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Abstract: The problem of reliable function computation is extended by imposing privacy, secrecy,1

and storage constraints on a remote source whose noisy measurements are observed by multiple2

parties. The main additions to the classic function computation problem include 1) privacy leakage3

to an eavesdropper is measured with respect to the remote source rather than the transmitting4

terminals’ observed sequences; 2) the information leakage to a fusion center with respect to the5

remote source is considered as a new privacy leakage metric; 3) the function computed is allowed6

to be a distorted version of the target function, which allows to reduce the storage rate as compared7

to a reliable function computation scenario in addition to reducing secrecy and privacy leakages; 4)8

two transmitting node observations are used to compute a function. Inner and outer bounds on the9

rate regions are derived for lossless and lossy single-function computation with two transmitting10

nodes, which recover previous results in the literature. For special cases that include invertible11

and partially-invertible functions, and degraded measurement channels, exact lossless and lossy12

rate regions are characterized, and one exact region is evaluated for an example scenario.13

Keywords: Information theoretic privacy; secure function computation; remote source; distributed14

computation.15

1. Introduction16

We consider function computation scenarios in a network with multiple nodes17

involved. Each node observes a random sequence and all observed random sequences18

are modeled to be correlated. Recent advancements in network function virtualization19

[3] and distributed machine learning applications [4] make function computation in20

a wireless network via software defined networking an important practical problem21

that should be tackled to improve the performance of future communication systems.22

In a classic function computation scenario, the nodes exchange messages through au-23

thenticated, noiseless, and public communication links, which results in undesired24

information leakage about the function computed [5–7]. Furthermore, it is possible to25

reduce the amount of public communications [8,9] by using distributed lossless or lossy26

source coding methods; see [10–14] for several extensions. The former method uses27

Slepian-Wolf (SW) coding [15] constructions and the latter allows the function computed28

to be a distorted version of the target function and applies Wyner-Ziv (WZ) coding [16]29

methods that result in further reductions compared to the former. A decrease in public30

communication is important also to limit the information about the computed function31

leaked to an eavesdropper in the same network, i.e., secrecy leakage. In addition to the32

public messages, an eavesdropper has generally access to a random sequence correlated33

with other sequences; see [17–19] for various secure function computation extensions.34

An important addition to the secure function computation model is a privacy con-35

straint that measures the amount of information about the observed sequence leaked to36
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an eavesdropper [20]. Providing privacy is necessary to ensure confidentiality of a pri-37

vate sequence that can be reused for future function computations [21,22]. An extension38

of the results in [20] are given in [23], where two privacy constraints are considered on39

a remote source whose different noisy measurements are observed by multiple nodes40

in the same network. The extension in [23] is different from the previous secure and41

private function computation models due to the posit that there exists a remote source42

that is the main reason for the correlation between the random sequences observed by43

the nodes in the same network. It is illustrated via practical examples that considering a44

remote source hinders unexpected decrease in reliability and unnoticed secrecy leakage45

[22]. Similarly, such a remote source model is proposed, e.g., in [24] for biometric secrecy46

and in [25,26] for user or device authentication problems. It is shown in [23] that with47

such a remote source model two different privacy leakage rate values should be limited,48

unlike a single constraint considered in [20].49

We consider a private remote source whose three noisy versions are used for secure50

single-function computation. Suppose two nodes transmit public indices to a fusion51

center to compute one function. In [23], for each function computation one node sends a52

public index to a fusion center. In [20], cases with two transmitting nodes for function53

computation are considered for a visible source model, whose results are improved54

in this work for a remote source model with an additional privacy leakage constraint.55

Furthermore, we also consider function computation scenarios where the function56

computed is allowed to be a distorted version of the target function, which is relevant57

for various recent function computation applications.58

1.1. Models for Function Inputs and Outputs59

We consider noisy remote source output measurements that are independent and60

identically distributed (i.i.d.) according to a fixed probability distribution and that are61

inputs of a target function. This model is reasonable if, e.g., one uses transform-coding62

algorithms from [27–30] to extract almost i.i.d. symbols, as applied in the biometric secu-63

rity, physical unclonable function, and image and video coding literature. Furthermore,64

the set of target functions we study are applied per-letter, i.e., the same function is ap-65

plied to each input symbol; see Section 2 below. These functions are realistic and are used66

in various recent applications, such as distributed and federated learning applications67

where the same loss function is applied to each data example [31].68

1.2. Summary of Contributions69

We extend the lossless and lossy rate region analysis of the single-function compu-70

tation model with one transmitting node in [23] to consider two transmitting nodes with71

joint secrecy and privacy constraints, as well as a distortion constraint on the computed72

function. A summary of the main contributions is as follows.73

• The lossless single-function computation model with two transmitting nodes is74

considered and an inner bound for the rate region that characterizes the optimal75

trade-off between secrecy, privacy, storage, and distortion constraints is established76

by using the output statistics of random binning (OSRB) method [32]. An outer77

bound for the same rate region is also provided by using standard properties of78

Shannon entropy. Inner and outer bounds are shown to not match in general due to79

different Markov chains imposed.80

• The proposed inner and outer bounds are extended for the lossy single-function81

computation model with two transmitting nodes by considering a distortion metric.82

Furthermore, effects of considering a distortion constraint, rather than a reliability83

constraint, on the function computation are discussed.84

• For both partially-invertible functions, which define a set that is a proper superset85

of the set of invertible functions, and invertible functions, we characterize the exact86

lossless and lossy rate regions.87
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Figure 1. Single-function computation problem with two transmitting nodes under secrecy,
privacy, and storage (or communication) constraints.

• The exact rate regions for invertible functions are further simplified when the88

eavesdropper’s measurement channel is physically-degraded with respect to the89

fusion center’s channel or vice versa, which result in different bounds on the rates.90

• We evaluate the exact rate region for a physically-degraded case with multiplicative91

Bernoulli noise components.92

1.3. Organization93

This paper is organized as follows. In Section 2, we introduce the lossless and94

lossy single-function computation problems with two transmitting nodes under secrecy,95

privacy, storage, and reliability or distortion constraints. In Section 3, we present the96

inner and outer bounds for the rate regions of the introduced problems and discuss97

that the bounds differ because of different Markov chains imposed. In Section 4, we98

characterize the exact lossless and lossy rate regions for invertible functions, partially-99

invertible functions, and two different degraded measurement channels, and the rate100

region for an example case is evaluated. In Section 5, we offer proofs of the inner and101

outer bounds for the lossless single-function computations with two transmitting nodes.102

In Section 6, we conclude the paper.103

1.4. Notation104

Upper case letters represent random variables and lower case letters their realiza-105

tions. A superscript denotes a sequence of variables, e.g., Xn = X1, X2, . . . , Xi, . . . , Xn,106

and a subscript i denotes the position of a variable in a sequence. A random vari-107

able X has probability distribution PX. Calligraphic letters such as X denote sets,108

set sizes are written as |X |. Given any a ∈ R, define [a]− = min{a, 0}. Hb(c) =109

−c log2 c− (1−c) log2(1−c) is the binary entropy function for any c ∈ [0, 1].110

2. System Model111

We consider the single-function computation model with two transmitting nodes112

illustrated in Figure 1. Noisy measurements X̃n
1 and X̃n

2 of an i.i.d. remote source113

Xn ∼ Pn
X through memoryless channels PX̃1|X and PX̃2|X, respectively, are observed by114

two legitimate nodes in a network. Similarly, other noisy measurements Yn and Zn
115

of the same remote source are observed by the fusion center and eavesdropper (Eve),116

respectively, through another memoryless channel PYZ|X . Encoders Enc1(·) and Enc2(·)117

of the legitimate nodes send indices W1 and W2, respectively, to the fusion center over118

public communication links with storage rate constraints. The fusion center decoder119
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Dec(·) then uses its observed noisy sequence Yn and the public indices W1 and W2 to120

estimate a function f n(X̃n
1 , X̃n

2 , Yn) such that121

f n(X̃n
1 , X̃n

2 , Yn) = { f (X̃1,i, X̃2,i, Yi)}
n
i=1. (1)

