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Abstract: Air pollution is now considered to be the world’s largest environmental health threat ac-
counting for millions of deaths globally each year. The social group that is particularly exposed to 
the harmful effects of air pollution is the children. A daily route to school can constitute an important 
component of children’s physical activity, but air pollution can pose a threat to their health. Numer-
ous studies have proved high loads of PM can be effectively reduced by vegetation. Little is however 
known, whether vegetation can also reduce PM during the leaf dormancy period. In this study, we 
investigated the role of trees in PM removal on children’s routes to schools during winter. We in-
vestigated walking routes to selected schools in Warsaw, by examining the adjacent vegetation and 
PM2.5 and PM10 concentrations and the presence of local black-smoke-belching stoves. We found 
that proximity to local CHP emitters had the strongest impact on pollution on the way to schools, 
while not finding a significant relationship between dense greenery and PM loads. Even more, the 
highest density of vegetation along walking routes tended to stimulate higher PM concentrations. 
The results obtained show the poor performance of tree canopy in reducing PM loads during winter. 
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1. Introduction 
Air pollution is now considered to be the world’s largest environmental health threat 

accounting for millions of deaths globally each year [1,2,3]. The main component of air 
pollution is the particulate matter (PM), which can be emitted to the atmosphere directly 
(primary PM), or can be formed as a result of chemical reactions (secondary PM) [4]. Apart 
from natural sources of PM the anthropogenic PM emissions include primarily fuel com-
bustion and manufacturing processes [5, 6]. Recent years have shown that the highest an-
nual average concentrations of PM10 and PM2.5 in Europe occur in central and eastern Eu-
ropean countries, mainly in Poland [7].  

Among various air pollutants, particulate matter (PM) is the most harmful and most 
representative pollutant [8,9] and whose major toxicological effects on human health and 
the environment have been observed for decades [10]. PM has been associated with in-
creased risk of respiratory health outcomes among children [11,12] and an increased risk 
of cardiovascular diseases, including heart failure and myocardial infarction, hyperten-
sion and stroke [13]. Children are a group particularly vulnerable to the effects of PM [14], 
as they are more active, breathe proportionately more air than adults, their respiratory 
systems are still developing, and they spend more time outdoors, inhaling the highest PM 
concentrations just above the ground. Children growing up in the most polluted areas 
reveal significant lung function deficits [15] and studies show an increased risk of ADHD 
[16] and developing allergies [17]. The locations particularly important in terms of chil-
dren's exposure to air pollution are their routes to school. Walking to school takes up more 
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than 50% of children's active time, compared to approximately 20% spent at school, 10% 
at home and 1% in green areas [18]. 

Concerns over the health and well-being of the city residents, particularly the most 
vulnerable groups, make it necessary to take appropriate measures to shield them from 
exposure to harmful PM. As a significant share of the children’s daily activities is their 
commute to school, the proper design of their routes can support a friendly and healthy 
environment and reduce the negative effects of air pollution on their journey [19]. Positive 
relations between the presence of greenery and their beneficial role in ensuring children’s 
health and well-being have been long investigated. Children who live near urban green 
areas have better lung capacity [20], while street trees have been proved beneficial for 
childhood asthma prevention [21]. Growing up in greener neighbourhoods may also be 
beneficial for brain development and cognitive functions [22]. Children who grew up in 
environments with the lowest levels of green were 55% more likely to develop mental 
disorders [23]. 

Factors that influence the ability of vegetation to accumulate pollutants are the loca-
tion and structure of greenery, morphological characteristics and environmental condi-
tions [24]. Plants do not have the ability to move from a contaminated site and therefore 
have evolved mechanisms that allow them to survive in a contaminated environment. 
This ability is the basis of phytoremediation technology, which involves using plants to 
trap pollutants and, under certain conditions, break them down. Phytoremediation uses 
selected species of trees, shrubs and climbers that are able to accumulate on their leaves 
PM harmful to human health, thus supporting the process of air purification from pollu-
tants [25]. Research shows that the presence of plants near buildings can have a positive 
impact on well-being, as well as physical and mental health [26]. However, during the 
winter, when air emissions are particularly high [27], There is a lack of comprehensive 
research on the role of trees in the leafless season, which makes the role of plants in the 
winter season unclear. The aim of this study was to determine the extent of particulate 
matter pollution that children are exposed to on their routes to school during the leafless 
season and to investigate how the adjacent trees can reduce exposure to high PM concen-
trations. 

