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Abstract: Deep learning techniques are increasingly being recognized as effective image classifiers. 
Aside from their successful performance in past studies, the accuracies have varied in complex en-
vironments in comparison with the popularly applied machine learning classifiers. This study seeks 
to explore the feasibility for using a U-Net deep learning architecture to classify bi-temporal high 
resolution county scale aerial images to determine the spatial extent and changes of land cover clas-
ses that directly or indirectly impact tidal marsh. The image set used in the analysis is a collection 
of a 1-m resolution collection of National Agriculture Imagery Program (NAIP) tiles from 2009 and 
2019 covering Beaufort County, South Carolina. The U-net CNN classification results were com-
pared with two machine learning classifiers, the Random Trees (RT) and the Support Vector Ma-
chine (SVM). The results revealed a significant accuracy advantage in using the U-Net classifier 
(92.4%) as opposed to the SVM (81.6%) and RT (75.7%) classifiers for overall accuracy. From the 
perspective of a GIS analyst or coastal manager, the U-Net classifier is now an easily accessible nad 
powerful tool for mapping large areas. Change detection analysis indicated little areal change on 
marsh extent, though increased land development throughout the county has the potential to neg-
atively impact the health of the marshes. Future work should explore applying the constructed U-
Net classifier to coastal environments in large geographic areas, while also implementing other data 
sources (e.g., LIDAR, multispectral data) to enhance classification accuracy. 

Keywords: Deep Learning; Machine Learning; Change Detection; Coastal; Marsh; Remote Sensing; 
Aerial Imagery 
 

1. Introduction 
Machine learning (ML) algorithms have become commonplace in remote sensing 

data analysis [1-8]. The successful use of ML for a variety of GIS and remote sensing ap-
plications has led to the implementation of these methods, often based on support vector 
machine (SVM) and random forests (RF) statistical methods, into GIScience software 
packages that can be used by non-technical investigators. The tools are readily available 
for supervised classifications in particular [9-10]. Numerous studies have supported the 
use of machine learning over traditional, statistically-based classifiers such as Maximum 
likelihood methods, with SVM often performing the best [11-14]. ML classifiers have now 
been established across the professional community as reliable tools for mapping without 
requirement of extensive machine learning and programming experiences. 

 Advancements within the past ten years have led to a new division within machine 
learning. Deep Learning (DL) is a learning algorithm designed to mimic the function of 
human brain in the form of neural networks [15]. An advanced subsection of ML, DL is 
able to perform artificial intelligence functions with extensive training resources. The re-
cent popularity and success of DL in other disciplines and applications such as speech 
recognition [16] and medical image recognition [17] has led to the rise of its use in remote 
sensing applications. While citing other reviews of DL applications in remote sensing by 
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[18] and [19], [20] gave a comprehensive review by describing different model types of DL 
in remote sensing. The authors also found in their meta-analysis of the subject that, as of 
the publication of their article, there were 221 peer reviewed articles and 181 conference 
papers or proceedings pertaining to remote sensing and DL. It is clear that use-cases of 
DL in remote sensing applications are increasing rapidly. 

 As applications of DL classifiers in remote sensing become more established, the al-
gorithms and tools using DL for image classification are being made available as user-
friendly graphical user interface (GUI) tools in commonly used GIS software, just like the 
ML tools. Though geospatial software companies tout both user-friendly and robust DL 
tools, it is often difficult to manipulate the tools to the user’s desired specifications. Nev-
ertheless, just as the ubiquity of ML GUI tools opened the use of ML to users without a 
background in programming and ML, DL tools are also now available to all. Application-
driven researchers, managers, and GIScience professionals may have a difficult time 
choosing or knowing the appropriateness of a particular tool for a particular use-case. 

 A growing literature base has begun extensively testing DL classifiers against tradi-
tional ML classifiers in a variety of environments and with several data types and sizes 
[21-24]. The goal of these studies is to identify the best performing classifier by comparing 
the results of the classifiers on the same datasets, usually using the same or similar train-
ing and validation data. The results of these studies have thus far been inconclusive as to 
which classifier (DL or ML) performs best for many environments, though the current 
available literature can provide guidance for professionals looking to use such tools for 
particular applications (e.g., land use/land cover classification, vegetation cover, coral reef 
habitat classification) [25-27]. Certainly, each tool should be selected based on how it best 
answers the research question. However, few studies have used the GUI tools developed 
for less-technically inclined researchers by the large GIS software companies.  