The source and measurement alphabets are finite sets.122

A natural secrecy leakage constraint is to minimize the information leakage about123

the function output f n(X̃n
1 , X̃n

2 , Yn) to eavesdropper. However, its analysis depends on124

the specific function f (·, ·, ·) computed, so we impose below another secrecy leakage125

constraint that does not depend on the function used and that provides an upper bound126

for secrecy leakage for all functions, as considered in [20,23]. Furthermore, we impose127

two privacy leakage constraints to minimize the information leakage about Xn to the128

fusion center and eavesdropper because the same remote source would be measured if129

another function would be computed in the same network (see also [21] for motivations130

to consider privacy leakage with respect to a remote source) as well as public storage131

constraints that minimize the rate of storage for transmitting nodes.132

We next define lossless and lossy single-function computation rate regions.133

2.1. Lossless Single-Function Computation134

Consider the single-function computation model illustrated in Figure 1. The corre-135

sponding lossless rate region is defined as follows.136

Definition 1. A lossless tuple (Rs, Rw,1, Rw,2, R`,Dec, R`,Eve) is achievable if, for any δ>0,137

there exist n≥1, two encoders, and one decoder such that138

Pr
[

f n(X̃n
1 , X̃n

2 , Yn) 6= f̂ n
]
≤ δ (reliability) (2)

1
n

I(X̃n
1 , X̃n

2 , Yn; W1, W2|Zn) ≤ Rs + δ (secrecy) (3)

1
n

log
∣∣W1

∣∣ ≤ Rw,1 + δ (storage 1) (4)

1
n

log
∣∣W2

∣∣ ≤ Rw,2 + δ (storage 2) (5)

1
n

I(Xn; W1, W2|Yn) ≤ R`,Dec + δ (privacyDec) (6)

1
n

I(Xn; W1, W2|Zn) ≤ R`,Eve + δ (privacyEve). (7)

The lossless regionR is the closure of the set of all achievable lossless tuples. ♦139

2.2. Lossy Single-Function Computation140

The corresponding lossy rate region for the single-function computation model141

illustrated in Figure 1 is defined as follows.142

Definition 2. A lossy tuple (Rs, Rw,1, Rw,2, R`,Dec, R`,Eve, D) is achievable if, for any δ>0,143

there exist n≥1, two encoders, and one decoder such that (3)-(7) and144

E
[
d( f n(X̃n

1 , X̃n
2 , Yn), f̂ n)

]
≤ D + δ (distortion) (8)

where145
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d( f n, f̂ n) =
1
n

n

∑
i=1

d( fi, f̂i) (9)

is a per-letter distortion metric. The lossy regionRD is the closure of the set of all146

achievable lossy tuples. ♦147

3. Inner and Outer Bounds148

3.1. Lossless Single-Function Computation149

We first extend the notion of admissibility defined in [8] for a single auxiliary random150

variable to two auxiliary random variables, used in the inner and outer bounds given151

below for lossless function computation; see also [20, Theorem 3].152

Definition 3. A pair of (vector) random variables (U1, U2) is admissible for a function153

f (X̃1, X̃2, Y) if we have154

H( f (X̃1, X̃2, Y)|U1, U2, Y) = 0 (10)

and155

U1 − X̃1 − (X̃2, Y) (11)

U2 − X̃2 − (X̃1, Y) (12)

form Markov chains. ♦156

We next provide inner and outer bounds for the lossless regionR; see Section 5 for157

a proof sketch.158

Theorem 1. (Inner Bound): An achievable lossless region is the union over all PQ, PV1|Q,159

PV2|Q, PU1|V1
, PU2|V2

, PX̃1|U1
, and PX̃2|U2

of the rate tuples (Rs, Rw,1, Rw,2, R`,Dec, R`,Eve) such160

that (U1, U2) pair is admissible for the function f (X̃1, X̃2, Y) and161

Rs ≥
[

I(U1, U2; Z|V1, V2, Q)− I(U1, U2; Y|V1, V2, Q)
]−

+ I(U1, U2; X̃1, X̃2|Z) (13)

Rw,1 ≥ I(V1; X̃1|V2, Y) + I(U1; X̃1|V1, U2, Y) (14)

Rw,2 ≥ I(V2; X̃2|V1, Y) + I(U2; X̃2|U1, V2, Y) (15)

Rw,1 + Rw,2 ≥ I(U2; X̃2|U1, V2, Y) + I(U1; X̃1|V1, V2, Y)

+ I(V2; X̃2|V1, Y) + I(V1; X̃1|Y) (16)

R`,Dec ≥ I(U1, U2; X|Y) (17)

R`,Eve ≥
[

I(U1, U2; Z|V1, V2, Q)− I(U1, U2; Y|V1, V2, Q)
]−

+ I(U1, U2; X|Z) (18)

where we have162

PQV1V2U1U2X̃1X̃2XYZ = PQ|V1V2
PV1|U1

PU1|X̃1
PX̃1|XPV2|U2

PU2|X̃2
PX̃2|XPXPYZ|X . (19)

(Outer Bound): An outer bound for the lossless regionR is the union of the rate tuples in163

(13), (16)-(18), and164
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Rw,1 ≥ I(V1; X̃1|V2, Y) + I(U1; X̃1|V1, U2, Y)

− I(V1; V2|X̃1, Y)− I(U1; U2|X̃1, Y, V1) (20)

Rw,2 ≥ I(V2; X̃2|V1, Y) + I(U2; X̃2|U1, V2, Y)

− I(V2; V1|X̃2, Y)− I(U2; U1|X̃2, Y, V2) (21)

over all PQ, PV1|Q, PV2|Q, PU1|V1
, PU2|V2

, PX̃1|U1
, and PX̃2|U2

such that (U1, U2) pair is165

admissible for the function f (X̃1, X̃2, Y) and166

(Q, V1)−U1 − X̃1 − X− (X̃2, Y, Z) (22)

(Q, V2)−U2 − X̃2 − X− (X̃1, Y, Z) (23)

form Markov chains. One can limit the cardinalities to |Q| ≤ 2, |V1| ≤ |X̃1| + 6,167

|V2| ≤ |X̃2|+ 6, |U1| ≤ (|X̃1|+ 6)2, and |U2| ≤ (|X̃2|+ 6)2.168

We remark that if the joint probability distribution in (19) is imposed on the outer169

bound, (20) and (21) recover (14) and (15), respectively, because then170

(V1, U1)− X̃1 − (Y, U2, V2) (24)

(V2, U2)− X̃2 − (Y, U1, V1) (25)

form Markov chains for (19). However, the outer bound that satisfies (22) and (23)171

defines a rate region that is in general larger than the rate region defined by the inner172

bound that satisfies (19). Thus, inner and outer bounds generally differ. The results in173

Theorem 1 recovers previous results including [20, Theorem 3] and, naturally, also other174

results that are recovered by these previous results such as the SW coding region.175

3.2. Lossy Single-Function Computation176

We next provide inner and outer bounds for the lossy regionRD; see below for a177

proof sketch.178

Theorem 2. (Inner Bound): An achievable lossy region is the union over all PQ, PV1|Q, PV2|Q,179

PU1|V1
, PU2|V2

, PX̃1|U1
, and PX̃2|U2

of the rate tuples in (13)-(18) and180

D ≥ E[d( f (X̃1, X̃2, Y), g(U1, U2, Y))] (26)

for some function g(·, ·, ·) and where PQV1V2U1U2X̃1X̃2XYZ is equal to (19).181

(Outer Bound): An outer bound for the lossy regionRD is the union over all PQ, PV1|Q,182