 
2. Materials and Methods 

The study area is located in Warsaw, Poland’s capital and the largest city with a pop-
ulation of 1.79 million [28]. The average annual temperature in Warsaw is about 9.3 °C, 
while the yearly precipitation is about 695 mm. Despite being a relatively green city, with 
the vegetation cover exceeding 50% [29] Warsaw is characterized by the phenomenon of 
urban heat island [30]. The character of pollution in Warsaw is typical of large urban ag-
glomerations, PM2.5, PM10, nitrogen and carbon oxides and sulfur dioxide being the dom-
inant pollutants [31]. In the very centre of Warsaw and in densely populated districts lo-
cated outside the city centre, high levels of PM have been noted. The analysis of PM con-
centrations in the winter season showed that the main emission sources are of anthropo-
genic origin (energy production based on coal and biomass combustion). In the warm 
season, the pollutants mainly originate from local emission sources, mainly urban traffic 
and transportation [32]. Warsaw launched the program of improving air quality and has 
been continuously encouraging and subsidizing the removal of black-smoke-belching 
stoves, however, the share of existing ones still remains at a high level, being unevenly 
distributed throughout the city (Figure 1).  

In this study, we investigated the pollution levels during a daily school commute of 
children on their way to school. We took into consideration primary schools, due to the 
fact that children aged 6-14 are more susceptible to high pollutant concentration levels, 
but they are also most likely to commute to school on foot. Due to the regionalization of 
primary education in Poland, those children are more likely to attend the nearest school. 
Out of 320 elementary schools in Warsaw [33], we selected four were which were located 
outside the strict city centre, so that mean annual pollution levels did not differ signifi-
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cantly (Table 1). We selected schools representing various possible pollution levels origi-
nating from municipal emissions and similar conditions in terms of possible traffic (prox-
imity to larger roads). The schools were selected in pairs - one group near a cluster of 
black-smoke-belching stoves (B and D) and one beyond such a cluster (A and C) (Table 
1). One pair (B and C) was selected in a location where the proportion of tree canopy in 
the neighbourhood (500 m buffer zone) was high (over 30%) and the other (A and D) were 
characterized by a low share of the canopy in the neighbourhood of the school (Table 1). 
For the assessment of the share of vegetated surfaces and traffic, we used BDOT (Database 
of Topographic Objects for Poland) which is the most fundamental source of information 
on the location of topographic objects in Poland [34].   

Table 1. Characteristics of investigated school locations and neighborhood (source: BDOT 10k) and average annual con-
centrations of PM2.5 and PM10 [35] and locations of black-smoke-belching stoves - heating furnaces [36]  

School  District Share of 
forested area   

[%] 

Mean annual  
concentratio

n of PM2,5 
[μg/m³] 

Mean 
annual 

concentratio
n of PM10 
[μg/m³] 

Number of 
black-smoke-

belching stoves 
in 1 km buffer 

A Ursynów 21,1 20,5 26,8 0 
B Wawer 36,6 19,6 25,4 8 
C Wesoła 57,2 19,1 24,5 0 
D Mokotów 0,7 22,1 29,0 7 

 
 

We inventoried all walking routes from the schools’ entrance within a buffer of 400 
m that we observed to be frequently used by children as their home-school routes (after 
initial observations conducted during one workday at each of the selected schools). In 
each location, we chose 3 to 4 main routes most frequently used by the pupils. Along the 
roads, we took regular measurements in plots located every 20 m, where we took 
measurements of PM concentrations and inventoried vegetation, discarding those sites at 
the edge of the tree canopy. 
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Figure 1. Location of the selected schools and the examined routes and study plots. Examined 
schools A – no. 319 (Ursynów district), B – no. 218 (Wawer district ), C – no. 385 (Wesoła district), 
D – no. 70 (Mokotów district).  

In all locations, we measured PM2.5 and PM10 concentrations in each of the study plots in 
December 2020 on three windless days (nearest local weather station indicating winds 
below 0.2 m/s) at weekly intervals. Measurements for each day were made in the 
morning (8-10 AM), representing the highest concentration rates typical for peak hours 
(possible increased loads due to traffic) and in the afternoon (12-14 PM) hours at the 
time when children were travelling from school but also when the PM concentrations 
recorded could be lower and are more likely to originate from the heating sources.   

We measured PM2.5 and PM10 concentrations with the Dust Air device [37] at a height of 
140 cm, corresponding to the height of the children. A series of measurements from 60 
seconds were recorded three times during the measurement. A reading was taken every 
10 seconds, then the average was recorded. 

In order to determine the relationship between vegetation density and PM loads, we 
measured Leaf Area Index (LAI) along the selected home-school routes using the SS1-
COM-R4 Complete System with Radio Link [38]. The measurements were performed 
under the canopy and the herbaceous vegetation along the routes at each side of the 
distinguished path and then averaged per plot. The LAI meter is most commonly used to 
determine the density of canopy, however, during the vegetation dormancy season, it can 
be effectively used for the assessment of the density of branches, which could allow the 
deposition of PM and also shelter the walking routes from high loads of pollutants. LAI 
measured during the leafless season is referred to as the Wooden Area Index (WAI), which 
provides information on the density of woody shoots and leaves remaining in winter [39].  

