
Supplementary Figures

Figure S1: Individual disordered profile plots for PrDOS, IUPred2U, and PONDR. Disorder probability prediction graphs for Nrf2 and Keap1 are shown for all three prediction algorithms. A score of >0.5 predicts disorder and a score of <0.5 predicts order.

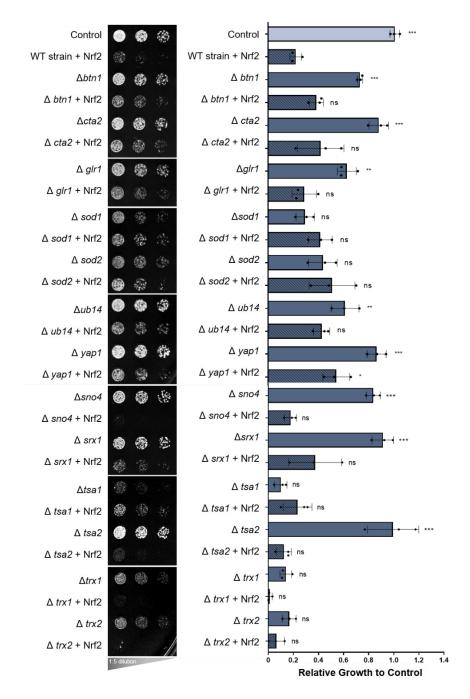


Figure S2: Full panel of growth assays for Nrf2 expression in yeast oxidative stress deletion strains. Growth was quantified relative to control. Means derived from three biological replicates were used during analysis. Means were analyzed using one-way ANOVA followed by Tukey's post hoc test. Data are expressed as mean \pm SD. p<0.05 was considered statistically significant; *p<0.05, **p<0.01, ***p<0.001.

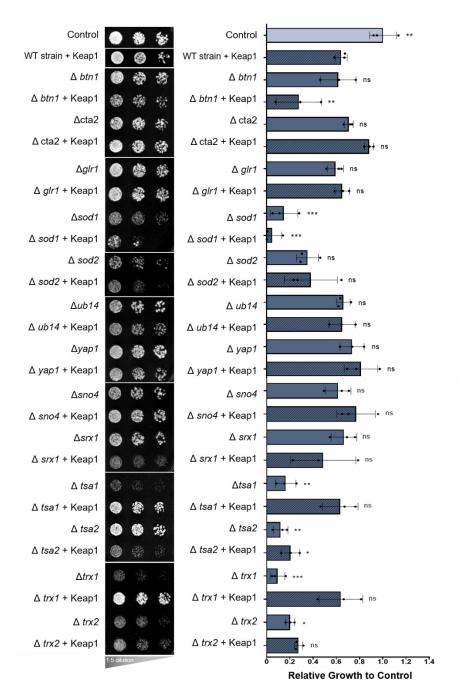
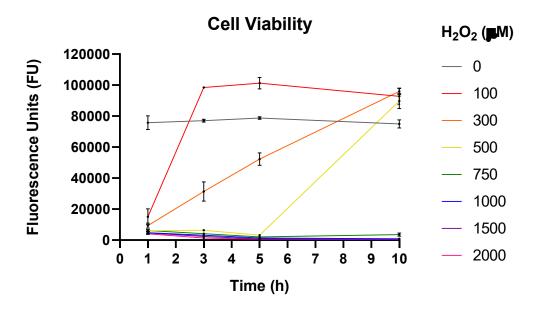



Figure S3: Full panel of growth assays for Keap1 expression in yeast oxidative stress deletion strains. Growth was quantified relative to control. Means derived from three biological replicates were used during analysis. Means were analyzed using one-way ANOVA followed by Tukey's post hoc test. Data are expressed as mean \pm SD. p<0.05 was considered statistically significant; *p<0.05, **p<0.01, ***p<0.001.

Figure S4: Growth assay control plates for all yeast oxidative stress deletion studies. Yeast- extract-peptone-dextrose (YPD) and selective dextrose (SD) control plates are shown for (A) Nrf2 and (B) Keap1 experiments. Note that some deletions strains harbour an inherent toxic growth phenotype observed even on control media.

Figure S5: Optimization of hydrogen peroxide treatment concentration and duration. Non-transfected HeLa cells were treated with various concentrations of hydrogen peroxide for 1, 3, 5, and 10 h and cell viability was assessed (measured by ATP levels which indicates the presence of metabolically active cells).