PV2|Q, PU1|V1
, PU2|V2

, PX̃1|U1
, and PX̃2|U2

of the set of rate tuples (Rs, Rw,1, Rw,2, R`,Dec, R`,Eve, D)183

in (13), (16)-(18), (20), (21), and (26) such that (22) and (23) form Markov chains. One can184

limit the cardinalities to |Q| ≤ 2, |V1| ≤ |X̃1|+ 7, |V2| ≤ |X̃2|+ 7, |U1| ≤ (|X̃1|+ 7)2, and185

|U2| ≤ (|X̃2|+ 7)2.186

Proof Sketch. The achievability proof of the lossy function computation problem fol-187

lows from the achievability proof of its lossless version given in Section 5.1 by replacing188

the admissibility constraint with the constraint that PU1|X̃1
, PV1|U1

, PU2|X̃2
, and PV2|U2

are189

chosen such that there exists a function g(U1, U2, Y) that satisfies190
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gn(Un
1 , Un

2 , Yn) = {g(U1,i, U2,i, Yi)}n
i=1 (27)

E[d( f n(X̃n
1 , X̃n

2 , Yn), gn(Un
1 , Un

2 , Yn))] ≤ D + εn (28)

where εn > 0 such that εn → 0 when n→ ∞. Since all (x̃n
1 , x̃n

2 , yn, un
1 , un

2 ) tuples are191

in the jointly typical set with high probability, by the typical average lemma [33, pp. 26],192

constraint in (8) is satisfied.193

The proof of the outer bound applies the standard properties of the Shannon entropy194

and follows mainly from the outer bound proof for the lossless function computation195

problem given in Section 5.2. However, the proof for the lossless function computation196

problem requires the auxiliary random variables to be admissible as defined in Definition197

3, unlike the lossy function computation problem. Thus, the outer bound proof for198

Theorem 2 follows by replacing the admissibility step (96) in the outer bound proof for199

the lossless function computation problem with the step200

n(D + δn)

(a)
≥ E

[ n

∑
i=1

d
(

fi(X̃1,i, X̃2,i, Yi), f̂i(W1, W2, Yn)
)]

(b)
≥ E
[ n

∑
i=1

d
(

fi(X̃1,i, X̃2,i, Yi), gi(W1, W2, Yn, Xi−1, Zi−1)
)]

(c)
=E
[ n

∑
i=1

d
(

fi(X̃1,i, X̃2,i, Yi), gi(W1, W2, Yn
i , Xi−1, Zi−1)

)]
(d)
= E

[ n

∑
i=1

d
(

f (X̃1,i, X̃2,i, Yi), g(U1,i, U2,i, Yi)
)]

(29)

where (a) follows by (8) and (9), (b) follows since there exists a function gi(·, ·, ·) that201

achieves a distortion that is not greater than the distortion achieved by f̂i(W1, W2, Yn),202

where the distortion is measured with respect to fi(X̃1,i, X̃2,i, Yi), since gi(·, ·, ·) has203

additional inputs, (c) follows from the Markov chain given in (100), and (d) follows204

from the definitions of U1,i and U2,i given in (91) and (92), respectively. Furthermore, the205

proof of the cardinality bounds for the lossy case follows from the proof for the lossless206

case since we preserve the same probability and conditional entropy values as being207

preserved for the lossless function computation problem with the addition of preserving208

the value of g(U1, U2, Y) = g(U1, U2, V1, V2, Y), following from the Markov chain209

(V1, V2)− (U1, U2, Y)− g(U1, U2, Y). (30)

210

Entirely similar to Theorem 1, the inner and outer bounds given in Theorem 2 do211

not match in general because of different Markov chains imposed.212

Remark 1. Since all secrecy and privacy rate terms given in the outer bounds in The-213

orems 1 and 2, i.e., lower bounds in (13), (17), and (18), are generally strictly positive,214

strong secrecy or strong privacy constraints cannot be satisfied in general for the lossless215

and lossy single-function computation problems.216

We next provide the exact rate regions, i.e., rate regions for which inner and outer217

bounds match, for various sets of computed functions f (·, ·, ·) and measurement chan-218

nels PYZ|X .219
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4. Rate Regions for Special Sets of Computed Functions and Measurement220

Channels221

The terms that characterize the exact rate regions of the lossless and lossy function222

computation problems for various sets of functions and channels are the same, except223

1) removal of the admissibility requirement; 2) addition of a distortion constraint; 3)224

increase in the cardinality bounds on the auxiliary random variables for the lossy case225

as compared to the lossless case. Thus, we provide the exact rate regions only for the226

lossless case. However, we remark that the optimal auxiliary random variables for227

lossless and lossy cases might differ. Therefore, the corresponding lossless and lossy rate228

regions might look different for the same joint probability distribution PX̃1X̃2XYZ.229

4.1. Partially-Invertible Functions230

We now impose the condition that the function f (X̃1, X̃2, Y) is partially-invertible231

with respect to X̃1, i.e., we have [11,34]232

H(X̃1| f (X̃1, X̃2, Y), Y) = 0. (31)

For such functions, it is straightforward to show that we have the following exact233

rate region for the lossless function computation problem with two transmitting nodes.234

The proof of Lemma 1 follows from Theorem 1 by assigning U1 = X̃1 and constant V1,235

and then by applying the Markov chain (23) to (13). Furthermore, by symmetry the exact236

lossless rate region for a function f (X̃1, X̃2, Y) that is partially-invertible with respect to237

X̃2 can be obtained by assigning U2 = X̃2 and constant V2, and then applying (22) to (238

13).239

Lemma 1. The lossless rate regionR when f (X̃1, X̃2, Y) is a partially-invertible function with240

respect to X̃1 is the set of all tuples (Rs, Rw,1, Rw,2, R`,Dec, R`,Eve) such that U2 is admissible for241

the function f (X̃1, X̃2, Y) and242

Rs ≥
[

I(X̃1, U2; Z|V2, Q)− I(X̃1, U2; Y|V2, Q)
]−

+ H(X̃1|U2, Z) + I(U2; X̃2|Z) (32)

Rw,1 ≥ H(X̃1|U2, Y) (33)

Rw,2 ≥ I(V2; X̃2|Y) + I(U2; X̃2|X̃1, V2, Y) (34)

Rw,1 + Rw,2 ≥ I(U2; X̃2|X̃1, V2, Y) + H(X̃1|V2, Y) + I(V2; X̃2|Y) (35)

R`,Dec ≥ I(X̃1, U2; X|Y) (36)

R`,Eve ≥
[

I(X̃1, U2; Z|V2, Q)− I(X̃1, U2; Y|V2, Q)
]−

+ I(X̃1, U2; X|Z) (37)

such that (23) form a Markov chain. One can limit the cardinalities to |Q| ≤ 2, |V2| ≤243

|X̃2|+ 6, and |U2| ≤ (|X̃2|+ 6)2.244

4.2. Invertible Functions245

Suppose now we impose the condition that the function f (X̃1, X̃2, Y) is invertible,246

i.e., we have [11,34]247

H(X̃1, X̃2| f (X̃1, X̃2, Y), Y) = 0. (38)

We provide in Lemma 2 below the exact rate region for the lossless function compu-248

tation problem with two transmitting nodes when the function f (X̃1, X̃2, Y) is invertible.249

The proof of Lemma 2 follows from Theorem 1 by assigning U1 = X̃1, U2 = X̃2, and250

constant V1 and V2.251
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Lemma 2. The lossless rate regionR when f (X̃1, X̃2, Y) is an invertible function is the set of252

all tuples (Rs, Rw,1, Rw,2, R`,Dec, R`,Eve) satisfying253

Rs ≥
[
I(X̃1, X̃2; Z|Q)− I(X̃1, X̃2; Y|Q)

]−
+ H(X̃1, X̃2|Z) (39)

Rw,1 ≥ H(X̃1|X̃2, Y) (40)

Rw,2 ≥ H(X̃2|X̃1, Y) (41)

Rw,1 + Rw,2 ≥ H(X̃1, X̃2|Y) (42)

R`,Dec ≥ I(X̃1, X̃2; X|Y) (43)

R`,Eve ≥
[
I(X̃1, X̃2; Z|Q)− I(X̃1, X̃2; Y|Q)

