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Abstract: Sylvester Matrix Equations (SME) play a central role in applied mathematics, particularly 

in systems and control theory. A fuzzy theory is normally applied to represent the uncertainty of 

real problems where the classical SME is extended to Fully Fuzzy Sylvester Matrix Equation 

(FFSME). The existing analytical methods for solving FFSME are based on Vec-operator and Kron-

ecker product. Nevertheless, these methods are only applicable for nonnegative fuzzy numbers, 

which limits the applications of the existing methods. Thus, this paper proposes a new numerical 

method for solving arbitrary Trapezoidal FFSME (TrFFSME), which includes near-zero trapezoidal 

fuzzy numbers to overcome this limitation. The TrFFSME is converted to a system of non-linear 

equations based on newly developed arithmetic fuzzy multiplication operations. Then the non-lin-

ear system is solved using a newly developed two-stage algorithm. In the first stage algorithm, ini-

tial values are determined. Subsequently, the second stage algorithm obtains all possible finite fuzzy 

solutions. A numerical example is solved to illustrate the proposed method. Besides, this proposed 

method can solve other forms of fuzzy matrix equations and produces finite fuzzy and non-fuzzy 

solutions compared to the existing methods. 

Keywords Fully fuzzy Sylvester matrix equations; Fuzzy matrix equation; Numerical fuzzy solu-

tion; Trapezoidal fuzzy multiplication 

 

1. Introduction 

SME in the form 𝐴𝑋 + 𝑋𝐵 = 𝐶 plays a vital role in many fields such as in control 

systems [1], medical imaging data acquisition, model reduction [2] and stochastic control, 

in addition to image processing and filtering [3]. Considering any uncertainty problems, 

such as conflicting requirements during the system process, instability of environmental 

conditions and the distraction of any elements or noise, the classical SME is sometimes ill-

equipped to handle uncertainty and vagueness in real-life situations; therefore, the crisp 

numbers need to be replaced by fuzzy numbers. Fuzzy logic has been studied since the 

1920s, as infinite valued logic by Lukasiewicz and Tarski [4]. The fuzzy set theory was 

introduced by Lotfi Zadeh [5] in 1965, while the set theory was developed by Georg Can-

tor [6]. Fuzzy Relation Equations (FREs) with the max-min composition was first studied 

by Sanchez [7]. According to Sanchez’s theorem, if a system of FREs has a solution, then 

the solution set is partially ordered. Therefore, the solution set of the given equations can 

be characterized by the maximum solution and all the minimal solutions. Due to the prac-

ticality of FREs, solving FREs has become one of the most extensively studied problems 
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in the field of fuzzy sets and fuzzy logic [8]. The theory and applications of FREs can be 

found in Di Nola et al. [9], which indicated that if the solvability of max-continuous t-

norm FREs is assumed, then the solution set for the FREs can be fully determined from a 

unique greatest solution and all minimal solutions, and the number of minimal solutions 

is always finite. Since then, FREs based on various compositions have been investigated. 

Some common compositions include max-min [9–14], max-product [15–18], max-Archi-

medean t-norm [19,20], u-norm [21], max t-norm [22] and max arithmetic mean [23,24]. 

The conditions for the existence of a solution to the inverse problem concerned with FRE 

are investigated in [25], a finite system of FREs with sup-T composition was studied in 

[26] and a system of FREs was investigated in [27,28]. It is worth mentioning that Kyosev 

Yordan [29] presented an original software for solving inverse problem resolution for the 

Fuzzy Linear Systems of Equations together with popular function for FREs, min-max, 

alpha, epsilon compositions of fuzzy matrices, min-max systems, systems of fuzzy intui-

tionistic equations, problems for finite fuzzy machines and fuzzy linear programming 

problem. However, this software needs to be modified to solve SME with Trapezoidal 

Fuzzy Numbers (TrFNS). 

The SME can be extended to a fuzzy Sylvester matrix Equation (FSME) in the form 

𝐴�̃� + �̃�𝐵 = �̃� if the solution matrix �̃� and the constant matrix �̃� are in fuzzy form. The 

FSME was studied in [30,31], where the Kronecker product was applied to convert the 

FSME to a fuzzy linear system. However, this method was only applicable for small-sized 

FSME. In order to overcome this shortcoming, authors in [32] applied Dubois and Prade’s 

multiplication operations [33] to convert the FSME to a crisp SME and then the fuzzy so-

lution obtained by applying Bartle’s Stewart method. In addition to the FSME, when all 

the SME’s parameters are in fuzzy form, it is called a FFSME. 

Definition 1. The matrix equation that can be written as 

�̃��̃� + �̃��̃� = �̃� (1) 

where, �̃� = (�̃�𝑖𝑗)𝑛×𝑛 , �̃� = (�̃�𝑖𝑗)𝑚×𝑚 , �̃� =  �̃�𝑖𝑗)𝑛×𝑚  and �̃� = (�̃�𝑖𝑗)𝑛×𝑚  are fuzzy matrices re-

spectively is called FFSME. 

                             The FFSME in Equation (1) can be written as follows, 

∑ 𝑎𝑖𝑗
(𝑘)
𝑥𝑖𝑗
(𝑙)
+ ∑ 𝑥𝑖𝑗

(𝑙)
𝑏𝑖𝑗
(𝑘)
= 𝑐𝑖𝑗

(𝑙)

𝑚

𝑖,𝑗=1
𝑘,𝑙=1,…,4

𝑛

𝑖,𝑗=1
𝑘,𝑙=1,…,4

 (2) 

Triangular fully fuzzy Sylvester matrix equation (TFFSME) has been studied analyt-

ically by Shang, Guo and Bao [34], where the TFFSME is converted to a system of crisp 

linear matrix equations by applying Dubois and Prade’s arithmetic operator for multipli-

cation [33]. However, the method was restricted only for positive fuzzy numbers and re-

quired a long multiplication process and consequently long computational timing. 

Malkawi, Ahmad and Ibrahim [35] proposed a new associated linear system method for 

solving TFFSME, which is considered an extension of the method applied for solving fully 

fuzzy linear systems previously demonstrated in [36]. Indeed, this method required 

shorter computational timing than Shang’s method; however, it is also restricted to posi-

tive TFFSME. In addition, both methods are limited to non-singular TFFSME. To over-

come the shortcomings in these methods, Daud, Ahmad and Malkawi [37] obtained a pos-

itive solution for singular TFFSME by applying an associated linear matrix system ap-

proach, where the solution was obtained by using the pseudoinverse method. Recently, 

authors in [10] considered the solution of TrFFSME by transforming the TrFFSME to a 

system of crisp linear equations where the positive and negative fuzzy solutions are ob-

tained by applying Vec-operator and Kronecker product method. 

TFFSME with arbitrary coefficients has been studied by Daud et al. [38] using fuzzy 

Vec-operator and Kronecker products. However, these methods need further modifica-

tions as the Vec-operator and Kronecker product method is not applicable for arbitrary 
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fuzzy systems with near-zero fuzzy numbers. It is worth mentioning that the properties 

of crisp numbers multiplication cannot be applied to fuzzy number multiplication, espe-

cially for near-zero fuzzy numbers. Therefore, the Vec-operator and Kronecker product 

approach is not applicable for arbitrary fuzzy systems with near-zero fuzzy numbers, The 

Vec-operator and Kronecker product method has two main disadvantages: 

(I) It cannot be applied to fuzzy systems with near-zero fuzzy numbers. 

(II) It can be applied only to fuzzy systems with positive or negative fuzzy numbers; 

however, the Vec-operator and Kronecker product method for 𝑚 × 𝑛 positive or 

negative fuzzy system required obtaining the inverse of 𝑚𝑛 ×𝑚𝑛 matrices, which 

is not possible for large systems. 

A study was conducted by [39] on the TFFSME in the form �̃��̃� − �̃��̃� = �̃�, which used 

the 𝛼 − 𝑐𝑢𝑡𝑠 expansion approach in the parameters. This method has an advantage be-

cause it provides maximal and minimal symmetric solutions of the TFFSME. However, 

the method required long fuzzy operations in obtaining the solution. Similarly, authors in 

[40] propose an algorithm for obtaining the positive solution of TFFSME with arbitrary 

coefficients. However, the method was restricted only to positive fuzzy solutions. 

Most of the analytical methods proposed for solving TFFSME and TrFFSME in the 

literature are based on Dubois and Prade’s arithmetic operator for multiplication, re-

stricted only to positive fuzzy numbers with very small fuzziness [41]. Therefore, these 

methods are limited to positive coefficients and positive fuzzy solutions only. In addition, 

many researchers have applied Kaufmann and Gupta’s arithmetic multiplication operator 

for solving TFFSME with arbitrary coefficients; however, their methods are limited to pos-

itive fuzzy solutions only, and these methods cannot detect all possible fuzzy solutions. 

Therefore, to deal with this shortcoming, this paper presents a new numerical method for 

solving TrFFSME with arbitrary TrFNs, where the TrFFSME is converted to a non-linear 

system based on new arithmetic fuzzy multiplication for TrFNs. With the assumption that 

the exact solution is not given and there is no initial value, the solution to the non-linear 

system can be obtained by a newly developed two-stage algorithm where the first stage 

algorithm reduces the search area for the fuzzy solution and the second stage algorithm 

finds it. 

The proposed method is applicable for solving large size TrFFSME. In addition, it can 

also be applied to TFFSME and fully fuzzy matrix equation (FFME) with both TFNs and 

TrFNs. This paper is organized as follows: Section 2 introduces preliminary arithmetic 

operations of intervals and 𝛼 − 𝑐𝑢𝑡 intervals. In Section 3, new arithmetic operations for 

TrFNs are developed. In Section 4, a proposed numerical method for solving TrFFSME is 

applied to a 2 × 2 TrFFSME along with a presentation of its algorithm. In Section 5, a 

numerical example is presented to illustrate the proposed method. Section 6 is dedicated 

to the conclusion. 

2. Preliminaries 

This section introduces the basic arithmetic operations of fuzzy numbers [42]. 

Definition 2. Interval arithmetic operations. 

If 𝐴 = [𝑎1, 𝑎2], 𝐵 = [𝑏1, 𝑏2], then ∀ 𝑎1, 𝑎2, 𝑏1, 𝑏2 ∈ 𝑅, we have, 

(I) Addition 

𝐴 + 𝐵 = [𝑎1 + 𝑏1, 𝑎2 + 𝑏2]. (3) 

(II) Subtraction 

𝐴 − 𝐵 = [𝑎1 − 𝑏2, 𝑎2 − 𝑏1].  

(III) Multiplication 

Case (I) If 𝐴 and 𝐵 are arbitrary real numbers then: 

𝐴 ⋅ 𝐵 = [𝑚𝑖𝑛(𝑎1𝑏1, 𝑎1𝑏2, 𝑎2𝑏1, 𝑎2𝑏2) ,𝑚𝑎𝑥(𝑎1𝑏1, 𝑎1𝑏2, 𝑎2𝑏1, 𝑎2𝑏2)] (4) 
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Case (II) If 𝐴 > 0 and 𝐵 > 0 then: 

𝐴 ⋅ 𝐵 = [𝑎1𝑏1, 𝑎2𝑏2]. (5) 

Case (III) If 𝐴 < 0 and 𝐵 < 0 then: 

𝐴 ⋅ 𝐵 = [𝑎2𝑏2, 𝑎1𝑏1]. (6) 

Case (IV) If 𝐴 > 0 and 𝐵 < 0 then: 

𝐴 ⋅ 𝐵 = [𝑎2𝑏1, 𝑎1𝑏2]. (7) 

Case (V) If 𝐴 < 0 and 𝐵 > 0 then: 

𝐴 ⋅ 𝐵 = [𝑎1𝑏2, 𝑎2𝑏1]. (8) 

(IV) Division 

𝐴/𝐵 = [𝑎1, 𝑎2]/[𝑏1, 𝑏2] 

= [𝑚𝑖𝑛(𝑎1/𝑏1, 𝑎1/𝑏2, 𝑎2/𝑏1, 𝑎2/𝑏2) ,𝑚𝑎𝑥 (𝑎1/𝑏1, 𝑎1/𝑏2, 𝑎2/𝑏1, 𝑎2/𝑏2)]     
 

where 𝑏1, 𝑏2 ≠ 0. 

(V) Inverse interval 

𝐴−1 = [𝑎1, 𝑎2]
−1 = [𝑚𝑖𝑛 (1/𝑎1, 1/𝑎2),𝑚𝑎𝑥 (1/𝑎1, 1/𝑎2)], where 𝑎1, 𝑎2 ≠ 0. 

