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Abstract  
 
The geodesics on a relativistic manifold are given in a map 𝑥 by the well-known equation 
 

 𝑥′′𝛼+𝛤𝜇𝜈𝛼 𝑥′𝜇𝑥′𝜇 = 0  
 
This equation can be solved numerically step by step and transposed into a quantization. We 
study here the effect of this quantization on the Schwarzschild spacetime, more precisely in the 
Kruskal-Szekeres map. 
 

!  
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From digitization to quantification  
 
The geodesic equation is obtained by the Euler-Lagrange variational method, with the Lagrangian 
from the metric 𝑔 : 𝐿 = 𝑔%&𝑥'%𝑥'& . The goal is to find the extremal solutions 𝜏 =
∫(!
("√𝐿𝑑𝜆	which happens to be the eigentime of a test particle subjected to the field 𝑔. Except 

for the mass of the particle, which is in fact an energy, this proper time is an action. 
 
Finding solutions digitally is extremely simple. We give ourselves a digitization step 𝛿𝜆 and an 
initial state (𝑥, 𝑥') of the mobile. The position 𝑥 is incremented by 𝑥′𝛿𝜆. The geodesic equation 
gives 𝑥′′𝛼 = −𝛤𝜇𝜈𝛼 𝑥′𝜇𝑥′𝜈 and the velocity 𝑥′ is incremented by 𝑥′′𝛿𝜆. Then the process is iterated.  

Fig 1: A mobile moves from a geodesic 𝛾0(𝜆0) to a geodesic 𝛾2(𝜆2) by a trajectory element 
𝛾1(𝜆1) on an interval 𝛿𝜆This is a straight line in the tangent space. We use the fact that the 
tangent spaces 𝑇𝑥ℝ𝑛 are in fact canonically included in ℝ𝑛. 
 
The choice of the affine step will be made here by keeping the time step constant ð𝜏 which gives   
 

𝛿𝜆 = ð𝜏/√𝐿  
 
This time step can be physically equated with a quantum of action in the following interpretation.  
 
At each step, the mobile requests a quantum according to the chosen coordinate system 𝑥. It 
uses this quantum to continue its trajectory in its local context, which is the tangent space to the 
space-time manifold at the current point. Then the new state is considered as such on the global 
space-time. An observer placed on the particle moves during the quantum of time according to a 
trajectory linearized by the choice of its map. 
 
Some remarkable facts emerge. 
 
Firstly, the coordinate system chosen by the observer is essential. The linearization of the 
trajectory during ð𝜏 depends on the map 𝑥 and makes the interaction between space-time and 
the observer contextual. There is an effect of the observation on the trajectory. 
 
Secondly, it cannot be excluded that the quantization step involves speeds higher than that of 
light. This phenomenon can be related to certain quantum effects, such as the possibility for a 
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particle to tunnel through a potential barrier, or to violate the conservation of energy law for a time 
short enough to be allowed by Heisenberg's uncertainty relations. 
 
Third, in the particular case of the Schwarzschild model with a radius 𝑟𝑆 it becomes possible to 
be in the forbidden zone beyond the bare singularity described below. 
 
 
 

Reminder on Schwarzschild, Kruskal and Szekeres  
 
In 1916, Karl Schwarzschild was one of the first to find a solution to the gravitational equations of 
Einstein's general relativity. This solution, which describes the field created by a point mass, is 
expressed by the following metric in polar coordinates, with a speed of light  𝑐 = 1 and a 
Schwarzschild radius  𝑟𝑆 : 
 

𝑑𝜏+ = 41 − ,#
,
7 𝑑𝑡+ − 41 − ,#

,
7
-.
𝑑𝑟+ − 𝑟+(𝑑𝜃+ + 𝑠𝑖𝑛+𝜃𝑑𝜑+)  

 
Two peculiar rays are immediately noticeable. The first one, 𝑟 = 𝑟/ gives the horizon beyond 
which a particle cannot escape, giving the name of black hole to this zone. The second one, 𝑟 =
0, is a singularity of the metric, known as bare, where any particle entering the black hole ends its 
trajectory in a finite time. 
 
