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Abstract
The geodesics on a relativistic manifold are given in a map x by the well-known equation
x4+ Tpxtxt =0

This equation can be solved numerically step by step and transposed into a quantization. We
study here the effect of this quantization on the Schwarzschild spacetime, more precisely in the
Kruskal-Szekeres map.
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From digitization to quantification

The geodesic equation is obtained by the Euler-Lagrange variational method, with the Lagrangian
from the metric g : L = g,,x"#x"" . The goal is to find the extremal solutions T =

A
f Aolx/Zd/l which happens to be the eigentime of a test particle subjected to the field g. Except
for the mass of the particle, which is in fact an energy, this proper time is an action.

Finding solutions digitally is extremely simple. We give ourselves a digitization step 64 and an
initial state (x, x") of the mobile. The position x is incremented by x 6. The geodesic equation
gives x%=-T ffvx'“x"’ and the velocity x' is incremented by x 8. Then the process is iterated.

Fig 1: A mobile moves from a geodesic y,(Ao) to a geodesic y, (1) by a trajectory element
¥1(A1) on an interval §AThis is a straight line in the tangent space. We use the fact that the
tangent spaces T, R" are in fact canonically included in R".

The choice of the affine step will be made here by keeping the time step constant 0 which gives

81 =dt/\L
This time step can be physically equated with a quantum of action in the following interpretation.

At each step, the mobile requests a quantum according to the chosen coordinate system x. It
uses this quantum to continue its trajectory in its local context, which is the tangent space to the
space-time manifold at the current point. Then the new state is considered as such on the global
space-time. An observer placed on the particle moves during the quantum of time according to a
trajectory linearized by the choice of its map.

Some remarkable facts emerge.

Firstly, the coordinate system chosen by the observer is essential. The linearization of the
trajectory during 0T depends on the map x and makes the interaction between space-time and
the observer contextual. There is an effect of the observation on the trajectory.

Secondly, it cannot be excluded that the quantization step involves speeds higher than that of
light. This phenomenon can be related to certain quantum effects, such as the possibility for a

4/15


https://doi.org/10.20944/preprints202112.0142.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 December 2021

particle to tunnel through a potential barrier, or to violate the conservation of energy law for a time
short enough to be allowed by Heisenberg's uncertainty relations.

Third, in the particular case of the Schwarzschild model with a radius 7g it becomes possible to
be in the forbidden zone beyond the bare singularity described below.

Reminder on Schwarzschild, Kruskal and Szekeres

In 1916, Karl Schwarzschild was one of the first to find a solution to the gravitational equations of
Einstein's general relativity. This solution, which describes the field created by a point mass, is

expressed by the following metric in polar coordinates, with a speed of light ¢ = 1 and a
Schwarzschild radius 1 :

dr? = (1-Z)ar? - (1- %S)_l dr? — r2(d6? + sin?6dp?)

Two peculiar rays are immediately noticeable. The first one, r = 15 gives the horizon beyond
which a particle cannot escape, giving the name of black hole to this zone. The second one, r =

0, is a singularity of the metric, known as bare, where any particle entering the black hole ends its
trajectory in a finite time.

The Kruskal-Szekeres coordinate transformation leads to a formulation in terms of the variables
(T, X,0,p)[1]:

ard

dr? = Te_a(de —dX?) —r?(d6? + sin?6dp?)

_ i L 1 L i
—60.5 0.0 0.5 1.0 15 2.0 25 3.0

X2_T2

The parameter r = 1 (WO ( ) + 1) is given by the branch O of the Lambert function W
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Fig 2: Real branches of the Lambert function

Fig 3. Kruskal-Szekeres map

The diagram in Fig 3 shows the following regions:

I space-time outside the black hole

Il black hole

i another related component of space-time

v white hole

S+ inside of the bare singularity

S- other component of the interior of the bare singularity

This map shows that the Schwarzschild horizon is not a physical singularity, but only an artefact
due to the choice of the map.

The diagonal lines represent the Schwarzschild horizon, and the two boundary branches of the
sing+ and sing- hyperbola the entrance and exit of the bare singularity itself.

A particle from region Il ends its trajectory on sing+, without being able to get out. Conversely, a
particle in region IV cannot do anything else but exit, hence the name white hole. We also find the
expressions sink and source for these two regions.

S- and S+ are inaccessible, or forbidden, because they are outside the map domain. These two
regions and their boundaries are associated with a single point, the zero of the polar coordinates,
and can be considered as collapsed.