(VI) Equality: Two intervals 𝐴 = [𝑎1, 𝑎2] and 𝐵 = [𝑏1, 𝑏2] are equal, if and only if 

𝑎1 = 𝑏1,  𝑎2 = 𝑏2. (9) 

Scalar multiplication: Let 𝜆 ∈ 𝑅 then, 

𝜆𝐴 = 𝜆[𝑎1, 𝑎2]  = [𝑚𝑖𝑛 (𝜆𝑎1, 𝜆𝑎2),𝑚𝑎𝑥 (𝜆𝑎1, 𝜆𝑎2]  

Definition 3. Operations of 𝛼 − 𝑐𝑢𝑡 interval. 

We referred to the 𝛼 − 𝑐𝑢𝑡 interval of fuzzy numbers 𝐴 = [𝑎1, 𝑎2] and 𝐵 = [𝑏1, 𝑏2], as crisp set 

𝐴𝛼 = [𝑎1
𝛼 , 𝑎2

𝛼] ,  𝐵𝛼 = [𝑏1
𝛼 , 𝑏2

𝛼]  respectively, ∀𝛼 ∈ [0,1] , 𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝑎1
𝛼 , 𝑎2

𝛼 , 𝑏1
𝛼 , 𝑏2

𝛼 ∈ 𝑅 . So, 

𝐴𝛼, 𝐵𝛼 are crisp intervals. As a result, the operations of interval reviewed in Definition 2 can be 

applied to the 𝛼 − 𝑐𝑢𝑡 interval 𝐴𝛼 and 𝐵𝛼. Operations between 𝐴𝛼 and 𝐵𝛼 can be represented 

as follow: 

(I) Addition 

𝐴𝛼 + 𝐵𝛼 = [𝑎1
𝛼 , 𝑎2

𝛼] + [𝑏1
𝛼 , 𝑏2

𝛼] = [𝑎1
𝛼 + 𝑏1

𝛼 , 𝑎2
𝛼 + 𝑏2

𝛼]. (10) 

(II) Subtraction 

𝐴𝛼 − 𝐵𝛼 = [𝑎1
𝛼 , 𝑎2

𝛼] − [𝑏1
𝛼 , 𝑏2

𝛼] = [𝑎1
𝛼 − 𝑏2

𝛼 , 𝑎2
𝛼 − 𝑏1

𝛼]  

(III) Multiplication 

𝐴𝛼 ⋅ 𝐵𝛼 = [𝑎1
𝛼 , 𝑎2

𝛼] ⋅ [𝑏1
𝛼 , 𝑏2

𝛼]. 

= [𝑚𝑖𝑛 (𝑎1
𝛼𝑏1

𝛼 , 𝑎1
𝛼𝑏2

𝛼 , 𝑎2
𝛼𝑏1

𝛼 , 𝑎2
𝛼𝑏2

𝛼),𝑚𝑎𝑥(𝑎1
𝛼𝑏1

𝛼 , 𝑎1
𝛼𝑏2

𝛼 , 𝑎2
𝛼𝑏1

𝛼 , 𝑎2
𝛼𝑏2

𝛼)] 
(11) 

(IV) Equality 

Two intervals 𝐴𝛼 = [𝑎1
𝛼 , 𝑎2

𝛼], and 𝐵𝛼 = [𝑏1
𝛼 , 𝑏2

𝛼] are equal, if and only if 𝑎1
𝛼 = 𝑏1

𝛼  and 
𝑎2
𝛼 = 𝑏2

𝛼 . 

The following are basic definitions and results related to TrFNs [33,43]. 

Definition 4. Let 𝑋 be a universal set. Then, we define the fuzzy subset �̃� of 𝑋 by its member-

ship function 𝜇�̃�  :  𝑋 → [0, 1] which assigns to each element 𝑥 ∈ 𝑋 a real number 𝜇𝐴(𝑥) in the 

interval [0, 1], where the function value of 𝜇𝐴(𝑥) represents the grade of membership of 𝑥 in �̃�. 

A fuzzy set �̃� is written as �̃� = {(𝑥, 𝜇𝐴(𝑥)), 𝑥 ∈ 𝑋, 𝜇𝐴(𝑥) ∈ [0, 1]}. 
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Definition 5. A fuzzy set �̃�, defined on the universal set of real number R; is said to be a fuzzy 

number if its membership function has the following characteristics: 

1. �̃� is convex, i.e., 

𝜇𝐴(𝜆𝑥1 + (1 − 𝜆)𝑥2 ≥ min(𝜇𝐴(𝑥), 𝜇𝐴(𝑥)) ∀ 𝑥1, 𝑥2 ∈ 𝑅 , ∀𝜆 ∈ [0,1]  

�̃� is normal, i.e., 

2. ∃ 𝑥0 ∈ 𝑅 such that 𝜇𝐴( 𝑥0) = 1. 

3. 𝜇𝐴 is piecewise continuous. 

Definition 6. A fuzzy number �̃� = (𝑎1, 𝑎2, 𝑎3, 𝑎4) is a TrFN if its membership function is: 

𝜇𝐴(𝑥) =

{
  
 

  
 
0                                 𝑥 < 𝑎1
𝑥 − 𝑎1
𝑎2 − 𝑎1

            𝑎1 ≤ 𝑥 ≤ 𝑎2 

1                        𝑎2 ≤ 𝑥 ≤ 𝑎3
𝑎4 − 𝑥

𝑎4 − 𝑎3
             𝑎3 ≤ 𝑥 ≤ 𝑎4

0                                   𝑥 > 𝑎4

  

The following Figure 1 represents the TrFN in the form (𝑎1, 𝑎2, 𝑎3, 𝑎4). 

 

Figure 1. Representation of TrFN (𝑎1, 𝑎2, 𝑎3, 𝑎4). 

Definition 7. The sign of the TrFN �̃� = (𝑎1, 𝑎2, 𝑎3, 𝑎4). can be classified as: 

• �̃� is positive (negative) iff 𝑎1 ≥ 0, (𝑎4 ≤ 0 ). 

• �̃� is zero iff (𝑎1, 𝑎2, 𝑎3 𝑎𝑛𝑑 𝑎4 = 0). 

• �̃� is near zero iff 𝑎1 ≤ 0 ≤ 𝑎4. 

Definition 8. Operation of TrFNs. 

The arithmetic operations of TrFNs are presented as follows, let 

�̃� = (𝑎1, 𝑎2, 𝑎3, 𝑎4), 

�̃� = (𝑏1, 𝑏2, 𝑏3, 𝑏4) be two TrFNs then: 

1. Subtraction 

�̃� − �̃� = (𝑎1, 𝑎2, 𝑎3, 𝑎4) − (𝑏1, 𝑏2, 𝑏3, 𝑏4) = (𝑎1 − 𝑏4, 𝑎2 − 𝑏3, 𝑎3 − 𝑏2, 𝑎4 − 𝑏1).  

2. Addition 

�̃� + �̃� = (𝑎1, 𝑎2, 𝑎3, 𝑎4) + (𝑏1, 𝑏2, 𝑏3, 𝑏4) = (𝑎1 + 𝑏1, 𝑎2 + 𝑏2, 𝑎3 + 𝑏3, 𝑎4 + 𝑏4).  

3. Symmetric image 

−�̃� = (−𝑎4, −𝑎3, −𝑎2, −𝑎1)  

Scalar multiplication: Let 𝜆 ∈ ℝ then, 

𝜆 ⊗ (𝑎1, 𝑎2, 𝑎3, 𝑎4) = {
(𝜆𝑎1, 𝜆𝑎2, 𝜆𝑎3, 𝜆𝑎4)              𝜆 ≥ 0

(𝜆𝑎4, 𝜆𝑎3, 𝜆𝑎2, 𝜆𝑎1)              𝜆 < 0
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4. Equality: The fuzzy numbers �̃� = (𝑎1, 𝑎2, 𝑎3, 𝑎4) and 

�̃� = (𝑏1, 𝑏2, 𝑏3, 𝑏4) are equal iff 

𝑎1 = 𝑏1,  𝑎2 = 𝑏2, 𝑎3 = 𝑏3 𝑎𝑛𝑑 𝑎4 = 𝑏4 (12) 

3. Trapezoidal Fuzzy Numbers Multiplication 

In this section, we develop new arithmetic multiplication operations between TrFNs. 

In the following proposition, we first find 𝛼 − 𝑐𝑢𝑡 intervals for TrFNs. 

Proposition 1. An 𝛼 − 𝑐𝑢𝑡 interval for �̃� = (𝑎1, 𝑎2, 𝑎3, 𝑎4) can be written as: 

�̃�𝛼 = [𝑎1
𝛼 , 𝑎2

𝛼] = [(𝑎2 − 𝑎1)𝛼 + 𝑎1, −(𝑎4 − 𝑎3)𝛼 + 𝑎4], ∀𝛼 ∈ [0,1]. (13) 

Proof. 

By the definition of membership function for TrFN �̃� Definition 6 and if we let, 

a1
α − a1
a2 − a1

= α and 
a4 − a2

α

a4 − a3
= α  

Solving for 𝑎1
𝛼  and 𝑎2

𝛼  using cross multiplication property of equality, we get: 

a1
α = (a2 − a1)α + a1  

a2
α = −(a4 − a3)α + a4  

Thus, 

�̃�𝛼 = [𝑎1
𝛼 , 𝑎2

𝛼] = [(𝑎2 − 𝑎1)𝛼 + 𝑎1, −(𝑎4 − 𝑎3)𝛼 + 𝑎4], ∀α ∈ [0,1].   

□ 

The following propositions discuss new arithmetic multiplication operations be-

tween TrFNs, namely Ahmd Multiplication Operations (AMO). 

Proposition 2. If �̃� = (𝑎1, 𝑎2, 𝑎3, 𝑎4), �̃� = (𝑏1, 𝑏2, 𝑏3, 𝑏4) are two arbitrary TrFNs respectively, 

then: 

�̃��̃� = (𝑎, ℎ,𝑚, 𝑑). (14) 

where 

𝑎 = 𝑚𝑖𝑛(𝑎1𝑏1, 𝑎1𝑏4, 𝑎4𝑏1, 𝑎4𝑏4) 

ℎ = 𝑚𝑖𝑛(𝑎2𝑏2, 𝑎2𝑏3, 𝑎3𝑏2, 𝑎3𝑏3) 

𝑚 = 𝑚𝑎𝑥(𝑎2𝑏2, 𝑎2𝑏3, 𝑎3𝑏2, 𝑎3𝑏3) 

𝑑 = 𝑚𝑎𝑥(𝑎1𝑏1, 𝑎1𝑏4, 𝑎4𝑏1, 𝑎4𝑏4) 

 

Proof. Based on Proposition 1, the 𝛼 − 𝑐𝑢𝑡  intervals for �̃� = (𝑎1, 𝑎2, 𝑎3, 𝑎4)  and �̃� =

(𝑏1, 𝑏2, 𝑏3, 𝑏4) are 

�̃�𝛼 = [𝑎1
𝛼 , 𝑎2

𝛼] = [(𝑎2 − 𝑎1)𝛼 + 𝑎1, −(𝑎4 − 𝑎3)𝛼 + 𝑎4]  

�̃�𝛼 = [𝑏1
𝛼 , 𝑏2

𝛼] = [(𝑏2 − 𝑏1)𝛼 + 𝑏1, −(𝑏4 − 𝑏3)𝛼 + 𝑏4]  

∀𝛼 ∈ [0,1] respectively. 

By applying the multiplication operations of α − cut interval in Definition 3 in Equation 

(11) on �̃�𝛼 and �̃�𝛼 we get: 
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�̃�𝛼 × �̃�𝛼 = [𝑎1
𝛼 , 𝑎2

𝛼] × [𝑏1
𝛼 , 𝑏2

𝛼] 

= [min (𝑎1
𝛼𝑏1

𝛼 , 𝑎1
𝛼𝑏2

𝛼 , 𝑎2
𝛼𝑏1

𝛼 , 𝑎2
𝛼𝑏2

𝛼),𝑚𝑎𝑥(𝑎1
𝛼𝑏1

𝛼 , 𝑎1
𝛼𝑏2

𝛼 , 𝑎2
𝛼𝑏1

𝛼 , 𝑎2
𝛼𝑏2

𝛼)] 

= [𝑒1, 𝑒2] 

 

where 

𝑒1 = 𝑚𝑖𝑛(((𝑎2 − 𝑎1)𝛼 + 𝑎1) ∙ ((𝑏2 − 𝑏1)𝛼 + 𝑏1), ((𝑎2 − 𝑎1)𝛼 + 𝑎1) ∙ (−(𝑏4 − 𝑏3)𝛼 +

𝑏4), (−(𝑎4 − 𝑎3)𝛼 + 𝑎4) ∙ ((𝑏2 − 𝑏1)𝛼 + 𝑏1), (−(𝑎4 − 𝑎3)𝛼 + 𝑎4) ∙ (−(𝑏4 − 𝑏3)𝛼 + 𝑏4)), 

𝑒2 = 𝑚𝑎𝑥(((𝑎2 − 𝑎1)𝛼 + 𝑎1) ∙ ((𝑏2 − 𝑏1)𝛼 + 𝑏1), ((𝑎2 − 𝑎1)𝛼 + 𝑎1) ∙ (−(𝑏4 − 𝑏3)𝛼 +

𝑏4), (−(𝑎4 − 𝑎3)𝛼 + 𝑎4) ∙ ((𝑏2 − 𝑏1)𝛼 + 𝑏1), (−(𝑎4 − 𝑎3)𝛼 + 𝑎4) ∙ (−(𝑏4 − 𝑏3)𝛼 + 𝑏4)), 

𝑎1
𝛼 = (𝑎2 − 𝑎1)𝛼 + 𝑎1, 

𝑎2
𝛼 = −(𝑎4 − 𝑎3)𝛼 + 𝑎4, 

𝑏1
𝛼 = (𝑏2 − 𝑏1)𝛼 + 𝑏1, 

𝑏2
𝛼 = −(𝑏4 − 𝑏3)𝛼 + 𝑏4. 