Statistical analysis 
We analysed the data on PM concentration and vegetation density in Statistica 10 

software. We tested the relationship between WAI and PM concentration levels with 
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Pearson’s correlation (after having confirmed the data is normally distributed).We used 
one-way ANOVA for comparing the data at p<0.05 significance level.   

3. Results 
3.1. Particulate matter content of the studied routes to schools 

Ambient air PM concentrations recorded along routes to school in wintertime were 
very much associated with the location of the school in terms of the proximity to 
individual household heating emitters (Table 1). Irrespective of the PM fraction and the 
time of day when measurements were made, significantly higher PM concentrations 
were recorded at schools B and D, which were surrounded by more emission sources 
(Figure 2). Concentrations at these locations exceeded the average acceptable level for the 
24 hours (PM10 50 µg/m3). Concentrations recorded in the afternoon were significantly 
higher than in the morning during rush hours (Figure 3). 

 

 
Figure 2. Mean PM2.5 and PM10 (µg/m³) concentrations of in the morning and evening on the studied 
sections of the road to schools from all measurement points. a, b - homogeneous groups, significant 
differences at p<0.05 
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Figure 3. Comparison of averaged PM2.5 and PM10 concentrations (µg/m³) at different times of the 
day; a, b - homogeneous groups at p<0.05. 

 
3.2 Vegetation density along the school routes in winter  

There were no statistical differences in WAI along the studied routes to schools. The 
average index ranged from 0.2 to 0.6, with high spatial variability (Figure 4). The highest 
mean WAI values were recorded in the surroundings of schools A and C (Figure 4), where 
the proportion of forests and woodlands was the highest (Table 1). 

 
Figure 4. Comparison of the WAI along the studied routes to schools. a, b - homogeneous groups at 
p<0.05. 

 
3.3 Relation between PM concentration and vegetation density in winter 

We found an ambiguous negative relationship between the greenery and PM 
concentrations during the vegetation dormancy period (Figure 5-8). We found a 
significant effect in the morning hours for schools A and D (Figure 5 and 8) in sites with a 
low proportion of trees in their neighbourhood (Table 1). The relationship between WAI 
and PM concentration was positive, resulting in a local increase in both fractions PM2.5 
and PM10 concentration (Figure 5 and 8).   
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Figure 5. WAI distribution and an average PM concentration from 8:00 to 10:00 and from 14:00 to 
16:00 in study plots along walking paths to school A (low share of trees, low number of local heating 
emission sources) 
 

 
Figure 6. WAI distribution and an average PM concentration from 8:00 to 10:00 and from 14:00 to 
16:00 in study plots along walking paths to school B (high share of trees, high number of local heating 
emission sources) 
 

 
Figure 7. WAI distribution and an average PM concentration from 8:00 to 10:00 and from 14:00 to 
16:00 in study plots along walking paths to school C (very high share of trees, low number of local 
heating emission sources) 
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Figure 8. WAI distribution and an average PM concentration from 8:00 to 10:00 and from 14:00 to 
16:00 in study plots along walking paths to school D (low share of trees, high number of local heating 
emission sources) 

4. Discussion 
In Warsaw, similarly to many other European cities, where energy coal-based heating 

systems are still common and the transformation towards clean energy sources is still 
ineffective, the majority of PM is produced in winter and it is related to heating activities 
[40,41]. Undoubtedly, drawing out from fossil fuels in the residential sector is essential for 
reducing PM pollution and thereby improving the city residents health status [40]. 
Fundamentally improving air quality requires deep decarbonisation of the energy system, 
as well as more synergistic pathways to simultaneously address air pollution and global 
climate change [42]. However, the lack of local solutions related to CHP emissions [41] 
results in very localised problems. A study of routes to schools in Warsaw found that 
proximity to local CHP emitters had the strongest impact on pollution on the way to 
schools (Figure 2). Given that the children spend more than 50% of their active time 
commuting to school [43], exposure to pollutants can have a critical effect on their health, 
which can impede pulmonary function development [1], leading to asthma development 
[2] and susceptibility to otitis media [3].  

An example of possible actions aimed at mitigating high loads of PM is the 
introduction of more greenery into cities. Models on the reduction of PM dispersion by 
trees in cities show promising results [44], indicating that the size, distribution and species 
composition of vegetation play a key role in PM reduction [45]. Urban trees contribute to 
improving air quality and can be used in national air protection strategies to reduce air 
pollutant concentrations [46]. 