The present study seeks to identify the best performing classifier (among three effec-
tive and commonly used DL and ML classifiers) for mapping land-use/land cover (LU/LC) 
using a large, complex county-wide dataset for a coastal county. Large, high resolution 
imagery datasets of coastal areas that include complex land cover can be more difficult to 
process and classify, depending on the research question, methods, quality of image, and 
field data. High resolution imagery can introduce a salt-and-pepper effect due to intra-
class variations. Knowing which classifier performs best in this type of environment and 
with imagery of these specifications will especially benefit coastal managers and practi-
tioners. This study will specifically use the ML and DL tools embedded in Esri ArcGIS Pro 
2.8.1.   

Three effective and commonly used ML and DL classifiers are compared in this 
study. The U-Net Convolutional Neural Network (CNN) is a DL algorithm that was orig-
inally created for biomedical image segmentation but has been now used for remote sens-
ing image classification applications [28-29]. The architecture of the network can be di-
vided into two halves—the first being an encoding or ‘contracting” side and a decoding 
or “expansive” side— that give the architecture its “u” shape. The U-net algorithm has 
shown success in classifying coastal wetlands using remotely sensed imagery in previous 
studies [30-31]. SVM and RF classifiers are commonly used ML classifiers for remote sens-
ing analysis. The SVM classifier is a supervised classification method based on the statis-
tical learning theory and was developed in the computer science community in the 1990s 
[32] (pg. 337). It is now commonly used in remote sensing research [21,33-34]. SVM clas-
sifiers are beneficial because they can handle small training samples and the training sam-
ples do not need to be normally distributed. SVM classifiers can handle non-linear class 
boundaries and multiple classes. The RF classifier is a supervised classification method 
based on the random forest statistical method [32] (pg. 311). A series of decisions are made 
based on the statistical makeup of the classes and the image overall. The decisions branch 
out together and form what look like tree branches. When the entire image is classified, 
many instances of classification are performed on subsets of the data, therefore creating 
many decision trees [35]. The most frequent tree output is used as the overall classifica-
tion. Using multiple trees is meant to mitigate overfitting to the training samples provided 
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by the user. The ‘best’ classifier will be determined by comparing time costs for classifying 
the imagery and overall accuracy (OA) results. 

 Upon determining the most effective classifier, a case study for demonstrating the 
effective use of the best classifier is conducted using the large county-wide data set to 
detect change in LU/LC over a ten-year period that can affect the extensive marsh envi-
ronment across a large county in South Carolina, USA. While direct modification of the 
marsh environment for the sake of development is important to map, indirect impacts 
such as pollution, excessive nutrient and sewage inputs, other upstream development and 
freshwater diversions coming from coastal communities may have lasting negative effects 
on the health of our important coastal wetlands [36-38].  

Section 2 of this study outlines the materials and methods of the experiment and case 
study. This includes a description of the study area, the data used, how classifiers were 
trained and applied, and change detection analysis was conducted. Section 3 presents the 
results from the comparison and case study. Results of this case study provide insights 
for coastal managers to better monitor and adaptively manage for marsh health. Finally, 
results are discussed in the context of the current literature base, followed by a brief con-
clusion.  

 

2. Materials and Methods 

2.1. Study Area 
 
 Beaufort County is one of South Carolina’s populous counties nestled in the southern 

coast of the state (Figure 1). From 2010 to 2019, the population in Beaufort County grew 
from 162,233 to 192,122, an increase of 18.4 % [40]. It ranks as the wealthiest county in the 
state with respect to the median household income at $68,377. Beaufort County is home 
to half of the state’s salt marsh [41]. According to [42], South Carolina salt marshes and 
coastal wetlands provide services in the four ecosystem service categories: provisioning, 
regulating, cultural, and supporting. Each of these categories, though not all marketed 
services, provide valuable resources to coastal communities. For example, the salt marshes 
serve as nursery habitat to many species, especially shrimp. South Carolina’s commercial 
fishing industry that relies upon these environments generates $42 million dollars annu-
ally to the state economy [43]. Other services, like flood protection, carob sequestration, 
filtration, and tourism all contribute to the enormous value these marshes are to the South 
Carolina coast. The predominate species of marsh vegetation is Spartina Alterniflora. Juncus 
Romerianus is also commonly found. The county is home to a diversity of several land 
cover types including wetlands, forests, large water bodies, extensive housing and com-
mercial developments, and agriculture. As the county’s population continues to grow in 
a dynamic and complex coastal environment, the importance of monitoring change using 
accurate classification methods is critical for future planning and measuring trends in so-
cioeconomic and ecological health. 
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Figure 1. Map of South Carolina with Beaufort County (in red) highlighted and its NAIP image 
acquired in 2019. 