Since the product of two TrFNs is TrFN, the left and right endpoints of the TrFN �̃��̃� can 

be found if we let 𝛼 = 0. Thus, at 𝛼 = 0 the following is obtained, 

𝐴0 × 𝐵0 = [𝑒1, 𝑒2] = [𝑚𝑖𝑛(𝑎1𝑏1, 𝑎1𝑏4, 𝑎4𝑏1, 𝑎4𝑏4),𝑚𝑎𝑥(𝑎1𝑏1, 𝑎1𝑏4, 𝑎4𝑏1, 𝑎4𝑏4)]  

The following Figure 2 represents the product 𝐴0 × 𝐵0 at 𝛼 = 0. 

 

Figure 2. The product 𝐴0 × 𝐵0 at 𝛼 = 0. 

While the mean points of the TrFN �̃��̃� can be found if we let 𝛼 = 1. Thus, at 𝛼 = 1 the 

following is obtained, 

𝐴1 × 𝐵1 = [𝑒1, 𝑒2] = [𝑚𝑖𝑛(𝑎2𝑏2, 𝑎2𝑏3, 𝑎3𝑏2, 𝑎3𝑏3),𝑚𝑎𝑥(𝑎2𝑏2, 𝑎2𝑏3, 𝑎3𝑏2, 𝑎3𝑏3)]  

The following Figure 3 represents the product 𝐴1 × 𝐵1 at 𝛼 = 1. 

 

Figure 3. The product 𝐴1 × 𝐵1 at 𝛼 = 0. 

By combining the endpoints and mean points of �̃��̃� using the definition of TrFNs in Def-

inition 6, the product �̃��̃� is 

𝑥 
𝑒2 

 

𝑒1 

 

𝛼 = 1 

𝛼 = 0 

𝑥 
𝑒2 

 

𝑒1 

 

𝛼 = 1 

𝛼 = 0 
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�̃��̃� = (𝑎, ℎ,𝑚, 𝑑).   

where, 

𝑎 = 𝑚𝑖𝑛(𝑎1𝑏1, 𝑎1𝑏4, 𝑎4𝑏1, 𝑎4𝑏4) 

ℎ = 𝑚𝑖𝑛(𝑎2𝑏2, 𝑎2𝑏3, 𝑎3𝑏2, 𝑎3𝑏3), 

𝑚 = 𝑚𝑎𝑥(𝑎2𝑏2, 𝑎2𝑏3, 𝑎3𝑏2, 𝑎3𝑏3) 

𝑑 = 𝑚𝑎𝑥(𝑎1𝑏1, 𝑎1𝑏4, 𝑎4𝑏1, 𝑎4𝑏4). 

 

□ 

The following Figure 4 represents the product �̃��̃� 

 

Figure 4. The product �̃��̃� 

Definition 9. If �̃� and �̃� are two arbitrary TrFNs respectively, then the multiplication 

 �̃��̃� = (𝑎, ℎ,𝑚, 𝑑)  is called Ahmd Arithmetic Multiplication Operator (AMO) for Arbitrary 

TrFNs 

The implementation of AMO is illustrated in the following example. 

Example 1. Let �̃� = (−4,−2, 1, 3) and �̃� = (−5, 2, 4, 7) be two arbitrary TrFNs respectively, 

then 

𝑎 = 𝑚𝑖𝑛(−4 × −5,−4 × 7, 3 × −5, 3 × 7) = −28 

ℎ = 𝑚𝑖𝑛(−2 × 2,−2 × 4, 1 × 2, 1 × 4) = −8 

𝑚 = 𝑚𝑎𝑥(−2 × 2,−2 × 4, 1 × 2, 1 × 4) = 4 

𝑑 = 𝑚𝑎𝑥(−4 × −5,−4 × 7, 3 × −5, 3 × 7) = 21 

 

Thus, �̃��̃� = (−28,−8, 4, 21). 

Corollary 1. Positive TrFNs arithmetic multiplication operation. 

If �̃� = (𝑎1, 𝑎2, 𝑎3, 𝑎4), �̃� = (𝑏1, 𝑏2, 𝑏3, 𝑏4) be two positive TrFNs then: 

�̃��̃� = (𝑎1𝑏1, 𝑎2𝑏2, 𝑎3𝑏3, 𝑎4𝑏4).  

Proof. 

From Proposition 2 and by Equation (14), we have: 

�̃��̃� = (𝑎, ℎ,𝑚, 𝑑).  

Using Definition 2 by Equation (5) �̃��̃� can be reduced as follows: 

𝑎 = 𝑚𝑖𝑛(𝑎1𝑏1, 𝑎1𝑏4, 𝑎4𝑏1, 𝑎4𝑏4) = 𝑎1𝑏1 

ℎ = 𝑚𝑖𝑛(𝑎2𝑏2, 𝑎2𝑏3, 𝑎3𝑏2, 𝑎3𝑏3) = 𝑎2𝑏2, 
 

ℎ 𝑚 
𝑥 

𝑑 𝑎 

 

𝛼 = 1 

𝛼 = 0 
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𝑚 = 𝑚𝑎𝑥(𝑎2𝑏2, 𝑎2𝑏3, 𝑎3𝑏2, 𝑎3𝑏3) = 𝑎3𝑏3 

𝑑 = 𝑚𝑎𝑥(𝑎1𝑏1, 𝑎1𝑏4, 𝑎4𝑏1, 𝑎4𝑏4) = 𝑎4𝑏4. 

Thus, 

�̃��̃� = (𝑎1𝑏1, 𝑎2𝑏2, 𝑎3𝑏3, 𝑎4𝑏4).  

□ 

Corollary 2. Negative TrFNs arithmetic multiplication operation. 

If �̃� = (𝑎1, 𝑎2, 𝑎3, 𝑎4), �̃� = (𝑏1, 𝑏2, 𝑏3, 𝑏4) let them be two negative TrFNs, then: 

�̃��̃� = (𝑎4𝑏4, 𝑎3𝑏3, 𝑎2𝑏2, 𝑎1𝑏1).  

Proof. 

From Proposition 2 and by Equation (14), we have: 

�̃��̃� = (𝑎, ℎ,𝑚, 𝑑).  

Using Definition 2 by Equation (6) �̃��̃� can be reduced as follows: 

𝑎 = 𝑚𝑖𝑛(𝑎1𝑏1, 𝑎1𝑏4, 𝑎4𝑏1, 𝑎4𝑏4) = 𝑎4𝑏4 

ℎ = 𝑚𝑖𝑛(𝑎2𝑏2, 𝑎2𝑏3, 𝑎3𝑏2, 𝑎3𝑏3) = 𝑎3𝑏3, 

𝑚 = 𝑚𝑎𝑥(𝑎2𝑏2, 𝑎2𝑏3, 𝑎3𝑏2, 𝑎3𝑏3) = 𝑎2𝑏2 

𝑑 = 𝑚𝑎𝑥(𝑎1𝑏1, 𝑎1𝑏4, 𝑎4𝑏1, 𝑎4𝑏4) = 𝑎1𝑏1. 

 

Thus, 

�̃��̃� = (𝑎1𝑏1, 𝑎2𝑏2, 𝑎3𝑏3, 𝑎4𝑏4).  

□ 

Corollary 3. Positive and negative TrFNs arithmetic multiplication operation. 

If �̃� = (𝑎1, 𝑎2, 𝑎3, 𝑎4) > 0, �̃� = (𝑏1, 𝑏2, 𝑏3, 𝑏4) < 0 let them be two TrFNs, then: 

�̃��̃� = (𝑎4𝑏1, 𝑎3𝑏2, 𝑎2𝑏3, 𝑎1𝑏4).  

Proof. 

From Proposition 2 and by Equation (14), we have: 

�̃��̃� = (𝑎, ℎ,𝑚, 𝑑).  

Using Definition 2 by Equation (7) �̃��̃� can be reduced as follows: 

𝑎 = 𝑚𝑖𝑛(𝑎1𝑏1, 𝑎1𝑏4, 𝑎4𝑏1, 𝑎4𝑏4) = 𝑎4𝑏1, 

ℎ = 𝑚𝑖𝑛(𝑎2𝑏2, 𝑎2𝑏3, 𝑎3𝑏2, 𝑎3𝑏3) = 𝑎3𝑏2, 

𝑚 = 𝑚𝑎𝑥(𝑎2𝑏2, 𝑎2𝑏3, 𝑎3𝑏2, 𝑎3𝑏3) = 𝑎2𝑏3 

𝑑 = 𝑚𝑎𝑥(𝑎1𝑏1, 𝑎1𝑏4, 𝑎4𝑏1, 𝑎4𝑏4) = 𝑎1𝑏4. 

 

Thus, 

�̃��̃� = (𝑎4𝑏1, 𝑎3𝑏2, 𝑎2𝑏3, 𝑎1𝑏4).  

□ 

Corollary 4. Negative and positive TrFNs arithmetic multiplication operation. 

If �̃� = (𝑎1, 𝑎2, 𝑎3, 𝑎4) < 0, �̃� = (𝑏1, 𝑏2, 𝑏3, 𝑏4) > 0 let them be two TrFNs, then: 
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�̃��̃� = (𝑎1𝑏4, 𝑎2𝑏3, 𝑎3𝑏2, 𝑎4𝑏1).  

Proof. 

From Proposition 2 and by Equation (14), we have: 

�̃��̃� = (𝑎, ℎ,𝑚, 𝑑).  

Using Definition 2 by Equation (8) �̃��̃� can be reduced as follows: 

𝑎 = 𝑚𝑖𝑛(𝑎1𝑏1, 𝑎1𝑏4, 𝑎4𝑏1, 𝑎4𝑏4) = 𝑎1𝑏4, 

ℎ = 𝑚𝑖𝑛(𝑎2𝑏2, 𝑎2𝑏3, 𝑎3𝑏2, 𝑎3𝑏3) = 𝑎2𝑏3, 

𝑚 = 𝑚𝑎𝑥(𝑎2𝑏2, 𝑎2𝑏3, 𝑎3𝑏2, 𝑎3𝑏3) = 𝑎3𝑏2 

𝑑 = 𝑚𝑎 𝑥(𝑎1𝑏1, 𝑎1𝑏4, 𝑎4𝑏1, 𝑎4𝑏4) = 𝑎4𝑏1. 

 

Thus, 

�̃��̃� = (𝑎1𝑏4, 𝑎2𝑏3, 𝑎3𝑏2, 𝑎4𝑏1).  

□ 

The following section proposes a new method for solving arbitrary TrFFSME based 

on the arithmetic multiplication operation proposed in Proposition 2. 

4. Proposed Method 

This section proposes a new method for solving arbitrary TrFFSME based on AMO 

proposed in Proposition 2. Figure 5 displays the steps required for solving the arbitrary 

TrFFSME. 

 

Figure 5. Flow chart of the proposed method for solving the arbitrary TrFFSME. 

In the following theorem, the FFSME Equation (1) is extended into systems matrix 

equations. 