The presence of greenery close to schools is mostly associated with their beneficial 
aesthetical as well as educational role for the young generation as even the sole visibility 
of vegetation outside the window was linked to improved performance of school pupils, 
not to mention the educational and aesthetical value [19, 47].  

Models predicting efficiency of greening interventions have shown to poorly capture 
the seasonal variability of greening, even when the main source PM is an increased 
residential heating in winter [48]. There is a lack of research on the role of trees in the 
leafless state in reducing high loads of PM which impedes our understanding of its impact 
on human health and well-being. Additionally, effectiveness of vegetation and 
application of phytoremediation methods is mostly criticized to be effective only during 
the vegetation season, while in some cases are reported where dense vegetation in winter 
can lead to creating local concentrations of PM [49, 50]. Our results suggest that such 
situations are possible during the winter (Figure 5 and 8). However, the influence of tree 
density in leafless state expressed by WAI on the formation of local pollutant 
concentrations is questionable (Figure 5 and 8). The investigated walking routes in places 
with the highest density of trees tended to stimulate PM concentrations. On the other 
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hand, the tree stands of comparable density did not show such peaks (Figure 5 and 8). The 
number of locations studied does not allow us to unambiguously resolve whether WAI is 
significantly related to local accumulations of pollutants. Studies performed during the 
vegetation season state tend to argue that pollution decreases with the density of trees 
[51]. A sufficiently large green area with a well-chosen species composition can be a viable 
way to improve air quality and in some cases even reduce PM pollution to acceptable 
levels [52]. In this work, the surroundings of schools B and C were the greenest (Figure 4), 
but this did not translate into significant reductions in PM concentrations measured at 
height and along the children's route to school (Figure 2). It seems that in order to 
effectively filter PM from the air in wintertime, urban greenery should be as numerous 
and dense as possible while maintaining porosity that guarantees air movement. In this 
way two unfavourable phenomena, local PM stagnation and uncontrolled transport of 
pollutants to potentially clean locations, may be limited. 

The role of trees during dormancy season in air purification processes requires 
further research [51]. Potentially the rough surface of branches and the remaining 
withered leaves of some species, accompanied by few evergreen and coniferous plants 
could potentially have some positive effect on reducing PM loads which could be 
deposited and trapped on their surface, accompanied by the sheltering effect allowing less 
pollutant to reach the paths used by the children. There are no studies however, which 
could confirm that phenomenon and assess its scale and extent. If it is confirmed that the 
occurrence of locally increased PM concentrations is a frequent phenomenon, further 
steps should be taken to counteract this, especially in places such as children's routes to 
school. Coniferous trees seem to be useful in this respect. These species also absorb PM 
during the winter months when air quality is poorer. Due to their smaller leaves, larger 
wax layer on their needles and more complex shoot structures, they have a high capacity 
to capture pollutants from the air [53]. Species such as black pine or common yew [54], as 
well as climbers could be grown along streets and be more effective in PM removal [55]. 
Undoubtedly greening interventions should always meet social approval, and the 
aesthetic function plays a primary role in species selection and greening solution used. 
Therefore, plant species proved to be most efficient in PM reduction might not necessarily 
be those most meeting public preferences. However, the numerous studies, included 
those performed in Warsaw, show a growing approval for innovative greening 
interventions, showing that the public is willing to accept other-than-traditional forms of 
greenery, if they are supported by economic or ecological benefits [56,57].  

The results we obtained did not show a positive role of trees in air purification in any 
of the locations. This could have been caused by the difficult environmental conditions 
along the roads, the discontinuity of greenery, and the relatively small proportion of trees 
in the area (Table 1). However, the results showing the negative impact of tree canopies 
during the winter season should not discourage the use of greenery, as the benefits 
outweigh the effects of exposure [58]. We hope to encourage further research and search 
for solutions in identifying these negative positions.  

We suggest that areas next to schools and roads to schools should be considered as 
requiring special attention, as all locations studied were exposed to above-normal 
concentrations of particulate air pollution (Figure 2). Areas along school roads should be 
greened continuously [51] to allow ventilation. Species selection and planting structure 
should also take into account the most difficult winter heating period in Northern Europe, 
especially near local pollutant emitters. 

5. Conclusions 

- Children attending schools located near thermal heating emitters were twice as exposed 
to high PM concentrations.  
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- Tree planting on the way to school in the winter season showed no positive effect on air 
quality along the analysed sections of the road to school, and locally even increased PM 
concentrations.  

- Research on how to avoid local concentrations of pollutants should be expanded by 
modifying the structure of greenery and the share of evergreen species to increase the 
effectiveness of plants in the winter season  

- We propose to treat roads to schools as special zones of street greenery. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1: 
title, Table S1: title, Video S1: title. 
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