 Despite extensive regulations to abate the environmental impacts of development on 
Beaufort County’s salt marsh, in [44] (pg. 33), community stakeholders continue to voice 
concerned for the health of the marsh. While no substantial evidence of marsh loss was 
cited, additional insights from the document state that lack of monitoring in Beaufort 
County is a detriment to our understanding how the marsh is being affected [44] (pg. 34). 
Furthermore, the aforementioned Beaufort County comprehensive plan does not address 
marsh migration in the face of sea level rise [45]. In addition to comparing DL algorithm 
competency in mapping a large, complex county wide image with other ML classifiers, 
this study seeks to fill a gap in the understanding of land use/land cover extent changes 
in the area that may be directly or indirectly impacting marsh health. 

2.2. Data 
The aerial imagery used in this study were collected by the National Agriculture Im-

agery Program, or NAIP. This program began in 2002 and is administered by the U.S. 
Department of Agriculture (USDA) Farm Service Agency to collect aerial imagery during 
growing seasons. The digital sensors used for NAIP imagery, though not apparent in the 
metadata provided with the imagery, meet rigid calibration specifications [46]. NAIP im-
agery is generally collected at a 1 m spatial resolution (50-60cm in some areas) across the 
conterminous United States. 

For this study, NAIP images of Beaufort County acquired in 2009 and 2019 were 
used. The imagery varies in the month collected. For the 2009 NAIP imagery, each tile in 
the orthomosaic was collected between April 16 and April 25, 2009. The 2009 imagery is a 
traditional true color orthomosaic, with a 1 m spatial resolution captured by a Leica Ge-
osystems ADS40-SH52 sensor (sensor numbers 30028 and 30045). The 2019 imagery was 
collected between August 29 and September 23, 2019. The 2019 flights resulted in a 60 cm 
spatial resolution and true color imagery from a Leica Geosystems ADS100 model sensor 
(sensor numbers 10530 and 10552). The pixel size was resampled to 1 m to match the 2009 
image. The tide of each image varied, even within an image due to the flight times of each 
tile that makes up the images. In general, the 2009 image shows higher tides with much 
of the lower marsh slightly inundated. The National Wetland Inventory (NWI) shapefile 
for South Carolina was used to mask out deep water bodies while retaining marsh areas 
[47]. After masking, the imagery was reduced to a smaller size (about 11 gb) and became 
more manageable for classifications. Both images were transformed into the NAD83 
(2011) UTM 17N coordinate system. 
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 Areas of interest (AOIs) for training and validation samples were manually digitized 
from the 1 m NAIP imagery based on expert knowledge in the study area and field visits 
within the last two years. A portion of the open-source building footprints layer provided 
by Microsoft was used as AOIs for the building class [48-49]. While the dataset was pro-
duced in 2018, the individual tiles or scenes throughout the imagery collected in a wide 
variety of dates. Therefore, a Beaufort County building footprints subset was thoroughly 
examined before usage as ancillary training and validation data. An accuracy assessment 
was performed for each classified image using the validation AOIs generated in a similar 
manner to the training AOIs. A stratified random sampling of 1500 validation points were 
generated for the validation process (Figure 2). 

 
Figure 2. Distribution of sample points used for accuracy assessment across Beaufort County. 

2.3. LU/LC and Classification Methods 
 A general workflow of this study is represented in Figure 3. Both NAIP images were 

classified into several level 1, 2, and 3 LU/LC classes, loosely based on [50]. The level 3 
classes included mudflat, marsh vegetation, forest, roads, buildings, agriculture, grass-
land, water, shadows, dry bare ground and wet bare ground (Table 1). Several classes 
were combined in our level 2 classes to leave 7 predominant classes that described the 
general LU/LC in the study area. For example, mudflat and marsh vegetation were com-
bined into the marsh class, roads and buildings into the urban class, and dry and wet bare 
ground into a single bare ground class. It was determined that the agriculture class and 
grass classes were significantly confused, and therefore were combined due to their simi-
larities. These combinations were made to identify general environments and limit unnec-
essary misclassifications.  

Table 1. Classes used in this study. The dashes indicate the previous class is now included in the  

Level 3 Class Level 2 Class Level 1 Class 
Mudflat Marsh 

Marsh 
Marsh 

Marsh Vegetation Marsh 
Forest Forest Forest 
Roads Urban 

Urban 
Development 
Development 
Development 
Development 

Buildings 
Agriculture Ag/Grass 

Ag/Grass Grassland 
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Dry Bare Ground Bare Ground Development 
Wet Bare Ground Bare Ground Development 

Water Water Water 
Shadows Shadows Shadows 
 
 
A final set of level 1 classes were determined by combining bare ground, urban, and 

grass/agriculture into a developed class that was used as a proxy for general LU/LC 
changes that can impact marsh health. Bare ground is included in development because 
construction sites and pre-construction sites across the county are typically bare ground. 
Grass is included as a development class because it represents a loss of natural forested 
coastal area. Many parks and yards are part of developments, and this is where the grass 
is found. Further, while agricultural use may be impactful if the farmer is using certain 
chemicals, the same could be said for large grass areas where added nutrients can even-
tually reach the wetlands through runoff. Other classes, like water, shadows, forest and 
marsh, remained separate in the level 1 classification. In the end, the forest and develop-
ment classes were deemed the most important for determining changes that would affect 
marshes. Aside from determining the actual marsh changes (i.e., development on marsh 
or marsh gain through marsh restoration), the changes in forested land and increase in 
development were used as an indicator of how marsh may be affected. 