The Kruskal-Szekeres coordinate transformation leads to a formulation in terms of the variables 
(𝑇, 𝑋, 𝜃, 𝜑) [1] : 
 

𝑑𝜏+ = 0,$%

,
𝑒
- &
&#(𝑑𝑇+ − 𝑑𝑋+) − 𝑟+(𝑑𝜃+ + 𝑠𝑖𝑛+𝜃𝑑𝜑+)  

The parameter 𝑟 = 𝑟/ 4𝒲1 4
2'-3'

4
7 + 17 is given by the branch 0 of the Lambert function 𝒲 
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Fig 2: Real branches of the Lambert function  
 

Fig 3. Kruskal-Szekeres map 
 
 
 
The diagram in Fig 3 shows the following regions: 
 
I space-time outside the black hole 
II black hole 
III another related component of space-time 
IV white hole 
S+ inside of the bare singularity 
S- other component of the interior of the bare singularity 
 
This map shows that the Schwarzschild horizon is not a physical singularity, but only an artefact 
due to the choice of the map. 
 
The diagonal lines represent the Schwarzschild horizon, and the two boundary branches of the 
sing+ and sing- hyperbola the entrance and exit of the bare singularity itself. 
 
A particle from region II ends its trajectory on sing+, without being able to get out. Conversely, a 
particle in region IV cannot do anything else but exit, hence the name white hole. We also find the 
expressions sink and source for these two regions. 
 
S- and S+ are inaccessible, or forbidden, because they are outside the map domain. These two 
regions and their boundaries are associated with a single point, the zero of the polar coordinates, 
and can be considered as collapsed.  
 
At least in the hypothesis of a strictly continuous world... 
 

!  
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Appearance of tachyons  
 
Traditionally, the term tachyon is applied to a hypothetical particle with a speed greater than the 
speed of light.  The exit of the speed of the cone of the future is translated by the fact that 𝐿 < 0 
and thus an imaginary quantization step. It is proposed here to use a complex proper time: 
 

𝜏 = 𝜏, + 𝑖𝜏5 ∈ ℂ  
 

This time is measured by two clocks, one real and the other imaginary. The increase of the affine 
parameter becomes  𝛿𝜆 = ð𝜏,/√𝐿 if 𝐿 > 0 or 𝛿𝜆 = 𝑖ð𝜏5/√−𝐿 if 𝐿 < 0. In this way, the 
trajectory remains real in the map 𝑥. For a tachyon, it is the imaginary clock that works, the other 
one remaining fixed, and the opposite for a standard particle. 
 
For any coordinate system on space-time, the notions of time and space are found locally by 
placing in the tangent space an orthonormal basis which diagonalizes the metric, then, thanks to 
a possible permutation of the axes and a calibration of the units, to obtain the diagonal Minkowski 
matrix 𝐷𝑖𝑎𝑔(1, −1,−1,−1). The 0 coordinate is then time and the others define space. The 
base obtained in this way is called a tetrad. 
 

The proper speed 𝑥
·
= 𝛿𝜆

ð𝜏 𝑥
′ is transformed into a quad speed 𝒖 = 𝛾 41𝒗7 where 𝒗 is the space 

velocity of the mobile. Let 𝑣 be its Euclidean norm and 𝒏𝐺 the unit vector 𝒗 𝑣⁄  unit vector, the so-
called slip vector. We easily obtain 𝛾 = (1 − 𝑣+)-./+.  
 
If 𝑣 < 1, it is possible to put the mobile at rest with a Lorentz boost 𝛬(𝒗)i.e. 
 

𝛬(𝒗)𝒖 = 41𝟎7  
 
If 𝑣 > 1, 𝛾 becomes pure imaginary. Nevertheless, it is possible to extend the boost by  
 

𝛬(𝒗) = 𝛬 4𝒏(
>
7 𝑅 4𝒏?,

@
+
7   

where 𝑅(𝒏, 𝜃) is a rotation of angle 𝜃 and axis 𝒏. It can be seen that 𝛬(𝒗)𝒖 = Q 0𝑖𝒏?
R. The 

"resting" with this extended boost makes a particle appear in the direction 𝒏𝐺 with a proper time 
marked by its imaginary clock. As 1/𝑣 < 1, this transformation is physically feasible for an 
external observer, and the tachyon could be visible. One can notice that the factor 𝑖 in front of 𝒏𝐺 
is consistent, since it does imply a quadrivector of unit Minkowskian norm.!  
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Transition from black hole to white hole  
 
The appearance of a state in the zone forbidden by the singularity poses a more delicate problem. 
Indeed, the Christoffel coefficients involve the parameter 
 

𝑟 = 𝑟A 4𝒲1 4
.
4
(𝑋+ − 𝑇+)7 + 17  

 
This critical zone is defined by 𝑋2−𝑇2 < −1 which takes the domain of 𝒲0.  
 