Arbitrary TrFFSME 

Convert the TrFFSME to a system of min-max 

Split the non- linear system into two sub systems 

 

Apply second stage algorithm 

 

Arbitrary fuzzy solution 

 

Apply first stage algorithm 

 

Step 1 

Step 2 

Step 3 

Step 4 

Step 5 
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Theorem 1 

If �̃�, �̃� 𝑎𝑛𝑑 �̃� are arbitrary TrFNs, then the FFSME Equation (1) is equivalent to: 

{
 
 
 
 
 

 
 
 
 
 ∑ 𝑚𝑖𝑛(𝑎𝑖𝑗

(1)𝑥𝑖𝑗
(1), 𝑎𝑖𝑗

(1)𝑥𝑖𝑗
(4), 𝑎𝑖𝑗

(4)𝑥𝑖𝑗
(1), 𝑎𝑖𝑗

(4)𝑥𝑖𝑗
(4)
)

𝑛

𝑖,𝑗=1

+ ∑ 𝑚𝑖𝑛(𝑥𝑖𝑗
(1)𝑏𝑖𝑗

(1), 𝑥𝑖𝑗
(1)𝑏𝑖𝑗

(4), 𝑥𝑖𝑗
(4)𝑏𝑖𝑗

(1), 𝑥𝑖𝑗
(4)𝑏𝑖𝑗

(4)
)

𝑚

𝑖,𝑗=1

= 𝑐𝑖𝑗
(1)

∑ 𝑚𝑖𝑛(𝑎𝑖𝑗
(2)𝑥𝑖𝑗

(2), 𝑎𝑖𝑗
(2)𝑥𝑖𝑗

(3), 𝑎𝑖𝑗
(3)𝑥𝑖𝑗

(2), 𝑎𝑖𝑗
(3)𝑥𝑖𝑗

(3)
)

𝑛

𝑖,𝑗=1

+ ∑ 𝑚𝑖𝑛(𝑥𝑖𝑗
(2)𝑏𝑖𝑗

(2), 𝑥𝑖𝑗
(2)𝑏𝑖𝑗

(3), 𝑥𝑖𝑗
(3)𝑏𝑖𝑗

(2), 𝑥𝑖𝑗
(3)𝑏𝑖𝑗

(3)
)

𝑚

𝑖,𝑗=1

= 𝑐𝑖𝑗
(2)

∑ 𝑚𝑎𝑥(𝑎𝑖𝑗
(2)𝑥𝑖𝑗

(2), 𝑎𝑖𝑗
(2)𝑥𝑖𝑗

(3), 𝑎𝑖𝑗
(3)𝑥𝑖𝑗

(2), 𝑎𝑖𝑗
(3)𝑥𝑖𝑗

(3)
)

𝑛

𝑖,𝑗=1

+ ∑ 𝑚𝑎𝑥(𝑥𝑖𝑗
(2)𝑏𝑖𝑗

(2), 𝑥𝑖𝑗
(2)𝑏𝑖𝑗

(3), 𝑥𝑖𝑗
(3)𝑏𝑖𝑗

(2), 𝑥𝑖𝑗
(3)𝑏𝑖𝑗

(3)
)

𝑚

𝑖,𝑗=1

= 𝑐𝑖𝑗
(3)

∑ 𝑚𝑎𝑥(𝑎𝑖𝑗
(1)𝑥𝑖𝑗

(1), 𝑎𝑖𝑗
(1)𝑥𝑖𝑗

(4), 𝑎𝑖𝑗
(4)𝑥𝑖𝑗

(1), 𝑎𝑖𝑗
(4)𝑥𝑖𝑗

(4)
)

𝑛

𝑖,𝑗=1

+ ∑ 𝑚𝑎𝑥(𝑥𝑖𝑗
(1)𝑏𝑖𝑗

(1), 𝑥𝑖𝑗
(1)𝑏𝑖𝑗

(4), 𝑥𝑖𝑗
(4)𝑏𝑖𝑗

(1), 𝑥𝑖𝑗
(4)𝑏𝑖𝑗

(4)
)

𝑚

𝑖,𝑗=1

= 𝑐𝑖𝑗
(4)

 (15) 

Proof. Let �̃� = (�̃�𝑖𝑗)𝑛×𝑛 = (𝑎𝑖𝑗
(1)
, 𝑎𝑖𝑗
(2)
, 𝑎𝑖𝑗
(3)
, 𝑎𝑖𝑗
(4)
) , �̃� = (�̃�𝑖𝑗)𝑚×𝑚 =  (�̃�𝑖𝑗) =

(𝑏𝑖𝑗
(1)
, 𝑏𝑖𝑗
(2)
, 𝑏𝑖𝑗
(3)
, 𝑏𝑖𝑗
(4)
) , �̃� = (�̃�𝑖𝑗)𝑛×𝑚 = (𝑥𝑖𝑗

(1)
, 𝑥𝑖𝑗

(2)
, 𝑥𝑖𝑗

(3)
, 𝑥𝑖𝑗

(4)
)  and �̃� = (�̃�𝑖𝑗)𝑛×𝑚 =

(𝑐𝑖𝑗
(1)
, 𝑐𝑖𝑗
(2)
, 𝑐𝑖𝑗
(3)
, 𝑐𝑖𝑗
(4)
) be arbitrary TrFNs. Applying AMO in Proposition 2, �̃��̃� is obtained 

as follows: 

�̃��̃� = (𝑀,𝑁, 𝑃, 𝑄)  

where, 

𝑀 = 𝑚𝑖𝑛 (𝑎𝑖𝑗
(1)𝑥𝑖𝑗

(1), 𝑎𝑖𝑗
(1)𝑥𝑖𝑗

(4), 𝑎𝑖𝑗
(4)𝑥𝑖𝑗

(1), 𝑎𝑖𝑗
(4)𝑥𝑖𝑗

(4)), 

𝑁 = 𝑚𝑖𝑛 (𝑎𝑖𝑗
(2)𝑥𝑖𝑗

(2), 𝑎𝑖𝑗
(2)𝑥𝑖𝑗

(3), 𝑎𝑖𝑗
(3)𝑥𝑖𝑗

(2), 𝑎𝑖𝑗
(3)𝑥𝑖𝑗

(3)), 

𝑃 = 𝑚𝑎𝑥(𝑎𝑖𝑗
(2)𝑥𝑖𝑗

(2), 𝑎𝑖𝑗
(2)𝑥𝑖𝑗

(3), 𝑎𝑖𝑗
(3)𝑥𝑖𝑗

(2), 𝑎𝑖𝑗
(3)𝑥𝑖𝑗

(3)), 

𝑄 = 𝑚𝑎𝑥(𝑎𝑖𝑗
(1)𝑥𝑖𝑗

(1), 𝑎𝑖𝑗
(1)𝑥𝑖𝑗

(4), 𝑎𝑖𝑗
(4)𝑥𝑖𝑗

(1), 𝑎𝑖𝑗
(4)
𝑥𝑖𝑗
(4)
). 

 

And, 

�̃��̃� = (𝐾, 𝐿, 𝐻, 𝑅)  

where, 

𝐾 = 𝑚𝑖𝑛(𝑥𝑖𝑗
(1)𝑏𝑖𝑗

(1), 𝑥𝑖𝑗
(1)𝑏𝑖𝑗

(4), 𝑥𝑖𝑗
(4)𝑏𝑖𝑗

(1), 𝑥𝑖𝑗
(4)𝑏𝑖𝑗

(4)), 

𝐿 = 𝑚𝑖𝑛(𝑥𝑖𝑗
(2)𝑏𝑖𝑗

(2), 𝑥𝑖𝑗
(2)𝑏𝑖𝑗

(3), 𝑥𝑖𝑗
(3)𝑏𝑖𝑗

(2), 𝑥𝑖𝑗
(3)𝑏𝑖𝑗

(3)), 

𝐻 = 𝑚𝑎𝑥(𝑥𝑖𝑗
(2)
𝑏𝑖𝑗
(2)
, 𝑥𝑖𝑗

(2)
𝑏𝑖𝑗
(3)
, 𝑥𝑖𝑗

(3)
𝑏𝑖𝑗
(2)
, 𝑥𝑖𝑗

(3)
𝑏𝑖𝑗
(3)
), 

𝑅 = 𝑚𝑎𝑥(𝑥𝑖𝑗
(1)
𝑏𝑖𝑗
(1)
, 𝑥𝑖𝑗

(1)
𝑏𝑖𝑗
(4)
, 𝑥𝑖𝑗

(4)
𝑏𝑖𝑗
(1)
, 𝑥𝑖𝑗

(4)
𝑏𝑖𝑗
(4)
). 

 

Using Definition 2 and by Equation (2), the arbitrary TrFFSME �̃��̃� + �̃��̃� = �̃� can be writ-

ten as: 

{
 
 
 
 
 

 
 
 
 
 ∑ 𝑚𝑖𝑛(𝑎𝑖𝑗

(1)𝑥𝑖𝑗
(1), 𝑎𝑖𝑗

(1)𝑥𝑖𝑗
(4), 𝑎𝑖𝑗

(4)𝑥𝑖𝑗
(1), 𝑎𝑖𝑗

(4)
𝑥𝑖𝑗
(4)
)

𝑛

𝑖,𝑗=1

+ ∑ 𝑚𝑖𝑛(𝑥𝑖𝑗
(1)
𝑏𝑖𝑗
(1)
, 𝑥𝑖𝑗

(1)
𝑏𝑖𝑗
(4)
, 𝑥𝑖𝑗

(4)
𝑏𝑖𝑗
(1)
, 𝑥𝑖𝑗

(4)
𝑏𝑖𝑗
(4)
)

𝑚

𝑖,𝑗=1

= 𝑐𝑖𝑗
(1)

∑ 𝑚𝑖𝑛(𝑎𝑖𝑗
(2)
𝑥𝑖𝑗
(2)
, 𝑎𝑖𝑗
(2)
𝑥𝑖𝑗
(3)
, 𝑎𝑖𝑗
(3)
𝑥𝑖𝑗
(2)
, 𝑎𝑖𝑗
(3)
𝑥𝑖𝑗
(3)
)

𝑛

𝑖,𝑗=1

+ ∑ 𝑚𝑖𝑛(𝑥𝑖𝑗
(2)
𝑏𝑖𝑗
(2)
, 𝑥𝑖𝑗

(2)
𝑏𝑖𝑗
(3)
, 𝑥𝑖𝑗

(3)
𝑏𝑖𝑗
(2)
, 𝑥𝑖𝑗
(3)
𝑏𝑖𝑗
(3)
)

𝑚

𝑖,𝑗=1

= 𝑐𝑖𝑗
(2)

∑ 𝑚𝑎𝑥(𝑎𝑖𝑗
(2)
𝑥𝑖𝑗
(2)
, 𝑎𝑖𝑗
(2)
𝑥𝑖𝑗
(3)
, 𝑎𝑖𝑗
(3)
𝑥𝑖𝑗
(2)
, 𝑎𝑖𝑗
(3)
𝑥𝑖𝑗
(3)
)

𝑛

𝑖,𝑗=1

+ ∑ 𝑚𝑎𝑥(𝑥𝑖𝑗
(2)
𝑏𝑖𝑗
(2)
, 𝑥𝑖𝑗
(2)
𝑏𝑖𝑗
(3)
, 𝑥𝑖𝑗

(3)
𝑏𝑖𝑗
(2)
, 𝑥𝑖𝑗

(3)
𝑏𝑖𝑗
(3)
)

𝑚

𝑖,𝑗=1

= 𝑐𝑖𝑗
(3)

∑ 𝑚𝑎𝑥(𝑎𝑖𝑗
(1)
𝑥𝑖𝑗
(1)
, 𝑎𝑖𝑗
(1)
𝑥𝑖𝑗
(4)
, 𝑎𝑖𝑗
(4)
𝑥𝑖𝑗
(1)
, 𝑎𝑖𝑗
(4)
𝑥𝑖𝑗
(4)
)

𝑛

𝑖,𝑗=1

+ ∑ 𝑚𝑎𝑥(𝑥𝑖𝑗
(1)
𝑏𝑖𝑗
(1)
, 𝑥𝑖𝑗
(1)
𝑏𝑖𝑗
(4)
, 𝑥𝑖𝑗

(4)
𝑏𝑖𝑗
(1)
, 𝑥𝑖𝑗

(4)
𝑏𝑖𝑗
(4)
)

𝑚

𝑖,𝑗=1

= 𝑐𝑖𝑗
(4)

  

In the following Section 4.1, we propose a method for solving arbitrary TrFFSME. □ 

4.1. Arbitrary Solution to The Arbitrary TrFFSME 

In this section, the arbitrary solution to the arbitrary TrFFSME is discussed. Without 

loss of generality, we will assume �̃� to be 2 × 2. Then �̃� can be written as: 

𝐴 = (
(𝑎11

(1)
, 𝑎11
(2)
, 𝑎11
(3)
, 𝑎11
(4)
) (𝑎12

(1)
, 𝑎12
(2)
, 𝑎12
(3)
, 𝑎12
(4)
)

(𝑎21
(1)
, 𝑎21
(2)
, 𝑎21
(3)
, 𝑎21
(4)
) (𝑎22

(1)
, 𝑎22
(2)
, 𝑎22
(3)
, 𝑎22
(4)
)
)  
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Similarly, 

�̃� = (
(𝑏11

(1)
, 𝑏11
(2)
, 𝑏11
(3)
, 𝑏11
(4)
) (𝑏12

(1)
, 𝑏12
(2)
, 𝑏12
(3)
, 𝑏12
(4)
)

(𝑏21
(1)
, 𝑏21
(2)
, 𝑏21
(3)
, 𝑏21
(4)
) (𝑏22

(1)
, 𝑏22
(2)
, 𝑏22
(3)
, 𝑏22
(4)
)
)  

�̃� = (
�̃�11 �̃�12
�̃�21 �̃�22

)  = (
(𝑥11

(1)
, 𝑥11

(2)
, 𝑥11

(3)
, 𝑥11

(4)
) (𝑥12

(1)
, 𝑥12

(2)
, 𝑥12

(3)
, 𝑥12

(4)
)

(𝑥21
(1)
, 𝑥21

(2)
, 𝑥21

(3)
, 𝑥21

(4)
) (𝑥22

(1)
, 𝑥22

(2)
, 𝑥22

(3)
, 𝑥22

(4)
)
)   

and, 

�̃� = (
(𝑐11
(1)
, 𝑐11
(2)
, 𝑐11
(3)
, 𝑐11
(4)
) (𝑐12

(1)
, 𝑐12
(2)
, 𝑐12
(3)
, 𝑐12
(4)
)

(𝑐21
(1)
, 𝑐21
(2)
, 𝑐21
(3)
, 𝑐21
(4)
) (𝑐22

(1)
, 𝑐22
(2)
, 𝑐22
(3)
, 𝑐22
(4)
)
).  