 
 

 
Figure 3. A general workflow for the experiment and case study. First, training data was used to 
classify the 2019 image using the three different classifiers (U-Net, SVM, and RF). Accuracy assess-
ment was used to determine the most effective classifier. The 2009 image was classified using the 
best performing classifier and then compared with the 2019 image for change detection analysis. 

 Object oriented classifiers (OOC) were used for these classifications because of their 
ability to mitigate some of the high-resolution intra-class detail and salt-and-pepper phe-
nomenon that often occurs with pixel-based classifications [51]. While noise can still be 
found in the objects, object parameters can smooth out much of the salt-and-pepper effect. 
OOC have been shown to have better accuracy than pixel-based classifiers in a variety of 
environments, including salt marsh and other LU/LC classes found in our study area [52-
54]. The U-net classifier performed the semantic segmentation without the user input of a 
segmented image. For the SVM and RF classifications, the base image was segmented us-
ing different properties. Spectral detail was placed at the highest importance, with spatial 
detail coming in second. On the range of 1.0 to 20.0, spectral detail was placed at 18.5, 
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while spatial detail was placed at an eight in an effort to smooth out the image. Minimum 
segment size was placed at 5 pixels (5 * 5 m) so as to accommodate smaller buildings and 
small patches of marsh vegetation.  

 Each classifier required certain input parameters beyond the images and training 
data. To train the U-Net DL classifier, the training AOIs were used as inputs into ArcGIS 
pro’s Train Deep Learning Model tool. During this process, the entire raster image was 
segmented into 7,169 tiles with the dimensions of 256 * 256 pixels. The training data were 
embedded as well. Once the classifier was trained using the training data, all of the small 
tiles were input into the U-net classifier and ultimately classified one at a time before being 
mosaicked together again to create the whole classified image. The final output was a 
classified image raster. 

The SVM classifier required the input of the segmented image, training samples, and 
classification scheme. Only a single parameter of 500 maximum samples per class was 
required, which limits the number of training samples you can use for each class. The 
parameter was set to the default given by ArcGIS Pro 2.8.1. Once each of the inputs were 
collectively used to train the SVM classifier, it was applied to the entire county-wide im-
age. The final output was a classified image raster. 

The RF classification followed a similar method. The same inputs were required to 
train the RF, though the required parameters were different. The RF classifier was trained 
using the following parameters: 120 maximum trees, maximum tree depth of 30, and 1000 
as the maximum number of samples per class. Each of these parameters limited the size 
of the forest during the classifier training, while seeking to maintain a high level of accu-
racy. Once the classifier was trained it was applied to the entire county-wide image. The 
final result was a classified image raster. 

The 2009 imagery was classified in a similar manner to the 2019 imagery. Training 
samples were gathered visually from the imagery in collaboration with the Beaufort 
County Mapping and Applications Director, who has had residence in the position since 
1995. Due to the higher tide levels in the 2009 image, a new class ‘underwater marsh’ was 
included to potentially capture more marsh accurately in the image. The underwater 
marsh was later merged with marsh vegetation and mudflat into the level 2 and level 1 
marsh classes.  

2.4. Accuracy Assessment 
A confusion matrix was calculated using ArcGIS Pro’s Compute Confusion Matrix 

tool, where the Producer’s accuracy, User’s accuracy, Overall Accuracy, and Kappa were 
computed. Producer’s accuracy is the total number of pixels classified correctly for a class 
divided by the total number of pixels in that class as determined from the ground truthing 
data. User’s accuracy is the total number of pixels correctly classified into a class divided 
by the total number of pixels classified into that class. An overall accuracy (OA) percent-
age was also calculated:  

OA =
∑ ௫೔೔

಼
೔సభ

ே
                                            (1)

where xii represents a pixel classified correctly, and N is the total number of pixels being 
assessed. 