The solution proposed here is to use the other part of this function on the real line, namely   
 

𝑟 = 𝑟A 4𝒲-. 4
.
4
(𝑋+ − 𝑇+)-.7 + 17  

 
by reversing the term 𝑋2−𝑇2which is in the domain of 𝒲−1. The continuation of the trajectory is 
then done by changing the signs of 𝑇 and 𝑋, which turns the mobile from a black hole to a white 
hole. This idea is suggested by the hyperbolic character of the Kruskal map. 
 

Cost of quantification  
 
The evolution of the trajectory during the time quantum is no longer geodesic, and therefore 
requires some work. The force that appears during this displacement is given by  
 

𝑓𝛼 = 𝑥′′𝛼+𝛤𝜇𝜈𝛼 𝑥′𝜇𝑥′𝜈   
 

and its work on the affine segment 𝛿𝜆 is given by  
 

𝛿𝑊 = ∫(!
("𝑔%&𝑓%𝑥'&𝑑𝜆  

A quick calculation shows that  
 

𝛿𝑊 = .
+
𝛿𝜆𝑥'%𝑥'&𝑥'B∫1

. CD)*
CE+

(𝑥 + 𝑥'𝜉𝛿𝜆)𝑑𝜉 = 𝛿𝜆𝑥'%𝑥'&𝑥'B∫1
.𝛤B%&(𝑥 + 𝑥'𝜉𝛿𝜆)𝑑𝜉   

 
This expression makes it possible to estimate the energy needed to quantify the movement.!
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Refutability of the model  
 
Given a time quantum, one can ask what mass 𝑀0 corresponds to a quantum of action equal to 
Planck's constant. In other words 𝑀0𝑐2𝛿𝜏 = ℏ. 
 
It is clear that the finer the digitization, the closer the trajectories are to the unquantised 
geodesics, thus delaying the onset of the quantum effects mentioned above.  
 
The smaller the quantum, the later the effect, and the longer the calculation time. The calculations 
carried out here allow us to aim for a time quantum of about 10−13𝑠 which corresponds to a 
mass of 10−2𝑒𝑉/𝑐2. To reach the mass of the neutrino, for example, which is currently estimated 
at 1.1𝑒𝑉/𝑐(, would need a temporal resolution two orders of magnitude lower, resulting in 
calculation times that are about 100 times longer. As the calculations performed here require 
several days, it is not impossible to think that an optimization could be achieved up to the level of 
actually observable particles.  

Fig 4. Mass - time quantum relationship 

 
!  
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Two typical trajectories  
 
In general, the trajectories end either with the limiting velocity 1 or at the singularity. Tachyons are 
fleeting, and return to standard space-time with a final velocity of 1.  

Fig 5. Trajectory evolving towards the singularity. The variable Atau is simply the addition of the 
two real and imaginary clocks. The imaginary time is identified by a negative Lagrangian. The start 
of the trajectory is in red and its end in dark blue. The passages through the singularity are located 
at the points where 𝑋2−𝑇2 < −1!  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 December 2021                   doi:10.20944/preprints202112.0142.v1

https://doi.org/10.20944/preprints202112.0142.v1


 

  11 / 15 

 
 
Fig 6. Trajectory leading to a tachyon, before ending on the singularity. The colouring of the top 
two graphs is given by the imaginary clock from the black part. The calculation was redone by 
increasing the precision from 4096 to 8192 bits, with no significant difference.!  
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Calculation tools  
 
The digital tracking of trajectories is done over several million steps. The standard precision of 
current computers (double precision) is 53 bits, which is totally insufficient. The MPFR library [3] 
implements the calculation with an arbitrary precision, only limited by the machine's memory. An 
interface written by P. Holoborodko [3] then allows the use of the Eigen vector calculation library 
[4]. The very complete study of F. Johansson [5] on the Lambert function finally makes it possible 
to carry out the calculation of trajectories, which becomes stable with a precision of 4096 bits 
(approximately 1200 decimal places). 
 
The exploration of the various trajectories is programmed in C++ and uses a 128 processor 
machine running in the Gnu - Linux Ubuntu 20.4 environment. 
 
The trajectories presented here generally require several days of parallel CPU. 
 
Analogy with quantum measurement  
 
Some of the effects of observing a relativistic motion during a time quantum ð𝜏 have been 
described above. In summary, the motion naturally follows a geodesic, then during the time of 
observation, it follows a tangent, then it resumes its natural trajectory, but on another, 
neighbouring geodesic. 
 