]−
+ I(X̃1, X̃2; X|Z) (44)

where Q− (X̃1, X̃2)− X− (Y, Z) form a Markov chain. One can limit the cardinality to254

|Q| ≤ 2.255

4.3. Invertible Functions and Two Different Degraded Channels256

The lossless rate region given in Lemma 2 can be further simplified by imposing con-257

ditions on the measurement channel PYZ|X in addition to the function f (X̃1, X̃2, Y) being258

invertible. We next characterize the lossless rate regions for two different physically-259

degraded channels.260

4.3.1. Eve’s Channel is Physically-Degraded261

Suppose the measurement channel PYZ|X is physically-degraded such that262

PYZ|X = PY|XPZ|Y. (45)

For invertible functions and physically-degraded measurement channels PYZ|X as263

defined in (45), we provide the exact lossless rate region in Lemma 3. The proof of264

Lemma 3 follows from Lemma 2 and by using the following Markov chain for this case265

(X̃1, X̃2)− X−Y− Z (46)

which follows by (45).266

Lemma 3. The lossless rate regionR when f (X̃1, X̃2, Y) is an invertible function and PYZ|X is267

as given in (45) is the set of all tuples (Rs, Rw,1, Rw,2, R`,Dec, R`,Eve) satisfying (40)-(43) and268

Rs ≥ H(X̃1, X̃2|Y) (47)

R`,Eve ≥ I(X̃1, X̃2; X|Y). (48)

4.3.2. Fusion Center’s Channel is Physically-Degraded269

Suppose the measurement channel PYZ|X is physically-degraded such that270

PYZ|X = PZ|XPY|Z. (49)

For invertible functions and physically-degraded measurement channels PYZ|X as271

defined in (49), we provide the exact lossless rate region in Lemma 4. The proof of272

Lemma 4 follows from Lemma 2 and by using the following Markov chain for this case273
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(X̃1, X̃2)− X− Z−Y (50)

which follows by (49).274

Lemma 4. The lossless rate regionR when f (X̃1, X̃2, Y) is an invertible function and PYZ|X is275

as given in (49) is the set of all tuples (Rs, Rw,1, Rw,2, R`,Dec, R`,Eve) satisfying (40)-(43) and276

Rs ≥ H(X̃1, X̃2|Z) (51)

R`,Eve ≥ I(X̃1, X̃2; X|Z). (52)

Remark 2. The rate regions given in Lemmas 2-4 can be plotted by computing the terms277

that characterize the regions since PX̃1X̃2XYZ is fixed for function computation problems278

considered. However, the rate region given in Lemma 1, similar to the inner bounds279

given in Theorems 1 and 2, might not be easy to characterize due to the requirement280

to optimize the auxiliary random variables whose cardinalities are bounded by large281

terms. Thus, evaluating the rate region for a function computation problem with two282

transmitting terminals is generally significantly more difficult than characterization of283

the rate region for function computation with one transmitting terminal; see [23] for an284

information bottleneck example for the latter problem.285

We next evaluate the lossless rate regionR by using Lemma 4 for specific measure-286

ment channels when f (X̃1, X̃2, Y) is an invertible function.287

4.4. Lossless Rate Region Example288

Suppose measurement channels in Figure 1 have binary input and output alphabets289

with multiplicative Bernoulli noise components, i.e., we have X = X̃1 = X̃2 = Z = Y =290

S1 = S2 = SZ = SY = {0, 1} and291

X̃1 = S1 · X, X̃2 = S2 · X, Z = SZ · X, Y = SY · X (53)

where S1, S2, X, and (SZ, SY) are mutually independent, and we have PX(1) = 0.5,292

PS1(1) = β1, PS2(1) = β2, PSZSY (0, 0) = (1−q), PSZSY (1, 1) = qα, and PSZSY (1, 0) =293

q(1−α) for fixed β1, β2, q, α ∈ [0, 1], so (49) is satisfied; see also [35, Section IV-A]. Using294

Lemma 4 for the given probability distributions, we evaluate the lossless rate regionR295

for an invertible function computation scenario with two transmitting nodes, in which,296

e.g., β1 = 0.2, β2 = 0.11, α = 0.3, and q = 0.25 and obtain the lossless rate region that is297

characterized by298

Rs ≥ 0.7579 bits/symbol, Rw,1 ≥ 0.4626 bits/symbol, (54)

Rw,2 ≥ 0.3021 bits/symbol, Rw,1 + Rw,2 ≥ 0.7686 bits/symbol, (55)

R`,Dec ≥ 0.1577 bits/symbol, R`,Eve ≥ 0.1469 bits/symbol (56)

where the sum-storage rate constraint is active since the sum of the bounds on Rw,1299

and Rw,2 is smaller than the bound on (Rw,1 + Rw,2).300

5. Proof of Theorem 1301

5.1. Inner Bound302

Proof Sketch. The OSRB method [32] is used for the proof of achievability by applying303

the steps given in [36, Section 1.6]. Let304
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(Vn
1 , Vn

2 , Un
1 , Un

2 , X̃n
1 , X̃n

2 , Xn, Yn, Zn) (57)

be i.i.d. according to PV1V2U1U2X̃1X̃2XYZ that can be obtained from (19) with fixed305

PU1|X̃1
, PV1|U1

, PU2|X̃2
, and PV2|U2

such that the pair (U1, U2) is admissible for a function306

f (X̃1, X̃2, Y), so (Un
1 , Un

2 ) is also admissible since random variables in (57) are i.i.d.307

To each vn
1 assign two random bin indices (Fv1 , Wv1) such that Fv1 ∈ [1 : 2nR̃v1 ] and308

Wv1 ∈ [1 : 2nRv1 ]. Furthermore, to each un
1 assign two random indices (Fu1 , Wu1) such309

that Fu1 ∈ [1 : 2nR̃u1 ] and Wu1 ∈ [1 : 2nRu1 ]. Similarly, random indices (Fv2 , Wv2) and310

(Fu2 , Wu2) are assigned to each vn
2 and un

2 , respectively. The indices F1 = (Fv1 , Fu1), and311

F2 = (Fv2 , Fu2) represent the public choice of two encoders and one decoder, whereas312

W1 = (Wv1 , Wu1) and W2 = (Wv2 , Wu2) are the public messages sent by the encoders313

Enc1(·) and Enc2(·), respectively, to the fusion center.314

We consider the following decoding order:315

1. observing (Yn, Fv1 , Wv1), the decoder Dec(·) estimates Vn
1 as V̂n

1 ;316

2. observing (Yn, V̂n
1 , Fv2 , Wv2), the decoder estimates Vn

2 as V̂n
2 ;317

3. observing (Yn, V̂n
1 , V̂n

2 , Fu1 , Wu1), the decoder estimates Un
1 as Ûn

1 ;318

4. observing (Yn, V̂n
1 , V̂n

2 , Ûn
1 , Fu2 , Wu2), the decoder estimates Un

2 as Ûn
2 .319

By swapping indices 1 and 2 in the decoding order another corner point in the achievable320

rate region is obtained, so we analyze the given decoding order but also provide the321

results for the other corner point.322

Consider Step 1 in the decoding order given above. Using a SW [15] decoder, one323

can reliably estimate Vn
1 from (Yn, Fv1 , Wv1) such that the expected value of the error324

probability taken over the random bin assignments vanishes when n→ ∞, if we have325

[32, Lemma 1]326

R̃v1 + Rv1 > H(V1|Y). (58)

Similarly, Step 2, 3, and 4 estimations are reliable if we have327

R̃v2 + Rv2 > H(V2|V1, Y) (59)

R̃u1 + Ru1 > H(U1|V1, V2, Y) (60)

R̃u2 + Ru2 > H(U2|V1, V2, U1, Y)
(a)
= H(U2|V2, U1, Y) (61)

where (a) follows from the Markov chain V1 −U1 − (U2, V2, Y). Therefore, (2) is328

satisfied if (58)-(61) are satisfied.329

The public index Fv1 is almost independent of X̃n
1 , so it is almost independent of330

