated. While the R2 scores 

(Figure 1) for TiO2, CaO, MgO and K2O were found to generally be smaller than the other four majors the small RMSE and known 

distribution still indicate a fairly successful modeling. 

Table 1. The R2 score, RMSE and standard deviation of the RMSE for the 8 whole-rock geochemical parameters used for training 

and validation data and the 6 individual test data sets. The number of drillcore for a given dataset are given in the first column 
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with each dataset comprising approximately 25000 samples. The results are calculated on a per-dataset basis and represent global 

results per dataset.  

Dataset 
 

Fe SiO2 Al2O3 TiO2 CaO MgO K2O LOI 

Train/Val: 1185 R2 0.99 0.99 0.97 0.88 0.99 0.99 0.92 0.98 

Set 2: 1603 
 

0.96 0.96 0.92 0.64 0.96 0.95 0.60 0.92 

Set 3: 1292 
 

0.95 0.96 0.91 0.63 0.88 0.91 0.64 0.90 

Set 4: 1087 
 

0.97 0.97 0.95 0.74 0.82 0.77 0.68 0.87 

Set 5: 1620 
 

0.95 0.96 0.93 0.74 0.94 0.94 0.62 0.94 

Set 6: 1542 
 

0.95 0.96 0.91 0.62 0.89 0.82 0.67 0.88 

Set 7: 1070 
 

0.94 0.95 0.92 0.70 0.85 0.81 0.67 0.89  
Average 0.95 0.96 0.92 0.68 0.89 0.87 0.65 0.90 

Train/Val: 1185 RMSE 1.74 2.13 0.82 0.09 0.29 0.23 0.13 0.78 

Set 2: 1603 
 

3.00 3.83 1.29 0.15 0.41 0.35 0.18 1.16 

Set 3: 1292 
 

3.21 3.84 1.25 0.13 0.74 0.55 0.25 1.42 

Set 4: 1087 
 

2.69 3.46 1.23 0.12 0.23 0.19 0.19 0.96 

Set 5: 1620 
 

2.88 3.74 1.15 0.12 0.27 0.23 0.15 0.95 

Set 6: 1542 
 

2.91 3.71 1.30 0.13 0.32 0.32 0.18 1.09 

Set 7: 1070 
 

3.38 4.05 1.41 0.16 0.53 0.47 0.29 1.24  
Average 3.01 3.77 1.27 0.13 0.41 0.35 0.21 1.14 

Train/Val: 1185 Sdev RMSE 0.99 1.21 0.42 0.10 0.43 0.32 0.16 0.49 

Set 2: 1603 
 

1.62 1.95 0.86 0.15 0.71 0.53 0.27 1.20 

Set 3: 1292 
 

2.01 1.99 0.71 0.14 1.36 0.69 0.27 1.39 

Set 4: 1087 
 

1.26 1.65 0.55 0.09 0.40 0.22 0.19 0.54 

Set 5: 1620 
 

1.68 1.86 0.68 0.11 0.51 0.31 0.16 0.56 

Set 6: 1542 
 

1.39 1.72 0.82 0.14 0.61 0.56 0.23 0.76 

Set 7: 1070 
 

1.93 1.95 0.84 0.16 0.78 0.66 0.29 0.92  
Average 1.65 1.85 0.74 0.13 0.73 0.49 0.24 0.89 

 

An examination of the training/validation data R2 scores in Table 3 and Figure 2 to 

that of Set2-Set7 shows the R2 is generally maintained in the testing datasets but does de-

crease, notably for TiO2 and K2O, compared to the R2 for the training/validation data. This 

is not wholly unexpected as the spatial locations of the training/validation data are in 

some cases many tens of kilometres removed from the testing cases.  

Figure 3 shows the measured versus predicted values for the 6 validation data sets 

with the black line in each plot representing the 1-to-1 line. Specifically, the range of values 

for TiO2 and K2O are seen to be small as compared to the other parameters with the bulk 

of the TiO2 and K2O heavily clustered near the origin. The lack of defining range for these 

two parameters would seem a likely contributing factor to their decreased R2 values. CaO, 

MgO and the LOI have a level of bimodal distribution (see Figure 3) and while they also 

are heavily distributed near the origin the bimodality most likely helps to extend the range 

and provide clearer paths for the decision trees within the RFR. The bimodal distribution 

of the LOI, which corresponds with the MgO and CaO distributions, aligns with the spec-

tral examples given in Figure 1 where the spectrum from dataset 4 that corresponding to 

the greatest LOI value is a carbonate dominated spectrum like the MgO and CaO spectra.  

Figure 4 shows the estimated cumulative distribution function for the 6 validation 

datasets and the 8 geochemical parameters. This plot (estimated from kernel density esti-

mators) allows a comparison of the predicted value distributions to the measured. A suc-

cessful prediction for a given dataset should show the same distribution without major 

deviations. In general, the distributions follow each other for a given dataset and param-

eter indicating that the combined NMF-RFR model is working reasonably well. 
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Figure 5 presents the distribution of RMSE for each of the predicted parameters over 

the 6 validation datasets. No distinction in this figure is made between the 6 datasets and 

the results are therefore global. In most cases the central RMSE is small compared to the 

overall range of values for a given parameter. However, and as noted previously, the clus-

tering of values for TiO2 and K2O around the origin implies the RMSE for these parameters 

is relatively larger than their counterparts.     