This sequence is similar to the Copenhagen version of quantum measurement, where there are 
two possible evolutions for a quantum system. The first, known as unitary (U-type), is governed by 
the Schroedinger or Dirac equation. The second, which appears when the system is measured, is 
called wave packet reduction (type R), and consists of projecting this wave function onto an eigen 
space associated with the observable to be measured. 
 

Let 𝐴 be the self-adjoint operator translating an observable 𝐴. To measure 𝐴 following the 
Geneva school [8], is to ask a series of questions whose answers are yes or no. A question about 
𝐴 is for example: "Will the value of A appear in a certain interval 𝛥 of the real line".  
 

Let 𝑆𝑝𝐴 be the spectrum of the operator 𝐴. This question is represented by the projection 
operator 𝐽𝛥 = ∑

𝑎∈𝛥∩𝑆𝑝𝐴

𝐽𝑎
𝐴 where 𝐽𝑎

𝐴  is the projector onto the eigenspace of eigenvalue 𝑎 2. The 

result of the measurement, i.e. the answer to the question, will be yes with probability 𝑝1 =
⟨𝜓|𝐽𝛥|𝜓⟩ and the system will then be in the state |1⟩ = O,P

∥O,P∥
 . The answer no is treated in the 

same way, but with the projector 𝐽∁𝛥 and gives the final state |0⟩. 
 
 
One can imagine that the measurement lasts for a time interval ð𝜏 and, after the response has 
been randomly chosen, the wave function evolves "linearly" towards its final state.  
 
!  

 

 2𝐴 = ∑
𝑎∈𝑆𝑝𝐴

𝑎𝐽𝑎
𝐴.  

The continuous version involves an integral, which does not change the discussion. 
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Fig 7. Evolution of the quantum probability amplitude in R mode 
 
 
For example, the path in Fig 7 :  
 

𝑡 ↦ 𝜓S = 𝑐𝑜𝑠 Q𝜃 41 − S
ðT
7R |1⟩ + 𝑠𝑖𝑛 Q𝜃 41 − S

ðT
7R |0⟩				𝑐𝑜𝑠𝜃 = a𝑝.  

 
moves in a uniform and unitary manner from 𝜓 à |1⟩ in case of a yes answer. 
 
For the Schroedinger equation, this evolution is governed in the (|1⟩, |0⟩) basis by the 
Hamiltonian operator  

𝐻1 = 𝜃ℏ
ð𝜏 𝜎2𝜃 = 𝑎𝑟𝑐𝑐𝑜𝑠!𝑝1  

 

where 𝜎2 is the second Pauli matrix. It can be seen that ⟨𝐻,⟩ = 0 
 

𝜓𝑡 = 𝑒
𝜃𝑡
𝑖ð𝜏𝜎2𝜓 = 𝑒

𝜃𝑡
ð𝜏(|1⟩⟨0|−|0⟩⟨1|)𝜓  

 

Initially, the wave function follows a trajectory U given by a Hamiltonian 𝐻. During the 
measurement, the reduction R is replaced by a trajectory U with a Hamiltonian proportional to 𝜎2. 

It then resumes the trajectory U given by 𝐻.    
 

From the quantum to the infinitesimal  
 
The infinitesimals of Leibnitz and Newton have only recently been given a consistent axiomatic 
basis. They have been used systematically by mathematicians like Euler, Lagrange or Wallis with 
success and without rigorous justification. Physicists use them without further ado on a daily 
basis. The axiomatization of continuity by d'Alembert, Cauchy and Weierstrass almost sounded 
the death knell of these quantities, as small as one likes, but non-zero... 
 
Nevertheless, they have made a surprising reappearance through topos, equipped with their not 
necessarily Boolean logics. For smooth infinitesimal analysis, for example, they are defined by the 
subset of the line 𝛥 = {𝜀|𝜀+ = 0}which is no longer reduced to {0}. One then speaks of 
nilpotent real numbers. This has the effect of eliminating all powers greater than or equal to 2 in 
the Taylor developments on this set. In other words, any function becomes linear on 𝛥 or : 𝛥 is a 
representation of the tangent space in zero which is included in the real line. 
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The above analysis performs this integration with the idea that the time quantum could ideally be 
understood from the nilpotents.  
 
The quantum effects in the vicinity of singularities are reminiscent of John Lane Bell's formula:  
 

Vale 𝑖𝑐𝑡,	ave 𝑖𝜀 ! [6] 3 
 

as an extension of the discussion on the introduction of imaginary time by Minkowski [7]. 
 
 

 
J.-P. Laedermann, November 2021!

 
3 Goodbye 𝑖𝑐𝑡, welcome 𝑖𝜀 ! 
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