(X̃n
1 , X̃n

2 , Xn, Yn, Zn), if we have [32, Theorem 1]331

R̃v1 < H(V1|X̃1) (62)

because then the expected value, which is taken over the random bin assignments, of332

the variational distance between the joint probability distributions Unif[1:2nR̃v1 ] · PX̃n
1

and333

PFv1 X̃n
1

vanishes when n→ ∞. Furthermore, the public index Fu1 is almost independent334

of (Vn
1 , X̃n

1 ), so it is almost independent of (Vn
1 , X̃n

1 , X̃n
2 , Xn, Yn, Zn), if we have335

R̃u1 < H(U1|V1, X̃1). (63)
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Similarly, Fv2 is almost independent of X̃n
2 if we have336

R̃v2 < H(V2|X̃2) (64)

and Fu2 is almost independent of (Vn
2 , X̃n

2 ) if we have337

R̃u2 < H(U2|V2, X̃2). (65)

To satisfy (58)-(65), for any ε > 0 we fix338

R̃v1 = H(V1|X̃1)− ε (66)

Rv1 = I(V1; X̃1)− I(V1; Y) + 2ε (67)

R̃v2 = H(V2|X̃2)− ε (68)

Rv2 = I(V2; X̃2)− I(V2; V1, Y) + 2ε (69)

R̃u1 = H(U1|V1, X̃1)− ε (70)

Ru1 = I(U1; X̃1|V1)− I(U1; V2, Y|V1) + 2ε (71)

R̃u2 = H(U2|V2, X̃2)− ε (72)

Ru2 = I(U2; X̃2|V2)− I(U2; U1, Y|V2) + 2ε. (73)

Public Message (Storage) Rates: (67) and (71) result in a public message (storage)339

rate Rw1 of340

Rw1 = Rv1 + Ru1

(a)
= I(V1; X̃1|Y) + H(U1|V1, V2, Y)− H(U1|V1, X̃1) + 4ε

(b)
= I(V1; X̃1|Y) + I(U1; X̃1|V1, V2, Y) + 4ε (74)

where (a) follows because V1 − X̃1 − Y form a Markov chain and (b) follows341

because U1 − (V1, X̃1)− (V2, Y) form a Markov chain. Furthermore, (69) and (73) result342

in a storage rate Rw2 of343

Rw2 = Rv2 + Ru2

(a)
= I(V2; X̃2|V1, Y) + H(U2|U1, V2, Y)− H(U2|V2, X̃2) + 4ε

(b)
= I(V2; X̃2|V1, Y) + I(U2; X̃2|U1, V2, Y) + 4ε (75)

where (a) follows from the Markov chain V2 − X̃2 − (V1, Y) and (b) from U2 −344

(V2, X̃2)− (U1, Y). We remark that if the indices 1 and 2 in the decoding order given345

above are swapped, the other corner point with346

R′w1
= I(V1; X̃1|V2, Y) + I(U1; X̃1|U2, V1, Y) + 4ε (76)

R′w2
= I(V2; X̃2|Y) + I(U2; X̃2|V1, V2, Y) + 4ε (77)

is achieved.347

Privacy Leakage to Decoder: We have348
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I(Xn; W1, W2, F1, F2|Yn)

= I(Xn; W1, W2|F1, F2, Yn) + I(Xn; F1, F2|Yn)

(a)
≤ H(Xn|Yn)− H(Xn|W1, W2, F1, F2, Vn

1 , Vn
2 , Un

1 , Un
2 , Yn) + 4εn

(b)
= H(Xn|Yn)− H(Xn|Un

1 , Un
2 , Yn) + 4εn

(c)
= nI(U1, U2; X|Y) + 4εn (78)

where349

(a) follows for some εn > 0 with εn → 0 when n→ ∞ because350

I(Xn; F1, F2|Yn)

= I(Xn; Fv1 |Y
n) + I(Xn; Fu1 |Fv1 , Yn) + I(Xn; Fv2 |Fv1 , Fu1 , Yn)

+ I(Xn; Fu2 |Fv1 , Fu1 , Fv2 , Yn)

≤ 4εn (79)

since 1) by (62) Fv1 is almost independent of (Xn, Yn); 2) by (63) Fu1 is almost351

independent of (Vn
1 , Xn, Yn) and because Vn

1 determines Fv1 ; 3) by (64) Fv2 is almost352

independent of (Un
1 , Vn

1 , Xn, Yn) and because (Vn
1 , Un

1 ) determine (Fv1 , Fu1); 4) by (65)353

Fu2 is almost independent of (Vn
2 , Un

1 , Vn
1 , Xn, Yn) and because (Vn

1 , Un
1 , Vn

2 ) determine354

(Fv1 , Fu1 , Fv2);355

(b) follows because (Vn
1 , Vn

2 , Un
1 , Un

2 ) determine (W1, W2, F1, F2) and from the Markov356

chains Vn
1 −Un

1 − (Xn, Yn, Un
2 , Vn

2 ) and Vn
2 −Un

2 − (Xn, Yn, Un
1 );357

(c) follows because (Xn, Un
1 , Un

2 , Yn) are i.i.d.358

Privacy Leakage to Eve: We have359

I(Xn; W1, W2, F1, F2|Zn)

(a)
= H(W1, W2, F1, F2|Zn)− H(W1, W2, F1, F2|Xn)

(b)
= H(W1, W2, F1, F2|Zn)− H(Wu1 , Fu1 , Wu2 , Fu2 , Vn

1 , Vn
2 |Xn)

+ H(Vn
1 |W1, W2, F1, F2, Xn) + H(Vn

2 |Vn
1 , W1, W2, F1, F2, Xn)

(c)
≤ H(W1, W2, F1, F2|Zn)− H(Wu1 , Fu1 , Wu2 , Fu2 , Vn

1 , Vn
2 |Xn) + 2nε′n

(d)
= H(W1, W2, F1, F2|Zn)− H(Un

1 , Un
2 , Vn

1 , Vn
2 |Xn)

+ H(Un
1 |Wu1 , Fu1 , Wu2 , Fu2 , Vn

1 , Vn
2 , Xn)

+ H(Un
2 |Un

1 , Wu1 , Fu1 , Wu2 , Fu2 , Vn
1 , Vn

2 , Xn) + 2nε′n
(e)
≤ H(W1, W2, F1, F2|Zn)−H(Un

1 , Un
2 , Vn

1 , Vn
2 |Xn)+4nε′n

( f )
= H(W1, W2, F1, F2|Zn)− nH(U1, U2, V1, V2|X) + 4nε′n (80)

where (a) follows because (W1, W2, F1, F2)− Xn − Zn form a Markov chain, (b) fol-360

lows since (Vn
1 , Vn

2 ) determine (Fv1 , Wv1 , Fv2 , Wv2), (c) follows for some ε′n > 0 such that361

ε′n → 0 when n→ ∞ because (Fv1 , Wv1 , Xn) can reliably recover Vn
1 by (58), and similarly362

because (Fv2 , Wv2 , Vn
1 , Xn) can reliably recover Vn

2 by (59) both due to the Markov chain363

(Vn
1 , Vn

2 ) − Xn − Yn, (d) follows because (Un
1 , Un

2 ) determine (Fu1 , Wu1 , Fu,2, Wu2), (e)364

follows because (Fu1 , Wu1 , Vn
1 , Vn

2 , Xn) can reliably recover Un
1 by (60) and the inequality365
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H(U1|V1, V2, Y) ≥ H(U1|V1, V2, X) (81)

that follows from366

I(U1; V1, V2, X)− I(U1; V1, V2, Y) ≥ I(U1; V1, V2, X)− I(U1; V1, V2, Y, X) = 0 (82)

since U1− (V1, V2, X)−Y form a Markov chain. Furthermore, (Fu2 , Wu2 , Vn
1 , Vn

2 , Un
1 , Xn)367

can reliably recover Un
2 by (61) and the inequality368

H(U2|V1, V2, U1, Y) ≥ H(U2|V1, V2, U1, X) (83)

that can be proved entirely similarly to (82) by using the Markov chain U2 −369

(V1, V2, U1, X)−Y, and ( f ) follows because (Un
1 , Un

2 , Vn
1 , Vn

2 , Xn) are i.i.d.370

In (80), obtaining single letter bounds on the term H(W1, W2, F1, F2|Zn) requires371

analysis of numerous decodability cases, whereas there are only six different decodability372

cases analyzed in [23] for secure function computation with a single transmitting node.373