4.3 Downhole 

Lastly, and shown in Figure 6 are the downhole predicted and measured values for 

Fe, SiO2, Al2O3 and LOI of 4 drillcore. The drillcore shown are not from any one dataset 

and were selected based on their length (randomly selected from all drillcore that had 

greater than 150 entries) to show the ability of the model. The other 4 geochemical param-

eters are not shown since the scale of the plots reduces those traces to lines just above zero.  

 

Figure 6. The measured and predicted downhole values for Fe, SiO2, Al2O3 and LOI of 4 randomly selected drillcore where the 

length of the drillcore comprised greater than 150 entries. The other whole-rock geochemistry parameters are not shown due to the 

values being comprised of background only which only appear as singular valued traces along y=0. Overall a good corespondence 

between the predicted and measured values is observed with generally minor deviations noted.    

 

The measured values are shown on the left-hand side and the predicted values on 

the right. The y-axis on all measured-predicted pairs is the same for ease of comparison. 

The performance of the model is generally observed to be good and matches the measured 

values well. Some discrepancies can be found but overall, the geochemical parameters as 

predicted from the spectral input could most certainly be used to ascertain the downhole 

distribution and value of said parameters.  

This section may be divided by subheadings. It should provide a concise and precise 

description of the experimental results, their interpretation, as well as the experimental 

conclusions that can be drawn. 
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5.0 Discussion & Conclusions 

The aim of this study was to ascertain if geochemical parameters could be predicted 

from spectral measurements. The spectral measurements in this study have a 1-to-1 cor-

respondence with whole-rock geochemistry and provide a data rich avenue for investi-

gating the feasibility.  

The global findings demonstrated that a relatively small amount, compared to the 

total number of samples in the entire dataset, of spectral samples and matched geochem-

istry can be used to successfully train a combined NMF and RFR model to make accurate 

and quantitative predictions. The dataset used for this study are from a reasonably uni-

form and non-diverse geology and allowed accurate predictions to be made that extended 

far beyond the spatial confines of the training and test dataset locations. If the underlying 

geology was to markedly depart from that of the training and test data used to build the 

models, then it would require new models to be built that can incorporate such changes.   

However, not all the whole-rock entries were modelled well or even able to be mod-

elled. To successful predict quantitative values for a given element requires that the ele-

ment in question had a broad range. By this it is meant that if an element, such as P or S, 

are not well represented within the geology and samples then there is, as intuitively ex-

pected, nothing to model. In this study several geochemical elements had a small range 

of values and/or where distributed close to the origin. These represented background val-

ues of which larger values were not always present, as was the case with TiO2 and K2O, 

and for which the predictive power of the model with these elements was limited. Other 

elements such as CaO and MgO demonstrated bimodal distributions whose range, even 

though the bulk of the values are scattered accumulated about the origin, allowed a rea-

sonable quantitative prediction to be made. In most cases the RMSE on those elements 

which were range restricted were still small and can be used confirm that the element is 

of background quantities.    

This aspect was reiterated by producing per-drillcore R2 scores and RMSE values. 

Those elements that had an extensive range, such as Fe and SiO2, produced per-hole high 

R2 scores and small RMSE values. On the contrary, and specifically for those elements that 

were range constrained, poor R2 scores (while still producing low RMSE in most cases) 

result. However, when drillcore are encountered with an extended range the individual 

R2 increases and the RMSE also slightly increase. 

While this may seem like an obvious result it is worth noting and bearing in mind 

that if one trains and validates a model and applies it, for example to a single drillcore, 

the returned result, if it was compared later to measured values for that same single drill-

core, may appear to be poor.  In other words, producing an R2 score on the singular drill-

core should not be used as an indicator of model performance.  

Additionally, the use of a RFR model in this case has proven to be successful but it 

has limitations that may necessitate the retraining of the model at future dates. While the 

RFR is robust it does not extrapolate and hence cannot return predictions beyond the larg-

est and smallest values used to train the model. Thus, if the initial data used to train the 

model is a subset of a greater range then the model would need retraining to account for 

the extended range. Indicators this may be needed are results being returned that are con-

sistently at the extent of training data’s range.  

In this study the spectral data cover a comprehensive wavelength range that might 

not be considered typical. However, the principle applied should be viable for reduced 

spectral ranges such as those encountered by the HyLogger only or by FTIR only. It is 

expected that a reduced range, and hence a lack of absorptions features that are repre-

sentative of various elements, may lead to a reduction in the overall accuracy of the model 

depending on the element sought and the spectral range considered. For example, at-

tempting to quantify SiO2 from the VNIR/SWIR spectral range may prove to be extremely 

difficult due to the lack of absorption features associated with SiO2 in that spectral range. 

Future work will test this hypothesis by constraining the data to reduced ranges to eval-

uate the impact on the regressions.  
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In summary a viable method of predicting several whole rock geochemistry param-

eters from spectral measurements of pulps has been defined and validated against a much 

larger spatially distributed dataset. Of the 8 parameters modelled, 4 show exceptional 

promise and have validation R2 scores greater than 0.8 and RMSE in the low single digit 

range. Of the other 4 parameters the R2 were less however the RMSE scores possibly still 

acceptable. The proposed method could be used to return a quick turnaround of potential 

downhole distributions and might be used to better spend an analysis budget. Namely, 

by highlighting spatial regions prior to laboratory based whole rock analysis more focus, 

namely through the laboratory analysis, can be made of those areas deemed to be of eco-

nomic importance. Conversely areas identified by the proposed method of having no eco-

nomic importance might be subject to laboratory analysis at a reduced sampling space.  
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