 Kappa analysis is a multivariate technique for accuracy assessment first published 
in a remote sensing journal in 1983 [55]. Kappa is similar to overall accuracy as a measure 
of the accuracy of the entire classification, but each considers slightly different infor-
mation. A kappa estimate (𝐾)෢  was determined as [56]:  

𝐾෡ =
ே ∑ ௫೔೔

಼
೔సభ ି∑ (௫೔శ× ௫శೕ)ೖ

೔సభ

ேమି∑ (௫೔శ×௫శೕ)ೖ
೔సభ

  (1)

where N is the total number of samples, k is the number of rows in the confusion matrix, 
xii is the number of observations in row i and column i, and xi+ and x+j are the marginal 
totals for row i and column j. 
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2.5. Case Study - Change Detection and Marsh Analysis 
 Following the classification of both the 2019 and 2009 images of Beaufort County, a 

change detection analysis was conducted using the Change Detection tool in ArcGIS pro 
v.2.8.1. The tool requires an input of a series of maps or images and computes a change 
detection map and change matrix in return. For the change detection analysis, a final clas-
sification map with combined classes was created. Water, shadows, marsh, and forest clas-
ses remained intact, but the agriculture/grass, bare ground, and urban classes were com-
bined into a class called development. Areas of change were assessed based on the num-
bers of pixels that changed from a particular class to another. Pixel counts were multiplied 
by the 1 m * 1 m pixel size to determine approximate area in meters squared. Further 
conversion from m2 to ha was accomplished by multiplying by 0.0001.   

 While mapping a marsh class alone gives us direct information on actual changes in 
the marsh, many indirect impacts from nearby land use/land cover changes have been 
documented [37, 57]. Because of these documented impacts, we decided to map all classes 
to suggest and discuss what changes may potentially occur if development trends con-
tinue.  

 Pixels that changed from any particular class to the shadow class, or from the shadow 
class to another class were disregarded for this change analysis. The pixels of interest for 
this study were the pixels that changed from the marsh class or the forest class to any 
other class, but particularly to the development class. The pixels that experienced these 
changes were mapped and visually analyzed to determine impacts and assess potential 
future impacts. 

3. Results 

3.1. Comparison of model performance and accuracies 
 
Processing time is an important factor in processing large-size imagery. Computa-

tional costs depend on the data being processed as well as the computational abilities of 
the machine being used. Here, a Dell Inspiron 5680 6-core intel i7 CPU with 16gb Ram and 
Nvidia GTX 1060 3gb GPU was used to process each classification. As noted in Table 1, 
the U-Net classifier required the least training time but the most total classification time 
to apply the trained model to the image. Training the U-net classifier required 2 hours and 
59 minutes, at least 30 minutes faster than the two other classifiers. However, the classifi-
cation of the image itself took 43 hours and 23 minutes for a total of 46 hours and 22 
minutes. The length of classification is not a common finding, however, as U-net classifiers 
have been found to be faster than many others in remote sensing applications [30-31, 58]. 
The authors suggest the extra length of time required to complete classification was due 
to the machine specifications, the size of the dataset, and the methods by which the tiles 
were classified and subsequently mosaicked together. The SVM classifier required 4 hours 
52 minutes for training and then 30 minutes to classify the image. The RF classifier was 
trained in 4 hours 29 minutes and was applied to the image in approximately 23 minutes. 
The computational times and classification accuracies are reported in Table 2. 

Table 2. Computational time and classification accuracies. 

Classifier Training Time Classification Time OA Kappa 
2019 DL U-Net 2 hours, 59 minutes 43 hours, 23 minutes 92.4% 89.8% 

2019 SVM 4 hours, 52 minutes 30 minutes 81.6% 75.3% 
2019 RF 4 hours, 29 minutes 23 minutes 75.7% 67.3% 

2009 DL U-Net 2 hours, 46 minutes 42 hours, 34 minutes 85.3% 80.5% 
 
The overall accuracies of the three classifiers for the 2019 image ranged from 75.74% 

to 92.38%, with the U-Net classifier performing the best (Table 2). This study found the 
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object-based ML classifiers did not perform as well, though certain classes performed well 
(Tables 3, 4 and 5). The forest class was consistently classified with high users and pro-
ducers’ accuracy (99-89%). Other classes varied based on the classifier. For example, the 
SVM and RT classifiers correctly classified marsh at least 70% of the time, though the U-
net Classifier had a user’s accuracy of 84.41% and a producer’s accuracy of 93.52%. How-
ever, both ML classifiers interestingly confused marsh with the urban class the most. It is 
proposed that the high-resolution imagery and complex environment lead to a high intra-
class variability, making it difficult for the ML classifiers to separate the classes.  