To simplify our analysis by applying the results in [23], we combine the decoding order374

Steps 1 and 2 given above such that (V1, V2) are treated jointly and, similarly, we combine375

Steps 3 and 4 such that (U1, U2) are treated jointly. Using the combined steps, we can376

consider the six decodability cases analyzed in [23, Section V-A] by replacing Vn with377

(Vn
1 , Vn

2 ) and Un with (Un
1 , Un

2 ), respectively, in the proof. Since in (80) the second term378

−nH(U1, U2, V1, V2|X) can be obtained by applying the same replacement to the second379

term in [23, Eq. (54)], we obtain from (80) and these decodability analyses that380

I(Xn; W1, W2, F1, F2|Zn)

≤ n([I(U1, U2; Z|V1, V2)− I(U1, U2; Y|V1, V2) + ε]−

+ I(U1, U2; X|Z) + 4ε′n + ε′′n) (84)

for some ε′′n > 0 such that ε′′n → 0 when n→ ∞.381

Secrecy Leakage (to Eve): We obtain382

I(X̃n
1 , X̃n

2 , Yn; W1, W2, F1, F2|Zn)

(a)
= H(W1, W2, F1, F2|Zn)− H(W1, W2, F1, F2|X̃n

1 , X̃n
2 )

(b)
= H(W1, W2, F1, F2|Zn)− H(Wu1 , Wu2 , Fu1 , Fu2 , Vn

1 , Vn
2 |X̃n

1 , X̃n
2 )

+ H(Vn
1 |W1, W2, F1, F2, X̃n

1 , X̃n
2 ) + H(Vn

2 |Vn
1 , W1, W2, F1, F2, X̃n

1 , X̃n
2 )

(c)
≤ H(W1, W2, F1, F2|Zn)− H(Wu1 , Wu2 , Fu1 , Fu2 , Vn

1 , Vn
2 |X̃n

1 , X̃n
2 ) + 2nε′n

(d)
= H(W1, W2, F1, F2|Zn)− H(Un

1 , Un
2 , Vn

1 , Vn
2 |X̃n

1 , X̃n
2 ) + 2nε′n

+ H(Un
1 |Wu1 , Wu2 , Fu1 , Fu2 , Vn

1 , Vn
2 , X̃n

1 , X̃n
2 )

+ H(Un
2 |Un

1 , Wu1 , Wu2 , Fu1 , Fu2 , Vn
1 , Vn

2 , X̃n
1 , X̃n

2 )

(e)
≤ H(W1, W2, F1, F2|Zn)− H(Un

1 , Un
2 , Vn

1 , Vn
2 |X̃n

1 , X̃n
2 ) + 4nε′n

( f )
≤ H(W1, W2, F1, F2|Zn)− nH(U1, U2, V1, V2|X̃1, X̃2) + 4nε′n (85)
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where (a) follows from the Markov chain (W1, W2, F1, F2)− (X̃n
1 , X̃n

2 )− (Yn, Zn), (b)383

follows since (Vn
1 , Vn

2 ) determine (Fv1 , Wv1 , Fv2 , Wv2), (c) follows because (Fv1 , Wv1 , X̃n
1 , X̃n

2 )384

can reliably recover Vn
1 by (58), and similarly because (Fv2 , Wv2 , Vn

1 , X̃n
1 , X̃n

2 ) can reliably385

recover Vn
2 by (59) both due to the Markov chain (Vn

1 , Vn
2 )− (X̃n

1 , X̃n
2 )−Yn, (d) follows386

since (Un
1 , Un

2 ) determine (Fu1 , Wu1 , Fu2 , Wu2), (e) follows because (Fu1 , Wu1 , Vn
1 , Vn

2 , X̃n
1 , X̃n

2 )387

can reliably recover Un
1 by (60) and the inequality388

H(U1|V1, V2, Y) ≥ H(U1|V1, V2, X̃1, X̃n
2 ) (86)

that can be proved similarly to (82) due to the Markov chain U1 − (V1, V2, X̃1, X̃2)−389

Y. Furthermore, (Fu2 , Wu2 , Vn
1 , Vn

2 , Un
1 , X̃n

1 , X̃n
2 ) can reliably recover Un

2 by (61) and the390

inequality391

H(U2|V1, V2, U1, Y) ≥ H(U2|V1, V2, U1, X̃1, X̃2) (87)

that can be proved by using the Markov chain U2 − (V1, V2, U1, X̃1, X̃2)− Y, and392

( f ) follows because (Un
1 , Un

2 , Vn
1 , Vn

2 , X̃n
1 , X̃n

2 ) are i.i.d.393

We remark that the terms in (85) are entirely similar to the terms in (80). One can394

show that all steps of the decodability analysis from [23, Section V-A] that is applied to (395

80) can be applied also to (85) by replacing X with (X̃1, X̃2), so we obtain396

I(X̃n
1 , X̃n

2 , Yn; W1, W2, F1, F2|Zn)

≤ n[I(U1, U2; Z|V1, V2)− I(U1, U2; Y|V1, V2) + ε]−

+ nI(U1, U2; X̃1, X̃2|Z) + 5nε′n. (88)

We consider that the public indices (F1, F2) are generated uniformly at random and397

the encoders generate (Vn
1 , Un

1 ) and (Vn
2 , Un

2 ) according to PVn
1 Un

1 Vn
2 Un

2 |X̃n
1 F1X̃n

2 F2
obtained398

from the binning scheme above. This procedure induces a joint probability distribution399

that is almost equal to PV1V2U1U2X̃1X̃2XYZ fixed as in (19) [36, Section 1.6]. Since the400

privacy and secrecy leakage metrics considered above are expectations over all possible401

realizations F = f , applying the selection lemma [37, Lemma 2.2], these results prove402

the achievability for Theorem 1 by choosing an ε > 0 such that ε → 0 when n → ∞.403

We remark that the achievable region is convexified by using a time-sharing random404

variable Q such that PQV1V2 = PQPV1|QPV2|Q, required because of the [·]− operation.405

5.2. Outer Bound406

Proof Sketch. Assume that for some n ≥ 1 and δn >0, there exist two encoders and a407

decoder such that (2)-(7) are satisfied for some tuple (Rs, Rw1 , Rw,2, R`,Dec, R`,Eve). Let408

V1,i , (W1, Yn
i+1, Zi−1) (89)

V2,i , (W2, Yn
i+1, Zi−1) (90)

U1,i , (Xi−1, W1, Yn
i+1, Zi−1) (91)

U2,i , (Xi−1, W2, Yn
i+1, Zi−1) (92)

that satisfy the Markov chains409

V1,i −U1,i − X̃1,i − Xi − (X̃2,i, Yi, Zi) (93)

V2,i −U2,i − X̃2,i − Xi − (X̃1,i, Yi, Zi). (94)
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Admissibility of (U1, U2): Define410

nεn = nδn|X̃1||X̃2||Y|+ Hb(δn) (95)

such that εn→0 if δn→0. Using Fano’s inequality and (2), we obtain411

nεn ≥ H( f n| f̂ n)

(a)
= H( f n| sf n) =

n

∑
i=1

H( fi| sfi)

≥
n

∑
i=1

H( fi| sf n)
(b)
≥

n

∑
i=1

H( fi|W1, W2, Yn)

≥
n

∑
i=1

H( fi|W1, W2, Yn, Xi−1, Zi−1)