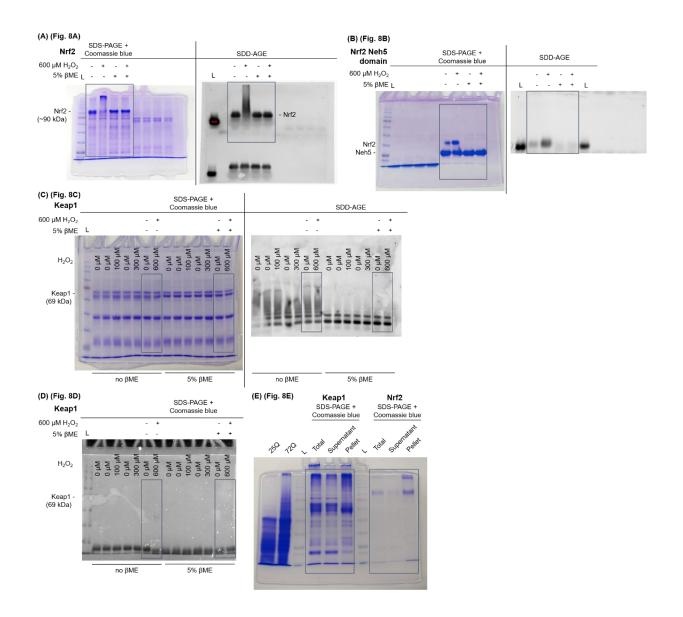


Figure S6: Full uncropped and unadjusted blots for all Coomassie blue and SDD-AGE experiments in Figure 8. (A-E) Nrf2 or Keap1 purified protein or protein domains were treated with $H_2O_2 \pm \beta ME$ for 30 mins.

	Species	Specific Name	UniProt Code
Nrf2	Human	Homo sapiens	Q16236
	Chimpanzee	Pan troglodytes	H2RAX5
	Orangutan	Pongo abelii	H2P7Y6
	Rhesus macaque	Macaca mulatta	F7GPD8
	Marmoset	Callithrix jacchus	F7CLI8
	Galago	Otolemur garnettii	H0Y129
	Mouse	Mus musculus	Q60795
	Rat	Rattus norvegicus	O54968
	Golden hamster	Mesocricetus auratus	A0A1U7QFW3
	Rabbit	Oryctolagus cuniculus	G1SEJ1
	Cow	Bos taurus	Q5NUA6
	Bat	Myotis lucifugus	G1P184
	Elephant	Loxodonta africana	G3TGN3
	Chicken	Gallus gallus	F1P315
	Zebrafish	Danio rerio	Q7ZVI2
Keap1	Human	Homo sapiens	Q14145
-	Chimpanzee	Pan troglodytes	H2QFB9
	Orangutan	Pongo abelii	Q5R774
	Rhesus macaque	Macaca mulatta	G7NL03
	Marmoset	Callithrix jacchus	F7HDW0
	Galago	Otolemur garnettii	H0X799
	Mouse	Mus musculus	Q9Z2X8
	Golden hamster	Mesocricetus auratus	A0A1U7R3C2
	Rat	Rattus norvegicus	P57790
	Rabbit	Oryctolagus cuniculus	G1SFF4
	Cow	Bos taurus	A7MBG4
	Bat	Myotis lucifugus	G1PRL8
	Elephant	Loxodonta africana	G3TJS6
	Chicken	Gallus gallus	Q5ZL67
	Zebrafish	Danio rerio	E7FB56

Table S1: The 15 species observed in cysteine analysis studies. The species name, specific name, and UniProt code are shown.

Gene	Protein	Function (UniProt Consortium)	UniProt Code
BTN2	Protein BTN2	V-SNARE binding protein that facilitates specific protein retrieval from a late endosome to the Golgi. Modulates the rate of arginine uptake. Involved in pH homeostasis.	P53286
CTA1	Peroxisomal catalase A	Occurs in almost all aerobically respiring organisms and serves to protect cells from the toxic effects of hydrogen peroxide.	P15202
GLR1	Glutathione reductase	Maintains high levels of reduced glutathione in the cytosol.	P41921
SOD1	Superoxide dismutase	Destroys radicals that are normally produced within the cells and which are toxic to biological systems.	P00445
SOD2	Superoxide dismutase	_	S4VPL7
UBI4	Polyubiquitin	Becomes conjugated to proteins, marking them for selective degradation via the ubiquitin-26S proteasome system.	P0CG63
YAP1	AP-1-like transcription factor YAP1	Transcription activator involved in oxidative stress response and redox homeostasis. Regulates the transcription of genes encoding antioxidant enzymes and components of thiol-reducing pathways.	P19880
SNO4	Probable glutathione- independent glyoxalase SNO4	Catalyzes the conversion of methylglyoxal (MG) to D-lactate in a single glutathione (GSH)-independent step. May play a role in detoxifying endogenously produced glyoxals. Involved in protection against reactive oxygen species (ROS).	Q04902
SRX1	Sulfiredoxin	Contributes to oxidative stress resistance by reducing cysteine- sulfinic acid formed under exposure to oxidants in the peroxiredoxin TSA1. May catalyze the reduction in a multi-step process by acting both as a specific phosphotransferase and as thioltransferase.	P36077
TSA1	Peroxiredoxin TSA1	Thiol-specific peroxidase catalyzing the reduction of hydrogen peroxide and organic hydroperoxides to water and alcohols, respectively.	
TSA2	Peroxiredoxin TSA2		
TRX1	Thioredoxin-1	Participates as a hydrogen donor in redox reactions through the reversible oxidation of its active center dithiol to a disulfide, accompanied by the transfer of 2 electrons and 2 protons.	P22217
TRX2	Thioredoxin-2		P22803

Table S2: Yeast oxidative stress gene deletion strains used in this study. The gene name, protein name, function (obtained from UniProt), and UniProt code are shown.