The steps of the proposed method are as follows: 

Step 1. Multiplying �̃��̃� using AMO in Proposition 2, Equation (14) as follows: 

�̃��̃� = (
(𝑎11

(1)
, 𝑎11
(2)
, 𝑎11
(3)
, 𝑎11
(4)
) (𝑎12

(1)
, 𝑎12
(2)
, 𝑎12
(3)
, 𝑎12
(4)
)

(𝑎21
(1)
, 𝑎21
(2)
, 𝑎21
(3)
, 𝑎21
(4)
) (𝑎22

(1)
, 𝑎22
(2)
, 𝑎22
(3)
, 𝑎22
(4)
)
)(
(𝑥11

(1)
, 𝑥11

(2)
, 𝑥11

(3)
, 𝑥11

(4)
) (𝑥12

(1)
, 𝑥12

(2)
, 𝑥12

(3)
, 𝑥12
(4)
)

(𝑥21
(1)
, 𝑥21

(2)
, 𝑥21

(3)
, 𝑥21

(4)
) (𝑥22

(1)
, 𝑥22

(2)
, 𝑥22

(3)
, 𝑥22
(4)
)
)  

Which can be written as, 

�̃��̃� = (
(𝑚1, 𝑛1, 𝛼1, 𝛽1) (𝑚2, 𝑛2, 𝛼2, 𝛽2)
(𝑚3, 𝑛3, 𝛼3, 𝛽3) (𝑚4, 𝑛4, 𝛼4, 𝛽4)

) (16) 

where, 

𝑚1 = 𝑚𝑖𝑛(𝑎11
(1)𝑥11

(1), 𝑎11
(1)𝑥11

(4), 𝑎11
(4)𝑥11

(1), 𝑎11
(4)𝑥11

(4)
) + 𝑚𝑖𝑛(𝑎12

(1)𝑥21
(1), 𝑎12

(1)𝑥21
(4), 𝑎12

(4)𝑥21
(1), 𝑎12

(4)
𝑥21
(4)
), 

𝑛1 = 𝑚𝑖𝑛(𝑎11
(1)𝑥12

(1), 𝑎11
(1)𝑥12

(4), 𝑎11
(4)𝑥12

(1), 𝑎11
(4)𝑥12

(4)
) +𝑚𝑖𝑛(𝑎12

(1)𝑥22
(1), 𝑎12

(1)𝑥22
(4), 𝑎12

(4)𝑥22
(1), 𝑎12

(4)
𝑥22
(4)
), 

𝛼1 = 𝑚𝑖𝑛(𝑎21
(1)𝑥11

(1), 𝑎21
(1)𝑥11

(4), 𝑎21
(4)𝑥11

(1), 𝑎21
(4)𝑥11

(4)
) + 𝑚𝑖𝑛(𝑎22

(1)𝑥21
(1), 𝑎22

(1)𝑥21
(4), 𝑎22

(4)𝑥21
(1), 𝑎22

(4)
𝑥21
(4)
), 

𝛽1 = 𝑚𝑖𝑛(𝑎21
(1)𝑥12

(1), 𝑎21
(1)𝑥12

(4), 𝑎21
(4)𝑥12

(1), 𝑎21
(4)𝑥12

(4)
) +𝑚𝑖𝑛(𝑎22

(1)𝑥22
(1), 𝑎22

(1)𝑥22
(4), 𝑎22

(4)𝑥22
(1), 𝑎22

(4)
𝑥22
(4)
), 

𝑚2 = 𝑚𝑖𝑛(𝑎11
(2)𝑥11

(2), 𝑎11
(2)𝑥11

(3), 𝑎11
(3)𝑥11

(2), 𝑎11
(3)𝑥11

(3)
) +𝑚𝑖𝑛(𝑎12

(2)𝑥21
(2), 𝑎12

(2)𝑥21
(3), 𝑎12

(3)𝑥21
(2), 𝑎12

(3)
𝑥21
(3)
), 

𝑛2 = 𝑚𝑖𝑛(𝑎11
(2)𝑥12

(2), 𝑎11
(2)𝑥12

(3), 𝑎11
(3)𝑥12

(2), 𝑎11
(3)𝑥12

(3)
) + 𝑚𝑖𝑛(𝑎12

(2)𝑥22
(2), 𝑎12

(2)𝑥22
(3), 𝑎12

(3)𝑥22
(2), 𝑎12

(3)
𝑥22
(3)
), 

𝛼2 = 𝑚𝑖𝑛(𝑎21
(2)𝑥11

(2), 𝑎21
(2)𝑥11

(3), 𝑎21
(3)𝑥11

(1), 𝑎21
(3)𝑥11

(3)
) +𝑚𝑖𝑛(𝑎22

(2)𝑥21
(2), 𝑎22

(2)𝑥21
(3), 𝑎22

(3)𝑥21
(2), 𝑎22

(3)
𝑥21
(3)
), 

𝛽2 = 𝑚𝑖𝑛(𝑎21
(2)𝑥12

(2), 𝑎21
(2)𝑥12

(3), 𝑎21
(3)𝑥12

(1), 𝑎21
(3)𝑥12

(3)
) + 𝑚𝑖𝑛(𝑎22

(2)𝑥22
(2), 𝑎22

(2)𝑥22
(3), 𝑎22

(3)𝑥22
(2), 𝑎22

(3)
𝑥22
(3)
), 

𝑚3 = 𝑚𝑎𝑥(𝑎11
(2)𝑥11

(2), 𝑎11
(2)𝑥11

(3), 𝑎11
(3)𝑥11

(2), 𝑎11
(3)𝑥11

(3)
) +𝑚𝑎𝑥(𝑎12

(2)𝑥21
(2), 𝑎12

(2)𝑥21
(3), 𝑎12

(3)𝑥21
(2), 𝑎12

(3)
𝑥21
(3)
), 

𝑛3 = 𝑚𝑎𝑥(𝑎11
(2)𝑥12

(2), 𝑎11
(2)𝑥12

(3), 𝑎11
(3)𝑥12

(1), 𝑎11
(3)𝑥12

(3)
) + 𝑚𝑎𝑥(𝑎12

(2)𝑥22
(2), 𝑎12

(2)𝑥22
(3), 𝑎12

(3)𝑥22
(2), 𝑎12

(3)
𝑥22
(3)
), 

𝛼3 = 𝑚𝑎𝑥(𝑎21
(2)𝑥11

(2), 𝑎21
(2)𝑥11

(3), 𝑎21
(3)𝑥11

(1), 𝑎21
(3)𝑥11

(3)
) + 𝑚𝑎𝑥(𝑎22

(2)𝑥21
(2), 𝑎22

(2)𝑥21
(3), 𝑎22

(3)𝑥21
(2), 𝑎22

(3)
𝑥21
(3)
), 

𝛽3 = 𝑚𝑎𝑥(𝑎21
(2)𝑥12

(2), 𝑎21
(2)𝑥12

(3), 𝑎21
(3)𝑥12

(1), 𝑎21
(3)𝑥12

(3)
) + 𝑚𝑎𝑥(𝑎22

(2)𝑥22
(2), 𝑎22

(2)𝑥22
(3), 𝑎22

(3)𝑥22
(2), 𝑎22

(3)
𝑥22
(3)
), 

𝑚4 = 𝑚𝑎𝑥(𝑎11
(1)𝑥11

(1), 𝑎11
(1)𝑥11

(4), 𝑎11
(4)𝑥11

(1), 𝑎11
(4)𝑥11

(4)
) +𝑚𝑎𝑥(𝑎12

(1)𝑥21
(1), 𝑎12

(1)𝑥21
(4), 𝑎12

(4)𝑥21
(1), 𝑎12

(4)
𝑥21
(4)
), 

𝑛4 = 𝑚𝑎𝑥(𝑎11
(1)𝑥12

(1), 𝑎11
(1)𝑥12

(4), 𝑎11
(4)𝑥12

(1), 𝑎11
(4)𝑥12

(4)
) + 𝑚𝑎𝑥(𝑎12

(1)𝑥22
(1), 𝑎12

(1)𝑥22
(4), 𝑎12

(4)𝑥22
(1), 𝑎12

(4)
𝑥22
(4)
), 

𝛼4 = 𝑚𝑎𝑥(𝑎21
(1)𝑥11

(1), 𝑎21
(1)𝑥11

(4), 𝑎21
(4)𝑥11

(1), 𝑎21
(4)𝑥11

(4)
) + 𝑚𝑎𝑥(𝑎22

(1)𝑥21
(1), 𝑎22

(1)𝑥21
(4), 𝑎22

(4)𝑥21
(1), 𝑎22

(4)
𝑥21
(4)
) 

 

and, 

𝛽4 = 𝑚𝑎𝑥(𝑎21
(1)𝑥12

(1), 𝑎21
(1)𝑥12

(4), 𝑎21
(4)𝑥12

(1), 𝑎21
(4)𝑥12

(4)
) +𝑚𝑎𝑥(𝑎22

(1)𝑥22
(1), 𝑎22

(1)𝑥22
(4), 𝑎22

(4)𝑥22
(1), 𝑎22

(4)
𝑥22
(4)
)  

Step 2. Similarly, multiplying �̃��̃� using AMO in Proposition 2, Equation (14) as fol-

lows: 

�̃��̃� = (
(𝑥11

(1)
, 𝑥11
(2)
, 𝑥11

(3)
, 𝑥11

(4)
) (𝑥12

(1)
, 𝑥12

(2)
, 𝑥12

(3)
, 𝑥12

(4)
)

(𝑥21
(1)
, 𝑥21
(2)
, 𝑥21

(3)
, 𝑥21

(4)
) (𝑥22

(1)
, 𝑥22

(2)
, 𝑥22

(3)
, 𝑥22

(4)
)
)(
(𝑏11

(1)
, 𝑏11
(2)
, 𝑏11
(3)
, 𝑏11
(4)
) (𝑏12

(1)
, 𝑏12
(2)
, 𝑏12
(3)
, 𝑏12
(4)
)

(𝑏21
(1)
, 𝑏21
(2)
, 𝑏21
(3)
, 𝑏21
(4)
) (𝑏22

(1)
, 𝑏22
(2)
, 𝑏22
(3)
, 𝑏22
(4)
)
)  

Which can be written as, 

�̃��̃� = (
(𝛾1, 𝛿1, 𝜇1, 𝜎1) (𝛾2, 𝛿2, 𝜇2, 𝜎2)
(𝛾3, 𝛿3, 𝜇3, 𝜎3) (𝛾4, 𝛿4, 𝜇4, 𝜎4)

) (17) 

where, 

𝛾1 = 𝑚𝑖𝑛(𝑥11
(1)
𝑏11
(1)
, 𝑥11
(1)
𝑏11
(4)
, 𝑥11

(4)
𝑏11
(1)
, 𝑥11

(4)
𝑏11
(4)
) + 𝑚𝑖𝑛(𝑥12

(1)
𝑏21
(1)
, 𝑥12

(1)
𝑏21
(4)
, 𝑥12

(4)
𝑏21
(1)
, 𝑥12

(4)
𝑏21
(4)
), 
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𝛿1 = 𝑚𝑖𝑛(𝑥11
(1)
𝑏12
(1)
, 𝑥11