(c)
=

n

∑
i=1

H( fi|W1, W2, Yn
i+1, Xi−1, Zi−1, Yi)

(d)
=

n

∑
i=1

H( fi|U1,i, U2,i, Yi) (96)

where (a) follows from [38, Lemma 2] that proves that when n→ ∞, there exists412

an i.i.d. random variable sf n that satisfies both413

H( f n| f̂ n) = H( f n| sf n) (97)

and the Markov chain414

f̂ n − sf n − (W1, W2, Yn) (98)

(b) follows from the data processing inequality because of the Markov chain415

f n − (W1, W2, Yn)− sf n (99)

and permits randomized decoding, (c) follows from the Markov chain416

Yi−1 − (Xi−1, Zi−1, W1, W2, Yi, Yn
i+1)− fi (100)

and (d) follows from the definitions of U1,i and U2,i.417

Public Message (Storage) Rates: We obtain418

n(Rw1 + δn)
(a)
≥ log |W1|

≥ H(W1|Yn)− H(W1|X̃n
1 , Yn)

= H(X̃n
1 |Yn)− H(X̃n

1 |W1, Yn)

= H(X̃n
1 |Yn)−

n

∑
i=1

H(X̃1,i|X̃i−1
1 , W1, Yn)

(b)
= H(X̃n

1 |Yn)−
n

∑
i=1

H(X̃1,i|X̃i−1
1 , W1, Yn

i+1, Yi)
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(c)
≥ H(X̃n

1 |Yn)−
n

∑
i=1

H(X̃1,i|Xi−1, Zi−1, W1, Yn
i+1, Yi)

(d)
= nH(X̃1|Y)−

n

∑
i=1

H(X̃1,i|U1,i, Yi)

=
n

∑
i=1

I(U1,i; X̃1,i|Yi)

(e)
=

n

∑
i=1

[I(V1,i; X̃1,i|Yi) + I(U1,i; X̃1,i|Yi, V1,i)]

=
n

∑
i=1

[
I(V1,i; X̃1,i, V2,i|Yi)− I(V1,i; V2,i|X̃1,i, Yi) + I(U1,i; X̃1,i, U2,i|Yi, V1,i)

− I(U1,i; U2,i|X̃1,i, Yi, V1,i)
]

≥
n

∑
i=1

[
I(V1,i; X̃1,i|Yi, V2,i)− I(V1,i; V2,i|X̃1,i, Yi) + I(U1,i; X̃1,i|Yi, V1,i, U2,i)

− I(U1,i; U2,i|X̃1,i, Yi, V1,i)
]

(101)

where (a) follows by (4), (b) follows from the Markov chain419

Yi−1 − (X̃i−1
1 , W1, Yn

i+1, Yi)− X̃1,i (102)

(c) follows from the data processing inequality applied to the Markov chain420

(Xi−1, Zi−1)− (X̃i−1
1 , W1, Yn

i+1, Yi)− X̃1,i (103)

(d) follows from the definition of U1,i, and (e) follows by (93). Similarly, one can421

show by symmetry that we have422

n(Rw2 + δn)

≥
n

∑
i=1

[
I(V2,i; X̃2,i|Yi, V1,i)− I(V2,i; V1,i|X̃2,i, Yi)

+ I(U2,i; X̃2,i|Yi, V2,i, U1,i)− I(U2,i; U1,i|X̃2,i, Yi, V2,i)
]
. (104)

Now we consider the sum-rate bound such that423

n(Rw1 + δn) + n(Rw2 + δn)

(a)
≥ log(|W1| · |W2|) ≥ H(W1, W2)

≥ I(W1, W2; X̃n
1 , X̃n

2 )− I(W1, W2; Yn)

(b)
=

n

∑
i=1

[
I(W1, W2; X̃1,i, X̃2,i|X̃i−1

1 , X̃i−1
2 , Yn

i+1)− I(W1, W2; Yi|X̃i−1
1 , X̃i−1

2 , Yn
i+1)

]
(c)
=

n

∑
i=1

[
I(W1, W2, X̃i−1

1 , X̃i−1
2 , Yn

i+1; X̃1,i, X̃2,i)− I(W1, W2, X̃i−1
1 , X̃i−1

2 , Yn
i+1; Yi)

]
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(d)
≥

n

∑
i=1

[
I(W1, W2, Xi−1, Zi−1, Yn

i+1; X̃1,i, X̃2,i)− I(W1, W2, Xi−1, Zi−1, Yn
i+1; Yi)

]
(e)
=

n

∑
i=1

[
I(U1,i, U2,i; X̃1,i, X̃2,i)− I(U1,i, U2,i; Yi)

]
( f )
=

n

∑
i=1

I(U1,i, U2,i; X̃1,i, X̃2,i|Yi)

(g)
=

n

∑
i=1

[
I(U1,i, U2,i; X̃1,i, X̃2,i|Yi, V1,i, V2,i) + I(V1,i, V2,i; X̃1,i, X̃2,i|Yi)

]
(h)
=

n

∑
i=1

[
I(U1,i; X̃1,i, X̃2,i|Yi, V1,i, V2,i) + I(U2,i; X̃1,i, X̃2,i|Yi, U1,i, V2,i)

+ I(V1,i; X̃1,i, X̃2,i|Yi) + I(V2,i; X̃1,i, X̃2,i|Yi, V1,i)
]

≥
n

∑
i=1

[
I(U1,i; X̃1,i|Yi, V1,i, V2,i) + I(U2,i; X̃2,i|Yi, U1,i, V2,i)

+ I(V1,i; X̃1,i|Yi) + I(V2,i; X̃2,i|Yi, V1,i)
]

(105)

where (a) follows by (4) and (5), (b) follows from Csiszár’s sum identity [39], (c)424

follows because (X̃n
1 , X̃n

2 , Yn) are i.i.d., (d) follows from the data processing inequality425

applied to the Markov chains426

(Xi−1, Zi−1)− (X̃i−1
1 , X̃i−1

2 , W1, W2, Yn
i+1)− (X̃1,i, X̃2,i) (106)

(X̃i−1
1 , X̃i−1

2 )− (Xi−1, Zi−1, W1, W2, Yn
i+1)−Yi (107)

(e) follows from the definitions of U1,i and U2,i, ( f ) and (g) follow from the Markov427

chain428

(V1,i, V2,i)− (U1,i, U2,i)− (X̃1,i, X̃2,i)−Yi (108)

(h) follows from the Markov chain429

V1,i − (U1,i, Yi, V2,i)− (U2,i, X̃1,i, X̃2,i). (109)

Privacy Leakage to Decoder: We have430

n(R`,Dec + δn) (110)
(a)
≥ H(W1, W2|Yn)− H(W1, W2|Xn)

(b)
=

n

∑
i=1

[
I(W1, W2; Xi|Xi−1, Yn

i+1)− I(W1, W2; Yi|Yn
i+1, Xi−1)

]
(c)
=

n

∑
i=1

[
I(W1, W2; Xi|Xi−1, Zi−1, Yn

i+1)− I(W1, W2; Yi|Yn
i+1, Xi−1, Zi−1)

]
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(d)
=

n

∑
i=1

[
I(W1, W2, Xi−1, Zi−1, Yn

i+1; Xi)− I(W1, W2, Yn
i+1, Xi−1, Zi−1; Yi)

]
(e)
=

n

∑
i=1

[
I(U1,i, U2,i; Xi)− I(U1,i, U2,i; Yi)

]
( f )
=

n

∑
i=1

I(U1,i, U2,i; Xi|Yi) (111)

where (a) follows by (6) and from the Markov chain (W1, W2)−Xn−Yn, (b) follows431

from Csiszár’s sum identity, (c) follows from the Markov chain432

Zi−1 − (Xi−1, Yn
i+1)− (Xi, Yi, W1, W2) (112)

(d) follows because (Xn, Yn, Zn) are i.i.d., (e) follows from the definitions of U1,i433

and U2,i, and ( f ) follows from the Markov chain434

(U1,i, U2,i)− Xi −Yi. (113)