Table 3. Accuracy for the predominant Level 2 classes (U-net) 

Classes Marsh Forest Urban Agriculture/Grass Bare Ground Total 
Users 

Accuracy 
Marsh 260 2 8 2 28 308 84.42% 
Forest 2 592 1 0 0 596 99.33% 
Urban 0 0 283 0 10 294 96.26% 

Agriculture/Grass 6 12 11 123 3 156 78.85% 
Bare Ground 10 0 0 3 84 97 86.60% 

Total 278 608 307 129 125 1509  

Producer’s 
Accuracy 

93.53% 97.37% 92.18% 95.35% 67.20%   

Table 4. Accuracy for the predominant Level 2 classes (SVM) 

Classes Marsh Forest Urban Agriculture/Grass Bare Ground Total 
Users 

Accuracy 
Marsh 217 6 10 1 19 263 82.51% 
Forest 0 561 1 1 1 567 98.94% 
Urban 37 7 273 11 63 400 68.25% 

Agriculture/Grass 22 9 10 111 10 167 66.47% 
Bare Ground 2 0 9 5 32 49 65.31% 

Total 278 608 307 129 125 1509  

Producer’s 
Accuracy 

78.06% 92.27% 88.93%% 86.05% 25.60%   

 

Table 5. Accuracy for the predominant Level 2 classes (RF) 

Classes Marsh Forest Urban Agriculture/Grass Bare Ground Total 
Users 

Accuracy 
Marsh 201 19 15 4 11 260 77.31% 
Forest 2 541 12 6 0 573 94.42% 
Urban 55 23 265 0 73 448 59.15% 

Agriculture/Grass 8 24 10 105 0 152 69.08% 
Bare Ground 12 0 5 14 41 72 56.94% 

Total 278 608 307 129 125 1509  

Producer’s 
Accuracy 

72.30% 88.98% 86.32% 81.40% 32.80%   

 
 
After finding the U-Net classifier performed the best, it was applied to the 2009 NAIP 

dataset as well. Overall accuracy of the 2009 image classification was 85.28%, with a Kappa 
statistic of 80.45%. While many of the same classes performed remarkably well between 
the two sets of imagery, the tidal ranges within the 2009 image seems to have proved 
difficult for the U-net classifier. The producer’s accuracy for the marsh class was a low 
65.18%, though the user’s accuracy was 96.90%. The marsh areas were often confused for 
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the water class or the agriculture/grass class due to the high tides and time of year. The 
agriculture/grass class was often confused as well. It is suggested that this was due to the 
image collection during peak biomass, when S. Alterniflora is its greenest and most like an 
agricultural product or grass. Outside of the marsh class and the bare ground class that 
was confused for urban areas, all other classes resulted in a producer’s accuracy of at least 
90.0%. 

3.2. Comparison of classification results 
The DL U-Net classifier was able to navigate the complexities of the environment 

better than the other ML classifiers and achieved a higher accuracy. Evidence of this as-
sertion can be found in three subset areas with classification challenges. Figure 4 shows a 
forested and agricultural area in northern Beaufort County. It is classified reasonably well 
by U-Net (Fig. 4A), which shows very little salt-and pepper effect in the classification. 
However, SVM and RF (Fig. 4B-C) misclassified the forest as water, marsh or shadow 
depending on the hue of the green space. Portions of the marsh on the western edge of 
the image were confused for bare ground by RF, though the U-net and SVM classifiers 
generally recognized it to be marsh. SVM also misclassified small portions of the marsh 
area as urban area. U-Net struggled with wet areas in and around inland water bodies, 
classifying surrounding vegetation as marsh.  
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Figure 4. A mixed-use area classified by A) U-net, B) SVM and C) Random Forest. D) is the NAIP 
image of this subset.  

 
In another subset area under development (Figure 5), U-Net (Fig.7A) once again clas-

sifies the bare ground areas correctly, along with the extensive suburban areas. SVM sim-
ilarly classified most of the bare ground and urban areas correctly. However, RF misclas-
sified the bare ground areas as urban areas. Another difficulty for each classifier was dif-
ferentiating some wetland areas and ponds in neighborhoods and golf courses from the 
marsh. SVM and U-Net occasionally misclassified those areas, while RF struggled the 
most. Nearly every inland water body was misclassified as marsh by the RF classifier. 
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Figure 5. A developing area classified by A) U-net, B) SVM, and C) Random Forest. D) is the NAIP 
image of this subset. 

It is well known that marsh extent is difficult to map, especially when the tidal range 
varies throughout the imagery. These tidal discrepancies made classifying the marsh dif-
ficult for each classifier in this study (Figure 6). Marsh was sometimes misclassified as 
water, urban, bare ground, and even grass. If images were collected during low tide con-
ditions across the entire study area, classifications could have been more accurate. Water 
hues ranging from blue to algae-ridden green waters made classifications of water and 
grass difficult as well. Ancillary information, such as texture, RGB-based indices, or even 
a DEM might assist in the differentiation between some of the more troubled classes. Some 
inland areas in and around small ponds were also misclassified as marsh. This is similar 
to RF that struggled to differentiate the water class from the marsh class in nearly every 
inland pond (as shown in Figure 5C). 
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Figure 6. A marsh area classified by A) U-net, B) SVM, and C) Random Forest. D) is the NAIP im-
age of this subset.  