(1)
𝑏12
(4)
, 𝑥11

(4)
𝑏12
(1)
, 𝑥11

(4)
𝑏12
(4)
) + 𝑚𝑖𝑛(𝑥12

(1)
𝑏22
(1)
, 𝑥12

(1)
𝑏22
(4)
, 𝑥12

(4)
𝑏22
(1)
, 𝑥12

(4)
𝑏22
(4)
), 

𝜇1 = 𝑚𝑖𝑛(𝑥21
(1)
𝑏11
(1)
, 𝑥21

(1)
𝑏11
(4)
, 𝑥21

(4)
𝑏11
(1)
, 𝑥21
(4)
𝑏11
(4)
) + 𝑚𝑖𝑛(𝑥22

(1)
𝑏21
(1)
, 𝑥22

(1)
𝑏21
(4)
, 𝑥22
(4)
𝑏21
(1)
, 𝑥22

(4)
𝑏21
(4)
), 

𝜎1 = 𝑚𝑖𝑛(𝑥21
(1)
𝑏12
(1)
, 𝑥21

(1)
𝑏12
(4)
, 𝑥21

(4)
𝑏12
(1)
, 𝑥21
(4)
𝑏12
(4)
) + 𝑚𝑖𝑛(𝑥22

(1)
𝑏22
(1)
, 𝑥22

(1)
𝑏22
(4)
, 𝑥22

(4)
𝑏22
(1)
, 𝑥22

(4)
𝑏22
(4)
), 

𝛾2 = 𝑚𝑖𝑛(𝑥11
(2)
𝑏11
(2)
, 𝑥11

(2)
𝑏11
(3)
, 𝑥11

(3)
𝑏11
(2)
, 𝑥11

(3)
𝑏11
(3)
) +𝑚𝑖𝑛(𝑥12

(2)
𝑏21
(2)
, 𝑥12
(2)
𝑏21
(3)
, 𝑥12

(3)
𝑏21
(2)
, 𝑥12

(3)
𝑏21
(3)
), 

𝛿2 = 𝑚𝑖𝑛(𝑥11
(2)
𝑏12
(2)
, 𝑥11

(2)
𝑏12
(3)
, 𝑥11

(3)
𝑏12
(2)
, 𝑥11

(3)
𝑏12
(3)
) +𝑚𝑖𝑛(𝑥12

(2)
𝑏22
(2)
, 𝑥12
(2)
𝑏22
(3)
, 𝑥12

(3)
𝑏22
(2)
, 𝑥12

(3)
𝑏22
(3)
), 

𝜇2 = 𝑚𝑖𝑛(𝑥21
(2)
𝑏11
(2)
, 𝑥21

(2)
𝑏11
(3)
, 𝑥21

(3)
𝑏11
(2)
, 𝑥21

(3)
𝑏11
(3)
) +𝑚𝑖𝑛(𝑥22

(2)
𝑏21
(2)
, 𝑥22

(2)
𝑏21
(3)
, 𝑥22

(3)
𝑏21
(2)
, 𝑥22
(3)
𝑏21
(3)
), 

𝜎2 = 𝑚𝑖𝑛(𝑥21
(2)
𝑏12
(2)
, 𝑥21

(2)
𝑏12
(3)
, 𝑥21

(3)
𝑏12
(2)
, 𝑥21

(3)
𝑏12
(3)
) + 𝑚𝑖𝑛(𝑥22

(2)
𝑏22
(2)
, 𝑥22

(2)
𝑏22
(3)
, 𝑥22

(3)
𝑏22
(2)
, 𝑥22

(3)
𝑏22
(3)
), 

𝛾3 = 𝑚𝑎𝑥(𝑥11
(2)
𝑏11
(2)
, 𝑥11

(2)
𝑏11
(3)
, 𝑥11

(3)
𝑏11
(2)
, 𝑥11
(3)
𝑏11
(3)
) + 𝑚𝑎𝑥(𝑥12

(2)
𝑏21
(2)
, 𝑥12

(2)
𝑏21
(3)
, 𝑥12

(3)
𝑏21
(2)
, 𝑥12

(3)
𝑏21
(3)
), 

𝛿3 = 𝑚𝑎𝑥(𝑥11
(2)
𝑏12
(2)
, 𝑥11

(2)
𝑏12
(3)
, 𝑥11

(3)
𝑏12
(2)
, 𝑥11
(3)
𝑏12
(3)
) + 𝑚𝑎𝑥(𝑥12

(2)
𝑏22
(2)
, 𝑥12

(2)
𝑏22
(3)
, 𝑥12
(3)
𝑏22
(2)
, 𝑥12

(3)
𝑏22
(3)
), 

𝜇3 = 𝑚𝑎𝑥(𝑥21
(2)
𝑏11
(2)
, 𝑥21

(2)
𝑏11
(3)
, 𝑥21

(3)
𝑏11
(2)
, 𝑥21

(3)
𝑏11
(3)
) +𝑚𝑎𝑥(𝑥22

(2)
𝑏21
(2)
, 𝑥22
(2)
𝑏21
(3)
, 𝑥22

(3)
𝑏21
(2)
, 𝑥22

(3)
𝑏21
(3)
), 

𝜎3 = 𝑚𝑎𝑥(𝑥21
(2)
𝑏12
(2)
, 𝑥21

(2)
𝑏12
(3)
, 𝑥21

(3)
𝑏12
(2)
, 𝑥21

(3)
𝑏12
(3)
) +𝑚𝑎𝑥(𝑥22

(2)
𝑏22
(2)
, 𝑥22

(2)
𝑏22
(3)
, 𝑥22

(3)
𝑏22
(2)
, 𝑥22

(3)
𝑏22
(3)
), 

𝛾4 = 𝑚𝑎𝑥(𝑥11
(1)
𝑏11
(1)
, 𝑥11
(1)
𝑏11
(4)
, 𝑥11

(4)
𝑏11
(1)
, 𝑥11

(4)
𝑏11
(4)
) + 𝑚𝑎𝑥(𝑥12

(1)
𝑏21
(1)
, 𝑥12

(1)
𝑏21
(4)
, 𝑥12

(4)
𝑏21
(1)
, 𝑥12

(4)
𝑏21
(4)
), 

𝛿4 = 𝑚𝑎𝑥(𝑥11
(1)
𝑏12
(1)
, 𝑥11

(1)
𝑏12
(4)
, 𝑥11

(4)
𝑏12
(1)
, 𝑥11
(4)
𝑏12
(4)
) + 𝑚𝑎𝑥(𝑥12

(1)
𝑏22
(1)
, 𝑥12

(1)
𝑏22
(4)
, 𝑥12
(4)
𝑏22
(1)
, 𝑥12

(4)
𝑏22
(4)
), 

𝜇4 = 𝑚𝑎𝑥(𝑥21
(1)
𝑏11
(1)
, 𝑥21

(1)
𝑏11
(4)
, 𝑥21

(4)
𝑏11
(1)
, 𝑥21
(4)
𝑏11
(4)
) + 𝑚𝑎𝑥(𝑥22

(1)
𝑏21
(1)
, 𝑥22

(1)
𝑏21
(4)
, 𝑥22

(4)
𝑏21
(1)
, 𝑥22

(4)
𝑏21
(4)
) 

and, 

𝜎4 = 𝑚𝑎𝑥(𝑥21
(1)
𝑏12
(1)
, 𝑥21

(1)
𝑏12
(4)
, 𝑥21
(4)
𝑏12
(1)
, 𝑥21

(4)
𝑏12
(4)
) +𝑚𝑎𝑥(𝑥22

(1)
𝑏22
(1)
, 𝑥22
(1)
𝑏22
(4)
, 𝑥22

(4)
𝑏22
(1)
, 𝑥22

(4)
𝑏22
(4)
)  

Step 3. Adding Equation (16) and Equation (17), we obtain the following: 

�̃��̃� + �̃��̃� = (
(𝑚1, 𝑛1, 𝛼1, 𝛽1) (𝑚2, 𝑛2, 𝛼2, 𝛽2)
(𝑚3, 𝑛3, 𝛼3, 𝛽3) (𝑚4, 𝑛4, 𝛼4, 𝛽4)

) + (
(𝛾1, 𝛿1, 𝜇1, 𝜎1) (𝛾2, 𝛿2, 𝜇2, 𝜎2)
(𝛾3, 𝛿3, 𝜇3, 𝜎3) (𝛾4, 𝛿4, 𝜇4, 𝜎4)

).  

Step 4. By applying Theorem 1, Equation (15), the arbitrary TrFFSME in Equation (1) 

can be written as: 

(
(𝑚1, 𝑛1, 𝛼1, 𝛽1) (𝑚2, 𝑛2, 𝛼2, 𝛽2)

(𝑚3, 𝑛3, 𝛼3, 𝛽3) (𝑚4, 𝑛4, 𝛼4, 𝛽4)
) + (

(𝛾1, 𝛿1, 𝜇1, 𝜎1) (𝛾2, 𝛿2, 𝜇2, 𝜎2)

(𝛾3, 𝛿3, 𝜇3, 𝜎3) (𝛾4, 𝛿4, 𝜇4, 𝜎4)
) 

= (
(𝑐11
(1)
, 𝑐11
(2)
, 𝑐11
(3)
, 𝑐11
(4)
) (𝑐12

(1)
, 𝑐12
(2)
, 𝑐12
(3)
, 𝑐12
(4)
)

(𝑐21
(1)
, 𝑐21
(2)
, 𝑐21
(3)
, 𝑐21
(4)
) (𝑐22

(1)
, 𝑐22
(2)
, 𝑐22
(3)
, 𝑐22
(4)
)
). 

(18) 

Step 5. The obtained Equation (18) can be converted into the following system of 16 

equations. It is worth mentioning that the number of the equation obtained from 𝑛 × 𝑚 

arbitrary TrFFSME is equal to 2𝑛 × 2𝑚 equations. Since the proposed method is applied 

for a 2 × 2 TrFFSME, we will obtain a system of 16 crisp equations as follows: 
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{
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 𝑚1 + 𝛾1 = 𝑐11

(1)

𝑛1 + 𝛿1 = 𝑐12
(1)

𝛼1 + 𝜇1 = 𝑐21
(1)

𝛽1 + 𝜎1 = 𝑐22
(1)

𝑚2 + 𝛾2 = 𝑐11
(2)

𝑛2 + 𝛿2 = 𝑐12
(2)

𝛼2 + 𝜇2 = 𝑐21
(2)

𝛽2 + 𝜎2 = 𝑐22
(2)

𝑚3 + 𝛾3 = 𝑐11
(3)

𝑛3 + 𝛿3 = 𝑐12
(3)

𝛼3 + 𝜇3 = 𝑐21
(3)

𝛽3 + 𝜎3 = 𝑐22
(3)

𝑚4 + 𝛾4 = 𝑐11
(4)

𝑛4 + 𝛿4 = 𝑐12
(4)

𝛼4 + 𝜇4 = 𝑐21
(4)

𝛽4 + 𝜎4 = 𝑐22
(4)

 (19) 

This non-linear system of equations, Equation (19), can be solved using the following 

two-stage numerical algorithm. 

4.2. Introduction to the Two-Stage Numerical Algorithm 

To our knowledge, the above non-linear system of equations, Equation (19), cannot 

be solved analytically and has to be solved numerically. 

Solving this system of 16 unknowns with MATLAB or Octave using built-in func-

tions gives results that most of the time are not the exact solution. In other words, in some 

cases, it provides a solution to the equation which is not “fuzzy”. When adding the “fuzzy 

number constraints” ( 𝑥𝑖𝑗
(1) ≤ 𝑥𝑖𝑗

(2) ≤ 𝑥𝑖𝑗
(3) ≤ 𝑥𝑖𝑗

(4) ) to the built-in function “FSOLVE” in 

MATLAB, it makes the program more unstable (i.e., gives a solution that is incorrect and 

farther from the correct solution). Therefore, in the following section, a new two-stage 

algorithm is proposed to solve such examples while imposing the constraints listed above 

for the solution. 

The algorithm’s objective is to show that using the proposed numerical programming 

method, solution(s) can be found. 

In this section, the algorithm presented allows finding a solution(s). The first part 

(first-stage algorithm) is designed to narrow the search of a solution for each vector in the 

fuzzy solution �̃� Equation (15), while the second algorithm proceeds to search the four 

components of each vector within the range found by the first stage algorithm. 

4.2.1. Assumptions 

The presence of “min” and “max” operators within each equation makes it hard, in 

most cases, to think about a unique solution, especially since the domain of the variables 

is the whole set of real numbers. 

Although the algorithm developed may support iterations over decimal numbers, 

the search for solutions was designed with a “unit” step that allows searching for solu-

tions among integer numbers only to save computation time and memory available. 

Applying a more robust experimental design would offer faster execution of the al-

gorithm and, therefore, the selection of smaller steps (e.g., 0.1 or 0.01, …). This would 

allow finding more solutions. This aspect of searching for optimal experimental design is 

not investigated in the below algorithm. 

4.2.2. The Two-Stage Algorithm 
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As shown in Appendix A, the total number of combinations for any system is expo-

nential with respect to the number of variables, which make its application for a system 

of 16 unknowns with a range of 100 for each variable computationally expensive, even 

while taking into account all the assumptions of the previous sections. 

Therefore, the two-stage algorithm that is proposed below aims first to reduce the 

search region for each primary variable (say range 𝑟 =  10 𝑜𝑟 16), which means that the 

fuzziness of each fuzzy number in the solution is assumed to be within 16 integers, then 

aims to solve the system gradually by considering all the combinations within this narrow 

range. 