Privacy Leakage to Eve: We have435

n(R`,Eve + δn)

(a)
≥ [H(W1, W2|Zn)− H(W1, W2|Yn)] + [H(W1, W2|Yn)− H(W1, W2|Xn)]

(b)
=

n

∑
i=1

[
I(W1, W2; Yi|Yn

i+1, Zi−1)− I(W1, W2; Zi|Zi−1, Yn
i+1)

]
+

n

∑
i=1

[
I(W1, W2; Xi|Xi−1, Yn

i+1)− I(W1, W2; Yi|Yn
i+1, Xi−1)

]
(c)
=

n

∑
i=1

[
I(W1, W2; Yi|Yn

i+1, Zi−1)− I(W1, W2; Zi|Zi−1, Yn
i+1)

]
+

n

∑
i=1

[
I(W1, W2; Xi|Xi−1, Yn

i+1, Zi−1)− I(W1, W2; Yi|Yn
i+1, Xi−1, Zi−1)

]
(d)
=

n

∑
i=1

[
I(W1, W2, Yn

i+1, Zi−1; Yi)− I(W1, W2, Zi−1, Yn
i+1; Zi)

]
+

n

∑
i=1

[
I(W1, W2, Xi−1, Yn

i+1, Zi−1; Xi)− I(W1, W2, Yn
i+1, Xi−1, Zi−1; Yi)

]
(e)
=

n

∑
i=1

[
I(V1,i, V2,i; Yi)− I(V1,i, V2,i; Zi) + I(U1,i, U2,iV1,i, V2,i; Xi)

− I(U1,i, U2,i, V1,i, V2,i; Yi)
]

=
n

∑
i=1

[
− I(U1,i, U2,i, V1,i, V2,i; Zi) + I(U1,i, U2,i, V1,i, V2,i; Xi)

+ I(U1,i, U2,i; Zi|V1,i, V2,i)− I(U1,i, U2,i; Yi|V1,i, V2,i)
]
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( f )
≥

n

∑
i=1

[
I(U1,i, U2,i; Xi|Zi) +

[
I(U1,i, U2,i; Zi|V1,i, V2,i)− I(U1,i, U2,i; Yi|V1,i, V2,i)

]−]
(114)

where (a) follows by (7) and from the Markov chain (W1, W2) − Xn − Zn, (b)436

follows from Csiszár’s sum identity, (c) follows from the Markov chain in (112), (d)437

follows because (Xn, Yn, Zn) are i.i.d., (e) follows from the definitions of V1,i, V2,i, U1,i438

and U2,i, and ( f ) follows from the Markov chain439

(V1,i, V2,i)− (U1,i, U2,i)− Xi − Zi. (115)

Secrecy Leakage (to Eve): We obtain440

n(Rs + δn)

(a)
≥ [H(W1, W2|Zn)− H(W1, W2|Yn)] + [H(W1, W2|Yn)− H(W1, W2|X̃n

1 , X̃n
2 , Yn)]

(b)
=

n

∑
i=1

[
I(W1, W2; Yi|Yn

i+1, Zi−1)− I(W1, W2; Zi|Zi−1, Yn
i+1)

+ H(X̃1,i, X̃2,i|Yi)−H(X̃1,i, X̃2,i|X̃i−1
1 , X̃i−1

2 , W1, W2, Yn
i+1, Yi)

]
(c)
≥

n

∑
i=1

[
I(W1, W2, Yn

i+1, Zi−1; Yi)− I(W1, W2, Zi−1, Yn
i+1; Zi)

+ H(X̃1,i, X̃2,i|Yi)− H(X̃1,i, X̃2,i|Xi−1, Zi−1, W1, W2, Yn
i+1, Yi)

]
(d)
=

n

∑
i=1

[
I(V1,i, V2,i; Yi)− I(V1,i, V2,i; Zi) + I(U1,i, U2,i, V1,i, V2,i; X̃1,i, X̃2,i|Yi)

]
(e)
=

n

∑
i=1

[
I(V1,i, V2,i; Yi)− I(V1,i, V2,i; Zi)

+ I(U1,i, U2,i, V1,i, V2,i; X̃1,i, X̃2,i)− I(U1,i, U2,i, V1,i, V2,i; Yi)
]

=
n

∑
i=1

[
− I(U1,i, U2,i, V1,i, V2,i; Zi) + I(U1,iU2,i, V1,i, V2,i; X̃1,i, X̃2,i)

+ I(U1,i, U2,i; Zi|V1,i, V2,i)− I(U1,i, U2,i; Yi|V1,i, V2,i)
]

( f )
≥

n

∑
i=1

[
I(U1,i, U2,i; X̃1,i, X̃2,i|Zi) +

[
I(U1,i, U2,i; Zi|V1,i, V2,i)− I(U1,i, U2,i; Yi|V1,i, V2,i)

]−]
(116)

where (a) follows by (3), (b) follows because (X̃n
1 , X̃n

2 , Yn) are i.i.d., and from441

Csiszár’s sum identity and the Markov chain442

Yi−1−(X̃i−1
1 , X̃i−1

2 , W1, W2, Yn
i+1, Yi)−(X̃1,i, X̃2,i) (117)

(c) follows because (Yn, Zn) are i.i.d. and from the data processing inequality443

applied to the Markov chain444

(Xi−1, Zi−1)−(X̃i−1
1 , X̃i−1

2 , W1, W2, Yn
i+1, Yi)−(X̃1,i, X̃1,i) (118)
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(d) follows from the definitions of V1,i, V2,i, U1,i, and U2,i, (e) follows from the445

Markov chain given in (108), and ( f ) follows from the Markov chain446

(V1,i, V2,i)− (U1,i, U2,i)− (X̃1,i, X̃2,i)− Zi. (119)

Introduce a uniformly distributed time-sharing random variable Q∼Unif[1 : n] that447

is independent of other random variables, and define X = XQ, X̃1 = X̃1,Q, X̃2 = X̃2,Q,448

Y=YQ, Z=ZQ, V1=V1,Q, V2=V2,Q, U1=(U1,Q,Q), U2=(U2,Q,Q), and f = fQ, so449

(Q, V1)−U1 − X̃1 − X− (X̃2, Y, Z) (120)

(Q, V2)−U2 − X̃2 − X− (X̃1, Y, Z) (121)

form Markov chains. The proof of the outer bound follows by letting δn → 0.450

Cardinality Bounds: We use the support lemma [39, Lemma 15.4] to prove the451

cardinality bounds and apply similar steps as in [20,23], so we omit the proof.452

6. Conclusion453

We considered the function computation problem, where three nodes observe454

correlated random variables and aim to compute a target function of their observations455

at the fusion center node. We modeled the source of the correlation between these456

nodes by positing that all three random variables are noisy observations of a remote457

random source. Furthermore, we imposed one secrecy, two privacy, and two storage458

constraints with operational meanings on this function computation problem to define a459

lossless rate region by considering an eavesdropper that observes a correlated random460

variable. The lossless function computation problem was extended by allowing the461

function computed to be a distorted version of the target function, which defined the462

lossy function computation problem.463

We proposed inner and outer bounds for the lossless and lossy rate regions. The464

secrecy leakage and privacy leakage rates that are measured with respect to the eaves-465

dropper were shown to be different due to the remote source considered, unlike in the466

literature. Furthermore, we characterized the exact rate region for functions that are467

partially invertible with respect to one of the transmitting node observations as well as468

for invertible functions. Moreover, we considered two different physical-degradation469

cases for the measurement channels of the eavesdropper and fusion center when the470

function computed was invertible. We derived the corresponding exact rate regions,471

one of which is evaluated for an example scenario, and proved that no auxiliary or472

time-sharing random variable is necessary to characterize these regions.473

In future work, we will propose inner and outer bounds for the lossless and lossy474

multi-function computation problems with multiple transmitting nodes and character-475

ize the rate regions for multi-function computations when the function computed is476

invertible.477
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