At least in the hypothesis of a strictly continuous world...
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Appearance of tachyons

Traditionally, the term tachyon is applied to a hypothetical particle with a speed greater than the
speed of light. The exit of the speed of the cone of the future is translated by the fact that L < 0
and thus an imaginary quantization step. It is proposed here to use a complex proper time:

T=1,+i7;, €EC

This time is measured by two clocks, one real and the other imaginary. The increase of the affine

parameter becomes 81 = 87, /VLif L > 0 or A = idt;/\/—L if L < 0. In this way, the
trajectory remains real in the map x. For a tachyon, it is the imaginary clock that works, the other
one remaining fixed, and the opposite for a standard particle.

For any coordinate system on space-time, the notions of time and space are found locally by
placing in the tangent space an orthonormal basis which diagonalizes the metric, then, thanks to
a possible permutation of the axes and a calibration of the units, to obtain the diagonal Minkowski
matrix Diag(1, —1,—1,—1). The 0 coordinate is then time and the others define space. The
base obtained in this way is called a tetrad.

ot
velocity of the mobile. Let ¥ be its Euclidean norm and n the unit vector v/ v unit vector, the so-
called slip vector. We easily obtain y = (1 — v?)~1/2,

The proper speed x = @x' is transformed into a quad speed u = y (117) where D is the space

If v < 1, it is possible to put the mobile at rest with a Lorentz boost A(v)i.e.

1
A(W)u = ( )
Wu =,
If v > 1, y becomes pure imaginary. Nevertheless, it is possible to extend the boost by

1) =4 (3R (e 3)

0
where R(n, 0) is a rotation of angle 8 and axis M. It can be seen that A(v)u = in ) The
G

"resting" with this extended boost makes a particle appear in the direction ng; with a proper time
marked by its imaginary clock. As 1/v < 1, this transformation is physically feasible for an

external observer, and the tachyon could be visible. One can notice that the factor L in front of ng
is consistent, since it does imply a quadrivector of unit Minkowskian norm.
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Transition from black hole to white hole

The appearance of a state in the zone forbidden by the singularity poses a more delicate problem.
Indeed, the Christoffel coefficients involve the parameter

r=r(Wo (3 (X2 -12)) +1)

This critical zone is defined by X% — T% < —1 which takes the domain of Wp.
The solution proposed here is to use the other part of this function on the real line, namely
1
r=rn (W, (G@2-137)+1)
by reversing the term X% — T*which is in the domain of W_1. The continuation of the trajectory is

then done by changing the signs of T and X, which turns the mobile from a black hole to a white
hole. This idea is suggested by the hyperbolic character of the Kruskal map.

Cost of quantification

The evolution of the trajectory during the time quantum is no longer geodesic, and therefore
requires some work. The force that appears during this displacement is given by

f*=x""+Tgxmv
and its work on the affine segment 84 is given by

SW = [ g, fix"VdA
A quick calculation shows that
1 ! r ! 1 6 v ! ! 4 ! 1 !
W = - 5Ax BxVx'P [ ﬂ(x + x'E6A)dE = SAx"*x"Vx pfo Iy (x + x'862)dS

0 9gxP

This expression makes it possible to estimate the energy needed to quantify the movement.
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Refutability of the model

Given a time quantum, one can ask what mass M corresponds to a quantum of action equal to
Planck's constant. In other words Myc?8t = h.

It is clear that the finer the digitization, the closer the trajectories are to the unquantised
geodesics, thus delaying the onset of the quantum effects mentioned above.

The smaller the quantum, the later the effect, and the longer the calculation time. The calculations
carried out here allow us to aim for a time quantum of about 10_135 which corresponds to a
mass of 10_zeV/ c?. To reach the mass of the neutrino, for example, which is currently estimated

at 1.1eV /c?, would need a temporal resolution two orders of magnitude lower, resulting in
calculation times that are about 100 times longer. As the calculations performed here require
several days, it is not impossible to think that an optimization could be achieved up to the level of
actually observable particles.
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Fig 4. Mass - time quantum relationship
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Two typical trajectories

In general, the trajectories end either with the limiting velocity 1 or at the singularity. Tachyons are
fleeting, and return to standard space-time with a final velocity of 1.