The First Stage Algorithm 

This first stage algorithm is designed to find a narrow region of search for each of the 

four main variables 𝑥11, 𝑥21, 𝑥12 and 𝑥22 (i.e., find the range of solutions). The algorithm 

below shows how to find the search region for each of the four independent variables. 

This can be seen as searching for an average value (𝑥𝑖𝑗
𝐴𝑣𝑔

) of each of the main four vectors 

in Equation (15), then suggesting a range around the found value(s). 

In order to do so, the first algorithm executes the following steps: 

1. Only eight equations of Equation (19) are considered. Those eight equations are listed 

in Appendix B. Those equations consider the boundary values in all the matrices 

(i.e., the superscripts (1) and (4)). 

2. In addition, we assume that 𝑥𝑖𝑗
(1)
= 𝑥𝑖𝑗

(2)
= 𝑥𝑖𝑗

(3)
= 𝑥𝑖𝑗

(4)
= 𝑥𝑖𝑗

𝐴𝑣𝑔  for every i and j, this 

will allow reducing the number of unknowns to four unknowns 

(�̃�11
𝐴𝑣𝑔

, �̃�21
𝐴𝑣𝑔

, �̃�12
𝐴𝑣𝑔

, �̃�22
𝐴𝑣𝑔

). In other words, the fuzzy unknown numbers are considered 

crisp while keeping the same fuzzy multiplication operations. 

3. Limiting those variables to four independent variables, approximated average values 

in a range of 100 values can be searched. For example, each of the variables is consid-

ered as varying within the interval [−49,+50] (𝑖. 𝑒 𝑓𝑜𝑟 𝑖 = −49 ∶ +50). By allowing 

each variable to take 100 values, the number of combinations could be 𝑁 = 1004 =

108, which is still computationally feasible (less than 10 s). 

4. Selecting the average values for each variable is conducted by substituting the set of 

combinations in each of the eight equations in Appendix C , “equation after the 

other”. In other words, only the combinations satisfying the first equation are re-

tained and substituted in the following equation, and so on. 

5. In case of having more than one 𝑥𝑖𝑗
𝐴𝑣𝑔solution per variable, those solutions can be 

considered one after the other in the second stage algorithm, or the average can be 

considered. 

The Second Stage Algorithm 

The second-stage algorithm consists of finding the fuzzy variables’ solutions within 

the specified intervals found by the first-stage algorithm. In other words, the domain of 

each variable 𝑥𝑖𝑗
(𝑘)

 is defined based on the 𝑥𝑖𝑗
𝑎𝑣𝑔 found in the previous algorithm. 

Assuming a range of r values for each 𝑥𝑖𝑗
(𝑘)

, then potential 𝑥𝑖𝑗
(𝑘)

values would be 

within the set below: 

𝑥𝑖𝑗
(𝑘) ∈  {𝑥𝑖𝑗

𝑎𝑣𝑔
−

𝑟

2
+ 1,… , 𝑥𝑖𝑗

𝑎𝑣𝑔
+

𝑟

2
} for every 𝑖, 𝑗 = 1, 2 

𝑘 = 1, . . ,4 with the constraints 𝑥𝑖𝑗
(1) ≤ 𝑥𝑖𝑗

(2) ≤ 𝑥𝑖𝑗
(3) ≤ 𝑥𝑖𝑗

(4) 

In the examples considered, the range 𝑟 is taken equal to 16. 

It is worth mentioning that this system can be divided into two quasi-independent 

systems; each is composed of 8 equations. In case more than one solution is found for 

variables with superscripts (1) and (4), the retained solutions are those offering solutions 

for variables with superscripts (2) and (3) within their range values. 

The first system contains all equations having variables with superscripts (1) and (4), 

and the second system includes all the equations having variables with superscripts (2) 

and (3). This fact allows to significantly reduce the computational time for finding 
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solutions. For example, instead of 𝑁 = 1012  iterations for 12 equations with 12 un-

knowns, one can get 𝑁 =  2 × 106 iterations for solving two systems of six equations and 

six unknowns). 

Therefore, the 2nd-stage algorithm proceeds following two main steps: 

1. Find a solution for the eight variables 𝑥𝑖𝑗
(1) and 𝑥𝑖𝑗

(4), with 𝑖, 𝑗 = 1, 2. More details 

about solving this system and optimizing the number of iterations are given in Ap-

pendix D. 

2. The same procedure described in Appendix D is followed to solve the second sys-

tem of 8 variables 𝑥𝑖𝑗
(2) and 𝑥𝑖𝑗

(3) by considering a narrower interval range for those 

variables, which are [𝑥𝑖𝑗
(1), 𝑥𝑖𝑗

(4)]. 

5. Numerical Examples 

For all the examples selected, to have computationally feasible solutions, it is as-

sumed that the solution is included in the interval of 200 integers around zero 

(𝑖. 𝑒. [−99,100]). Moreover, the spread of the fuzzy numbers is assumed to be within 16 

consecutive integers. 

Below is a typical example of a system solved using the two suggested methods. The 

first one uses the MATLAB built-in function “fsolve”, and the second one uses the two 

sub-algorithms. 

Example 2. Consider the following TrFFSME and solve it by the proposed method: 

(
(−12, 22, 35, 52) (−30, 20, 43, 66)

(−25,−10, 29, 33) (10, 44, 50, 100)
)(
(𝑥11

(1)
, 𝑥11
(2)
, 𝑥11
(3)
, 𝑥11
(4)
) (𝑥12

(1)
, 𝑥12
(2)
, 𝑥12
(3)
, 𝑥12
(4)
)

(𝑥21
(1)
, 𝑥21
(2)
, 𝑥21
(3)
, 𝑥21
(4)
) (𝑥22

(1)
, 𝑥22
(2)
, 𝑥22
(3)
, 𝑥22
(4)
)
)

+ (
(𝑥11

(1)
, 𝑥11
(2)
, 𝑥11
(3)
, 𝑥11
(4)
) (𝑥12

(1)
, 𝑥12
(2)
, 𝑥12
(3)
, 𝑥12
(4)
)

(𝑥21
(1)
, 𝑥21
(2)
, 𝑥21
(3)
, 𝑥21
(4)
) (𝑥22

(1)
, 𝑥22
(2)
, 𝑥22
(3)
, 𝑥22
(4)
)
) (

(−25, 0, 49, 53) (−2, 1, 39, 47)

(−30, 19, 32, 65) (−40,−30, 44, 66)
)

= (
(−3810,−1885, 202, 2555) (−8446,−5259,−1429, 3886)

(−7815,−3597,−348, 6045) (−16805,−9266,−554, 4016)
) 

 

Solution. 

(I) Solution using the newly developed algorithm. 

The algorithm proposes the application of two sub-algorithms as explained in the 

previous sections. 

(a) The first sub-algorithm provides the region of search by finding the “seed” 

(𝑥𝑖𝑗
𝑎𝑣𝑔) for each of the fuzzy numbers. For the numerical example suggested 

above, the obtained seed or 𝑥𝑖𝑗
𝑎𝑣𝑔 is 

𝑥11
𝑎𝑣𝑔

= −31 ;  𝑥21
𝑎𝑣𝑔

= 15 ;  𝑥12
𝑎𝑣𝑔

= 7 ; 𝑥22
𝑎𝑣𝑔

= −100  

This seed was obtained using a range of 210 integers around 0 with a value of 

    휀 = 150. 

(b) The second sub-algorithm searches for the four fuzzy numbers solutions for 

the 16 equations using all the combinations around a relatively small range 𝑟 

around 𝑥𝑖𝑗
𝑎𝑣𝑔. For this example, a range 𝑟 =  22 allows us to find solutions 

for the system. 

Below are the four possible solutions found for this system: 

�̃�1 = (
(−30,−25,−23,−23) (−3, 5, 6, 7)

(5, 6, 12, 15) (−100,−98, −94,−92)
)  

�̃�2 = (
(−30,−25,−23,−22) (−3, 5, 6, 7)

(5, 6, 12, 15) (−100,−98,−94,−92)
)  

�̃�3 = (
(−30,−25,−23,−21) (−3, 5, 6, 7)

(5, 6, 12, 15) (−100,−98,−94,−92)
)  
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And 

�̃�4 = (
(−30,−25,−23,−20) (−3, 5, 6, 7)

(5, 6, 12, 15) (−100,−98,−94,−92)
)  

The following Figure 6 shows the arbitrary fuzzy solutions �̃�1, �̃�2, �̃�3 and �̃�4. 

 

 

 

 

 

 

 

 

Figure 6. Arbitrary fuzzy solutions �̃�1, �̃�2, �̃�3 and �̃�4 of Example 2. 

(II) Solution using MATLAB and the function FSOLVE 

There exists a package in MATLAB by Zalatko Zahariev [44]. However, by applying 

the “FSOLVE” algorithm built-in MATLAB directly for the non-linear system over the 16 

equations, it gives the solution below: 
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�̃�𝑓𝑠𝑜𝑙𝑣𝑒 = (
(−30.23  , −25, −23, 0.754) (7.05, 6, 5, 6.74)

(6.23, 6, 12, 14.99) (−100.11, −98,−94 − 92.13)
)  

Substituting this solution into Equation (1) does not satisfy the equation with the pro-

posed matrix �̃�. 

Adding the constraints 𝑥𝑖𝑗
(1) ≤ 𝑥𝑖𝑗

(2) ≤ 𝑥𝑖𝑗
(3) ≤ 𝑥𝑖𝑗

(4), it also does not lead to a correct so-

lution. However, this is not the case for all the examples tried. For some, applying 

“FSOLVE” leads to reasonable solutions. 

Remark 1. 

The two-stage algorithm was found to be a useful alternative to the build-in function 

FSOLVE inherent to the MATLAB software. However, due to the reason that FSOLVE is 

based on the trust region method, which can solve non-linear systems that are twice dif-

ferentiable, it is not well suited to handle our min-max non-linear system of equations. In 

addition, the trust-region method needs a good initial guess to give a good approximation, 

with our assumption the obtained solution by FSOLVE does not always satisfy the system. 

Moreover, the FSOLVE function does not include any constraints; in the case of adding 

constraints, the solution to the system of non-linear equations that satisfies the given con-

straints is not guaranteed to exist. Attempts to find an exact solution using FSOLVE when 

the fuzzy constraints are added to the min-max non-linear system always failed or pro-

duced warnings for possible error. 

Remark 2. Extension of the proposed method to other fuzzy numbers and systems. 

To our best knowledge, the proposed method is the first one applied to different fuzzy 

systems and fuzzy numbers without any amendments. For example, it can be applied to 

arbitrary FFSME in the form �̃��̃� + �̃��̃� = �̃� with TrFNs and TFNs whenever the mean 

values in the TrFNs used are equal. In addition, it can also be applied to the arbitrary 

FFME in the form �̃��̃� = �̃� with TrFNs and TFNs if we allow �̃� = 0, in �̃��̃� + �̃��̃� = �̃�. 

Therefore, the proposed method can solve the following fuzzy systems: Arbitrary FFSME 

with TFNs and TrFNs and arbitrary FFME with TFNs and TrFNs without restriction. In 

the following Example 3, we resolve Example 1 in [45]. 

Example 3 Consider the following Arbitrary FFME: 

(
(−2, 3, 3, 4) (−2, 2, 2, 3)

(1, 2, 2, 2) (4, 4, 4, 5)
) (
(𝑥11

(1), 𝑥11
(2), 𝑥11

(3), 𝑥11
(4))

(𝑥21
(1), 𝑥21

(2), 𝑥21
(3), 𝑥21

(4))
) = (

(−13, 8, 8, 14)

(−14, 8, 8, 14)
).  

Solution: The fuzzy solution to the given arbitrary FFME is obtained by Kumar et al. 

[45] as follows: 

�̃� = (
(1, 2, 2, 2)

(−3, 1, 1, 2)
).  

However, Malkawi et al. [46] were able to obtain two fuzzy solutions as follows: 

�̃� = {(
(1, 2, 2, 2)

(−3, 1, 1, 2)
) , (

(−23 14⁄ , 2, 2, 2)

(−15 7⁄ , 1, 1, 2)
)}.  

Applying the two-stage algorithm to this arbitrary FFME gives strong fuzzy solu-

tions. Table 1 gives all possible feasible fuzzy solutions to Example 3. 

Table 1. Fuzzy solutions of Example 3. 