3.3 Coastal Development and Impact to Marshes 
After the DL U-net classifier was applied to both the 2019 and 2009 images, changes 

between the two dates were assessed visually and, as best as possible, quantitatively. The 
2009 image classification struggled to classify marsh correctly in some areas, assigning 
some pixels as development (i.e., the urban, grass/agriculture, or bare ground classes) ra-
ther than marsh. With this knowledge, it is apparent that several areas that were marked 
as marsh loss or gain were in fact errors made by the classifier. These areas were visually 
inspected. Figures 7C and 7D indicate two areas where actual changes did occur, and in 
fact some marsh vegetation was lost. An overall marsh system loss was be estimated at 
3,300 ha. However, because of the errors detected extensively throughout the 2009 marsh 
class in particular, a quantitative assessment of marsh losses may not be completely 
trusted. To reiterate the issues described above, the producer’s accuracy of the marsh class 
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in the 2009 image was only 65%, the lowest of all the classes. The marsh was misclassified 
as urban area because of sun glint, and sometimes as agriculture due to its greenness. We 
used expert visual observation to determine that there was very little true marsh loss over 
the ten-year period. There were a few areas where marsh vegetation extent expanded be-
tween dates (Figure 7A and 7B), but there were no detected areas where the marsh vege-
tation or mudflat were directly affected by development in the marsh system. Tidal levels 
throughout both images made classifications and comparisons difficult. Despite using a 
separate class for submerged or underwater marsh, these areas are where much of the 
misclassifications occurred among the marsh class.  

 

 
Figure 7. Examples of marsh vegetation gain (A and B) and loss (C and D) from 2009 to 2019. 
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Large areas of development expansion were detected across the county. This study 
indicates that approximately 7,102.74 ha of forest were lost to other land cover classes 
(e.g., urban, bare ground, and grass/agriculture). For the purposes of the case study, any 
forest lost to the level 1 development class was deemed development. The development 
in northern Beaufort County included small areas of urban development and large areas 
of agricultural development. Southern Beaufort County saw the greatest amount of urban 
growth. Figure 8 indicates the area of development across the county. On the other hand, 
some previously urban areas from 2009 were naturalized over the past 10 years. Some 
agricultural and urban areas from 2009 were overtaken by shrubs and small trees over the 
ten-year period. These areas were often then classified as forest and were counted as lost 
developed land.  

Figure 8. Forested areas lost to development across Beaufort County in 2009-2019. 

4. Discussion 
 
The DL, SVM, and RT classification results fared well when compared to other large-

area DL mapping studies that included wetlands and other complex land cover classes. 
For large scale wetland mapping across Alberta Canada, [59] achieved an 80.2% OA using 
a deep CNN. In a study comparing RF, SVM, and three other deep learning classifiers for 
classifying wetland using small unmanned aerial systems hyperspatial resolution im-
agery, [60] found that the DL classifiers performed better than the SVM and RF classifiers, 
especially when the training sample counts were high. RF and SVM classifiers resulted in 
OA as high as 65% and 67%, respectively. The DL classifiers resulted in OA upwards of 
76% to 84%.  Similarly, our results support assertions made by [61] that CNN can outper-
form RF classifiers. Specifically, U-Net has shown to outperform SVM and RF classifica-
tions for wetland mapping using Sentinel-2 10 m imagery. [31] discovered that the SVM 
and RT classifiers only achieved an OA of 50.5% and 46.4%, respectively, while the U-Net 
classifier regularly reached at least 85%, depending on the optimizing function used. Our 
study suggests the higher resolution NAIP imagery includes enough spatial detail to im-
prove the OA to the detected levels of accuracy (e.g., U-Net = 92.4%; SVM = 81.6; RT = 
75.7%). When using a similar spatial resolution data from the Worldview 3 satellite to 
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classify forested wetlands using a DL CNN, [62] found similar accuracy levels as our 
study (92%) when only the optical imagery was used.  