1.0 - Kruskal DX-DT plane
Kruskal X-T plane
0.5 — /
— 0.0 /> =
-0.5
1.0
T I I T
-0.2 0.0 0.2 0.4
X
1.0 - Minkowski velocity
Atau evolution 0.30
05/ [—T) 0.25 -
X3-T
n | 0.20 - \
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Fig 5. Trajectory evolving towards the singularity. The variable Atau is simply the addition of the
two real and imaginary clocks. The imaginary time is identified by a negative Lagrangian. The start
of the trajectory is in red and its end in dark blue. The passages through the singularity are located

at the points where X Z_T* < -1
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Fig 6. Trajectory leading to a tachyon, before ending on the singularity. The colouring of the top
two graphs is given by the imaginary clock from the black part. The calculation was redone by
increasing the precision from 4096 to 8192 bits, with no significant difference.
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Calculation tools

The digital tracking of trajectories is done over several million steps. The standard precision of
current computers (double precision) is 53 bits, which is totally insufficient. The MPFR library [3]
implements the calculation with an arbitrary precision, only limited by the machine's memory. An
interface written by P. Holoborodko [3] then allows the use of the Eigen vector calculation library
[4]. The very complete study of F. Johansson [5] on the Lambert function finally makes it possible
to carry out the calculation of trajectories, which becomes stable with a precision of 4096 bits
(approximately 1200 decimal places).

The exploration of the various trajectories is programmed in C++ and uses a 128 processor
machine running in the Gnu - Linux Ubuntu 20.4 environment.

The trajectories presented here generally require several days of parallel CPU.

Analogy with quantum measurement

Some of the effects of observing a relativistic motion during a time quantum At have been
described above. In summary, the motion naturally follows a geodesic, then during the time of
observation, it follows a tangent, then it resumes its natural trajectory, but on another,
neighbouring geodesic.

This sequence is similar to the Copenhagen version of quantum measurement, where there are
two possible evolutions for a quantum system. The first, known as unitary (U-type), is governed by
the Schroedinger or Dirac equation. The second, which appears when the system is measured, is
called wave packet reduction (type R), and consists of projecting this wave function onto an eigen
space associated with the observable to be measured.

Let A be the self-adjoint operator translating an observable A. To measure A following the
Geneva school [8], is to ask a series of questions whose answers are yes or no. A question about

A is for example: "Will the value of A appear in a certain interval 4 of the real line".

Let SpA be the spectrum of the operator A. This question is represented by the projection
operator | , = » ]‘2 where ]'3 is the projector onto the eigenspace of eigenvalue @ 2. The

a€ANSpA
result of the measurement, i.e. the answer to the question, will be yes with probability p, =

(Y] 41¥) and the system will then be in the state [1) = ﬁ
A

same way, but with the projector | 4 and gives the final state |0)

. The answer no is treated in the

One can imagine that the measurement lasts for a time interval 0t and, after the response has
been randomly chosen, the wave function evolves "linearly" towards its final state.

o1 A
A= ) af,.
a€eSpA
The continuous version involves an integral, which does not change the discussion.
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Fig 7. Evolution of the quantum probability amplitude in R mode

For example, the path in Fig 7 :

t =Y, = cos (9 (1 —é)) |1) + sin (9 (1 —é)) |0) cosO = \/E

moves in a uniform and unitary manner from i a | 1) in case of a yes answer.

For the Schroedinger equation, this evolution is governed in the (| 1), |0)) basis by the
Hamiltonian operator

__bn _
H{ = gaze = arccos,/p,

where 0, is the second Pauli matrix. It can be seen that (H;) = 0

P, = eg—zazlp _ e%(|1><0|—|0><1|)¢

Initially, the wave function follows a trajectory U given by a Hamiltonian H. During the
measurement, the reduction R is replaced by a trajectory U with a Hamiltonian proportional to o5.

It then resumes the trajectory U given by H.

From the quantum to the infinitesimal

The infinitesimals of Leibnitz and Newton have only recently been given a consistent axiomatic
basis. They have been used systematically by mathematicians like Euler, Lagrange or Wallis with
success and without rigorous justification. Physicists use them without further ado on a daily
basis. The axiomatization of continuity by d'Alembert, Cauchy and Weierstrass almost sounded
the death knell of these quantities, as small as one likes, but non-zero...

Nevertheless, they have made a surprising reappearance through topos, equipped with their not
necessarily Boolean logics. For smooth infinitesimal analysis, for example, they are defined by the

subset of the line 4 = {€|e* = 0}which is no longer reduced to {0}. One then speaks of
nilpotent real numbers. This has the effect of eliminating all powers greater than or equal to 2 in

the Taylor developments on this set. In other words, any function becomes linearon 4 or: A is a
representation of the tangent space in zero which is included in the real line.
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The above analysis performs this integration with the idea that the time quantum could ideally be
understood from the nilpotents.

The quantum effects in the vicinity of singularities are reminiscent of John Lane Bell's formula:
Vale ict, ave i€ ! [6]

as an extension of the discussion on the introduction of imaginary time by Minkowski [7].

J.-P. Laedermann, November 2021

® Goodbye ict, welcome i€ !
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