Fuzzy Solutions Absolute Error 

�̃�𝟏 = (
(𝟏, 𝟐, 𝟐, 𝟐)

(−𝟑, 𝟏, 𝟏, 𝟐)
) 0 

�̃�𝟐 = (
(−𝟏, 𝟐, 𝟐, 𝟐)

(−𝟑, 𝟏, 𝟏, 𝟐)
) 0 
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�̃�𝟑 = (
(𝟐, 𝟐, 𝟐, 𝟐)

(−𝟑, 𝟏, 𝟏, 𝟐)
) 5.5 × 10−27 

�̃�𝟒 = (
(−𝟐, 𝟐, 𝟐, 𝟐)

(𝟎, 𝟏, 𝟏, 𝟐)
) 1.59 × 10−8 

�̃�𝟓 = (
(𝟎, 𝟐, 𝟐, 𝟐)

(−𝟑, 𝟏, 𝟏, 𝟐)
) 0 

The two-stage algorithm method is not only able to detect all possible fuzzy solutions 

but also able to find all possible non-fuzzy solutions. The following Table 2 gives the weak 

fuzzy solution to Example 3. 

Table 2. Non-Fuzzy solutions of Example 3. 

Non-Fuzzy Solutions Absolute Error 

�̃�𝟏 = (
(𝟐, 𝟐, 𝟐,−𝟏)

(𝟐, 𝟏, 𝟏,−𝟑)
) 7.04 × 10−68 

�̃�𝟐 = (
(−𝟏, 𝟐, 𝟐, 𝟐)

(𝟐, 𝟏, 𝟏,−𝟑)
) 0 

�̃�𝟑 = (
(𝟐, 𝟐, 𝟐, 𝟎)

(−𝟑, 𝟏, 𝟏, 𝟐)
) 0 

�̃�𝟒 = (
(𝟐, 𝟐, 𝟐, 𝟎)

(𝟐, 𝟏, 𝟏,−𝟑)
) 0 

�̃�𝟓 = (
(𝟎, 𝟐, 𝟐, 𝟐)

(𝟐, 𝟏, 𝟏,−𝟑)
) 0 
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6. Conclusion 

In this paper, the solution of the arbitrary TrFFSME �̃��̃� + �̃��̃� = �̃� is obtained nu-

merically using newly developed two-stage algorithm. In solving TrFFSME, fuzzy arith-

metic multiplication for TrFNs is constructed. This method is superior compared to the 

existing methods since it eliminates the restrictions to the parameters of the TrFFSME and 

is able to obtain all possible finite fuzzy and non-fuzzy solutions. Furthermore, the pro-

posed method is applicable for solving arbitrary TrFFSME and can also solve arbitrary 

FFME with TFNs and TrFNs. The main limitation of the proposed method is that it needs 

a long computational time and, therefore, large memory storage in order to find all possi-

ble solutions. In future work, a further modification to the AMO is needed in order to 

reduce the complexity of the min-max non-linear system. In addition, optimization tech-

niques need to be developed to overcome the limitation of this method. 
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Appendix A: Example of Solving System Numerically Using All Possible Integer 

Combinations 

In order to solve numerically a system of four equations with four unknowns 

𝑓(𝑋1, 𝑋2, 𝑋3, 𝑋4)  =  0 under the assumptions of integer variables within a range of 10 

numbers (i.e., 𝑋𝑖 ∈ [𝑥𝑖 , 𝑥𝑖 + 9]), below are the possible combinations. 

The possible solutions can be any line of Table A1 below. The table represents all the 

possible combinations of variables. 

Table A1. Permutations of four variables with 10 possible integer values each. 

𝑿𝟏 𝑿𝟐 𝑿𝟑 𝑿𝟒 
𝒙𝟏 𝑥2 𝑥3  𝑥4 

𝒙𝟏 𝑥2 𝑥3 𝑥4 + 1 
… … … … 
𝒙𝟏 𝑥2 𝑥3 𝑥4 + 9 

𝒙𝟏 𝑥2 𝑥3 + 1 𝑥4 
… … 𝑥3 + 1 𝑥4 + 1 
… … … … 
𝒙𝟏 𝑥2 𝑥3 + 9 𝑥4 + 9 
… 𝑥2 + 1 𝑥3  𝑥4 
… … … … 
𝒙𝟏 𝑥2 + 9 𝑥3 + 9 𝑥4 + 9 

𝒙𝟏 + 𝟏 𝑥2  𝑥3  𝑥4  
…    

𝒙𝟏 + 𝟗 𝑥2 + 9 𝑥3 + 9 𝑥4 + 9 

For this system with independent variables, all the possible integer combinations are 

104. 
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In the general case, where a system of n variables 𝑥𝑖, each having 𝑟𝑖 values, the num-

ber of combinations to be tested as potential solutions, always for independent variables, 

is: 

𝑁 =  ∏𝑟𝑖

𝑛

𝑖=1

  

If the range for all variables is the same (𝑟𝑖 = 𝑟), the number N would become: 

𝑁 =  𝑟𝑛 = 104  

If the range 𝑟 = 200 as for the one used in the first-stage algorithm, the number of 

combinations would be: 

𝑁 =  2004 = 16 ∗ 108  

However, this number was reduced significantly by gradually considering the equa-

tions and their potential solutions. For example, the first equation in the first-stage algo-

rithm has three unknowns, which reduce the number N of combinations to 

𝑁 =  2003 = 8 ∗ 106 instead of 𝑁 =  2004 = 16 ∗ 108. 

The retained potential solution is used to be combined with potential values of the 

fourth unknowns (in the case of first algorithm, it is the variable 𝑋22
(𝑎𝑣𝑔)

). 

Appendix B: Finding Seeds for the Range of Main Variables (Average Values) 

The equations considered in the first stage algorithm are those containing the lower 

and upper bounds of matrices A, B, x and C (i.e., the equations containing superscripts (1) 

and (4)). 

{
 
 
 
 
 
 

 
 
 
 
 
 𝑚1 + 𝛾1 = 𝑐11

(1)
                                                                      (𝐵. 1)

𝑛1 + 𝛿1 = 𝑐12
(1)
                                                                       (𝐵. 2)

𝛼1 + 𝜇1 = 𝑐21
(1)                                                                       (𝐵. 3)

𝛽1 + 𝜎1 = 𝑐22
(1)                                                                       (𝐵. 4)

 𝑚4 + 𝛾4 = 𝑐11
(4)                                                                      (𝐵. 5)

𝑛4 + 𝛿4 = 𝑐12
(4)                                                                       (𝐵. 6)

𝛼4 + 𝜇4 = 𝑐21
(4)                                                                       (𝐵. 7)

𝛽4 + 𝜎4 = 𝑐22
(4)                                                                       (𝐵. 8)

  

They are eight equations and eight unknowns. By considering 𝑋𝑖𝑗
(1)
= 𝑋𝑖𝑗

(4)
= 𝑋𝑖𝑗

𝑎𝑣𝑔, 

the number of unknowns is reduced to four. Starting with the first and the fifth equation 

only three unknowns can be considered (as explained in Appendix A above). 

Appendix C: Relaxing Constraints of Equations Into Inequations 

Solving the first stage algorithm (finding the seeds 𝑋𝑖𝑗
𝑎𝑣𝑔
) might not lead to a solution 

even when the original system has one, and this is a perfectly normal occurrence due to 

considering the fuzzy variables as crisp. Therefore, the system of equations to be solved 

by the first-stage algorithm is relaxed into inequalities. In other words, the equations in 

Appendix 𝐵 are transformed into the eight inequalities below: 
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{
 
 
 
 
 

 
 
 
 
 𝐴𝑏𝑠(𝑚1 + 𝛾1 − 𝑐11

(1)) <  휀 

𝐴𝑏𝑠(𝑛1 + 𝛿1 − 𝑐12
(1)) <  휀

𝐴𝑏𝑠(𝛼1 + 𝜇1 − 𝑐21
(1)) <  휀

𝐴𝑏𝑠(𝛽1 + 𝜎1 − 𝑐22
(1)) <  휀

 𝐴𝑏𝑠(𝑚4 + 𝛾4 − 𝑐11
(4)) <  휀

𝐴𝑏𝑠(𝑛4 + 𝛿4 − 𝑐12
(4)) <  휀

𝐴𝑏𝑠(𝛼4 + 𝜇4 − 𝑐21
(4)) <  휀

𝐴𝑏𝑠(𝛽4 + 𝜎4 − 𝑐22
(4)) <  휀

  

The value of 휀 is calibrated in a way to obtain one or a few solutions(𝑥𝑖𝑗
𝐴𝑣𝑔

). The 

algorithm attempts to find values for 𝑥𝑖𝑗
𝐴𝑣𝑔 that makes the inequations above the closest 

possible solutions in Appendix 𝐵. It is worth mentioning that small values of ɛ will not 

allow finding solutions in most cases. 

Appendix D: Solving the 8 Equations with Superscripts (1) and (4) 

Below are the eight equations with eight unknowns containing all the variables with 

superscripts (1) and (4). 

{
 
 
 
 
 

 
 
 
 
 𝑚1 + 𝛾1 = 𝑐11

(1)
                                                                           (𝐷. 1)

𝑛1 + 𝛿1 = 𝑐12
(1)
                                                                             (𝐷. 2)

𝛼1 + 𝜇1 = 𝑐21
(1)                                                                            (𝐷. 3)

𝛽1 + 𝜎1 = 𝑐22
(1)                                                                            (𝐷. 4)

 𝑚4 + 𝛾4 = 𝑐11
(4)                                                                           (𝐷. 5)

𝑛4 + 𝛿4 = 𝑐12
(4)                                                                             (𝐷. 6)

𝛼4 + 𝜇4 = 𝑐21
(4)                                                                             (𝐷. 7)

𝛽4 + 𝜎4 = 𝑐22
(4)                                                                             (𝐷. 8)

  

The eight unknowns are: 𝑋11
(1)
, 𝑋11

(4)
, 𝑋21

(1)
, 𝑋21

(4)
, 𝑋12

(1)
, 𝑋12

(4)
, 𝑋22

(1)
, 𝑋22

(4)
. 

Each of these variables can take any value in its range (e.g., for 10 values, r = 10), with 

the constraint 𝑥𝑖𝑗
(1)
≤ 𝑥𝑖𝑗

(4)
. The number of combinations for each couple of variables 

(𝑥𝑖𝑗
(1)
, 𝑥𝑖𝑗

(4)
) is equal to 

𝑟(𝑟 + 1)

2
=
10 × 11

2
= 55  

Those combinations are displayed in Table A2 as follows: 

Table A2. Combinations under constraints 𝑥11
(1)
≤ 𝑥11

(4)
. 

𝑿𝟏𝟏
(𝟏)

 𝑿𝟏𝟏
(𝟒)

 

𝒙𝟏𝟏
(𝟏)

 𝑥11
(1)

 

𝒙𝟏𝟏
(𝟏)

 𝑥11
(1)

+1 

… … 

𝒙𝟏𝟏
(𝟏)

 𝑥11
(1)

+ 9 

𝒙𝟏𝟏
(𝟏)
+ 𝟏 𝑥11

(1)
+ 1 

𝒙𝟏𝟏
(𝟏)
+ 𝟏 𝑥11

(1)
+ 2 

… … 

𝒙𝟏𝟏
(𝟏)
+ 𝟏 𝑥11

(1)
+ 9 

𝒙𝟏𝟏
(𝟏)
+ 𝟐 𝑥11

(1)
+ 2 

… … 

𝒙𝟏𝟏
(𝟏)
+ 𝟕 𝑥11

(1)
+ 9 

𝒙𝟏𝟏
(𝟏)
+ 𝟖 𝑥11

(1)
+ 8 
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𝒙𝟏𝟏
(𝟏)
+ 𝟖 𝑥11

(1)
+ 9 

𝒙𝟏𝟏
(𝟏)
+ 𝟗 𝑥11

(1)
+ 9 

1. The sub-algorithm considers Equation (D.1) and Equation (D.5), which include the 

six variables: 𝑥11
(1)
, 𝑥11

(4)
, 𝑥21

(1)
, 𝑥21

(4)
, 𝑥12

(1)
, 𝑥12

(4)
. Those variables lead to 553 = 166,375 

combinations. Gradually, the algorithm discards combinations that do not satisfy 

Equation (D.1). 

2. The retained combinations are passed to Equation (D.5). Only those combinations 

satisfying Equation (D.1) and Equation (D.5) are saved in a set called S15, having N15 

combinations. 

3. The set S15 is combined with all combinations of variables 𝑥22
(1)
, 𝑥22

(4)
. This set called 

S8var contains all potential solutions of the system of eight equations. The number of 

combinations in this case becomes: 

𝑁8𝑣𝑎𝑟 = 55 × 𝑁15. 

4. Those combinations are then filtered by Equation (D.2) then Equation (D.6). 

5. Passed and filtered after by Equation (D.3) and Equation (D.7) 

6. And lastly passed to Equation (D.4) and Equation (D.8). 

The remaining combinations are solutions for the system of eight equations with the 

superscripts (1) and (4). In order to find the solution for the remaining eight equations, 

the same second stage algorithm is repeated in order to find 𝑥𝑖𝑗
(2)

 and 𝑥𝑖𝑗
(3)

 by consider-

ing the region of search, the intervals [𝑥𝑖𝑗
(1)
, 𝑥𝑖𝑗

(4)
]. 
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