 Several challenges were faced when classifying the coastal tidal marsh in Beaufort 
County for this study. Maneuvering the tide, and water levels in general, is a significant 
challenge when using remotely sensed imagery to map coastal wetlands, including coastal 
tidal marshes [63]. This was particularly evident in this study, as event within the NAIP 
imagery for one county there was a significant difference across the tiles that made up the 
image in tide levels. This was one of the major difficulties in classifying the marsh. Other 
environmental conditions such as cloud cover and shadows cast by tall objects (like build-
ings, trees, and water towers) obscured the target wetlands, complicated spectral signa-
tures, and made optical imagery difficult to interpret or use [64]. Plant phenology also 
played a factor in image classification. Peak biomass conditions are best for modeling 
plant health characteristics such as biomass and can be beneficial in mapping certain 
coastal wetland species [65-66]. The 2009 imagery was taken in April, which is at the be-
ginning stages of growth and greening up for S. Alterniflora, the dominant marsh grass in 
Beaufort County. The 2019 imagery was taken in late august and early September, which 
is in the peak biomass for S. Alterniflora [67]. All three classifiers were more successful at 
classifying the marsh class in the 2019 imagery than the U-net classifier was in the 2009 
image. We propose that plant phenology, along with tide levels throughout each image, 
was a significant factor in these results. 

NAIP datasets provide high resolution aerial imagery with great potential for vege-
tation mapping, in particular when acquired during leaf-on conditions. While we found a 
fair amount of success mapping various classes, including the marsh class, the NAIP RGB 
imagery alone was not sufficient to overcome all of the complexities of the coastal wetland 
environment. To better classify the coastal tidal marsh, particularly the vegetation and 
mudflat, it would be expedient to incorporate ancillary remote sensing data. This process, 
called data fusion, can be used to better describe and classify wetlands [68]. Data fusion 
can be performed at the pixel-level, feature-level, and decision-level. [69], as described in 
[70], found that they could improve land cover classification by fusing multispectral data 
with radar data. While the increase in overall accuracy (OA) was small, some sub classes 
improved while others decreased slightly in classification accuracy. [71] applied a fusion 
of multispectral imagery with LiDAR-derived elevation datasets to map peatlands in Can-
ada with a 76.4% OA opposed to only achieving a 65.8% with the RGB and IR bands. Data 
fusion is able to provide better information for decision makers. For example, the addition 
of a NIR band or a vegetation index such as the Normalized Difference Vegetation Index 
(NDVI) provides greater discrimination between marsh vegetation and mudflat, as well 
as marsh vegetation from other vegetation classes. Elevation data derived from LiDAR or 
other sources improves feature extraction of trees, agriculture, and grasses from the marsh 
grasses and even mudflats. 

Potential biases and errors introduced in the study may be introduced in the selection 
of training and validation AOIs by the researchers. Potential bias was mitigated by involv-
ing multiple long-term residents of the county who interpreted the aerial imagery and 
selected the training and validation polygons based on extensive local knowledge. 

 Future work should incorporate ancillary remotely sensed data into the classification 
process to further increase classification accuracy. As previously stated, other spectral 
bands and indices, elevation data, and imagery from other scales (i.e., small unmanned 
aerial systems) should be examined to produce a data fusion product of potentially higher 
accuracy. Results from LU/LC classifications can be used as input into models for other 
phenomenon, like water quality [72]. Water quality is another element that can impact 
marsh health. Further trials with other available deep learning pixel classifiers, such as 
DeepLabv3, are useful tools to be investigated as well. These methods could be further 
validated through application and testing in similar coastal environments.  

5. Conclusions 
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This study compared DL with traditional ML classifiers based on the classification of 

high-resolution imagery over an entire coastal county using GUI applications from 
ArcGIS Pro 2.8.1. Our case study then used the LU/LC maps from 2019 and 2009 to detect 
salt marsh change patterns over a 10-year period. Results indicated that a U-Net DL clas-
sifier significantly outperformed the other classifiers for the classification of a complex, 
high resolution county-wide dataset in terms of OA (92.4% as opposed to the 81.6% by 
SVM and 75.7% by RF). DL algorithms now available to any coastal manager or GIS ana-
lyst with access to Esri’s ArcGIS pro showed their high applicability to large-area map-
ping. Using computational resources commonly available to coastal managers and pro-
fessional GIS analysts, the U-net classification required a longer time to classify the large 
dataset (46 total hours vs 5.33 hours and 4.83 hours). Because this was not found among 
other literature regarding other U-Net classifiers, we believe the time required for classi-
fication was a function of the large dataset, computational resources, and DL model struc-
ture. Our study focused on DL and ML classifiers from the perspective of the environ-
mental or coastal manager. Findings indicate a bright future for DL and ML LU/LC clas-
sification for large-area mapping, even for those without complicated programming and 
DL or ML backgrounds. Our case study demonstrated the power of using these tools for 
change detection, showing large areas of development over a 10-year period across the 
county that may have an impact on marsh health. Further research is needed to validate 
findings and test similar methods across similar complex coastal environments. Addi-
tional ancillary remote sensing data, including multispectral and hyperspectral imagery, 
LiDAR, and RADAR, can be integrated to improve classification accuracy. 
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