Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 December 2021 d0i:10.20944/preprints202112.0070.v1

Article

Deep Learning Exoplanets Detection by Combining Real and

Synthetic Data

Sara Cuéllar 1, Paulo Granados 1, Ernesto Fabregas 2(, Michel Curé 3©, Héctor Vargas 1@, Sebastian

Dormido-Canto 22 and Gonzalo Farias

1,%

Escuela de Ingenieria Eléctrica, Pontificia Universidad Catélica de Valparaiso, Av. Brasil 2147, 2362804
Valparaiso, Chile; milahcr@hotmail.com

Departamento de Informatica y Automatica, Universidad Nacional de Educacién a Distancia, Juan del Rosal
16, 28040 Madrid, Spain; efabregas@dia.uned.es

Instituto de Fisica y Astronomia. Facultad de Ciencias. Gran Bretafia 1111. Playa Ancha. Valparaiso. Chile;
michel.cure@uv.cl

Correspondence: gonzalo.farias@pucv.cl; Tel.:+56-32-2273673

Abstract: Scientists and astronomers have attached Scientists and astronomers have attached great
importance to the task of discovering new exoplanets, even more so if they are in the habitable
zone. To date, more than 4300 exoplanets have been confirmed by NASA, using various discovery
techniques, including planetary transits, in addition to the use of various databases provided by
space and ground-based telescopes. This article proposes the development of a deep learning system
for detecting planetary transits in Kepler Telescope lightcurves. The approach is based on related
work from the literature and enhanced to validation with real lightcurves. A CNN classification
model is trained from a mixture of real and synthetic data, and validated only with real data and
different from those used in the training stage. The best ratio of synthetic data is determined by the
perform of an optimisation technique and a sensitivity analysis. The precision, accuracy and true
positive rate of the best model obtained are determined and compared with other similar works.
The results demonstrate that the use of synthetic data on the training stage can improve the transit
detection performance on real light curves.

Keywords: Exoplanets Detection; Deep learning; Real and Simulated Data.

1. Introduction

All the planets in our solar system orbit the sun. Planets orbiting other stars are called
exoplanets under NASA’s Exoplanet Exploration Program [1].

Exoplanets are very difficult to see directly with telescopes. They are hidden by the
brightness of the stars they orbit. The search for planets outside the solar system has been
investigated for many years. The existence of a possible exoplanet orbiting the white dwarf
Van Maanen 2 has been suspected since 1917 [2], but its existence could not be confirmed
due to the limited technology of the time.

It was not until 1995 that Michel Mayor and Didier Queloz first confirmed an exoplanet
called Dimidium or 51 Pegasi, with a 4-day orbit around the nearby star Helvetios [3]. They
described it as a large ball of gas similar to Jupiter. For this finding they received the Nobel
Prize in Physics 2019 [4].

Nowadays, scientists and astronomers have attached great importance to the task
of discovering new exoplanets, even more so if they are in the habitable zone. Most of
the exoplanets discovered so far are found in a relatively small region of our galaxy, the
Milky Way. To date, NASA has confirmed 4301 exoplanets, using a variety of discovery
techniques [5], including planetary transits, radial velocities, gravitational microlensing
and direct imaging from databases provided by space and ground-based telescopes, e.g.
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NASA’s Kepler space telescope [6] and the NASA’s Transiting Exoplanet Survey Satellite
(TESS) [7].

The Kepler space telescope has collected data on a large number of stars (in the order
of 200,000) during the 4 years it was operating (2009-2013). The manual analysis of all these
light curves is a time-consuming work. In this context, the use of artificial intelligence
methods have emerged as tools for the analysis of this information.

In the literature, different approaches that use artificial intelligence techniques to detect
exoplanets can be found. For example, in [8], the authors describe a method for detecting
exoplanet transits by applying the k-nearest neighbors (kNN) method to determine whether
a given signal is sufficiently similar to known transit signals. In [9], they present for the first
time the use of the Random Forest Classifiers (RFCs) algorithm for exoplanets classification.
They achieve an overall error rate of 5.85% and an error rate in the classification of exoplanet
candidates of 2.81%. The work described in [10], shows a combination of RFCs and
Convolutional Neural Networks (CNNs) to distinguish between the different types of
signals. The authors say that the combination of both methods offers the best approach to
identify exoplanets correctly in the test data approximately 90% of the time. While in [11],
the authors present another CNN based approach that is capable of detecting Earth-like
exoplanets in noisy time series data with a greater accuracy than a least-squares method.
The most important disadvantage of this case is that they do not use real traffic data to
train the model. This does not provide evidence for its performance against real data.

In [12], the method for classifying candidates using a Self-Organizing Maps (SOM)
technique is developed on Kepler and K2 confirmed and candidate planets with a success of
87%. More recently, in [13] an Ensemble-CNN model for exoplanets detection is presented
with an accuracy of 99.62%.

Other approaches such as [14], shows a 98% cross-validated precision score using
RECs to classify objects of interest in Kepler’s cumulative information object table. But,
in this case, the authors use only data from the training stage for cross-validation of their
models. This does not allow to properly analyse the performance of the model with new
data.

Despite the good results obtained by these previously mentioned works, most of
them show that in order to build and validate the models, in some cases light curves of
unconfirmed planet candidates are used or even some of them are false positives.

The main contribution of this work is the development of a system for detecting
planetary transits in Kepler Telescope light curves. This system includes the generation of
synthetic data from estimated parametric models of the planet candidate. The exoplanet
detection model is trained by deep learning from a mixture of real and synthetic data. This
model consists on building an image from the folding of light curves. This image is used
to determine planetary transits by means of a CNN (Xception referencing). On the other
hand, the validation of the model is only performed with real data and different from those
used in the training stage. This shows that the performance of the model is better than if
only real data are used for training. In addition, a sensitivity analysis and an optimisation
technique is performed to determine the best ratio of synthetic data. Finally, this approach
allows finding planetary transits over a wider range of periods.

The rest of the paper is structured as follows. Section 2 presents some exoplanet
detection approaches that can be found in the literature and describes briefly the approach
which is the start point of this work. Section ?? details the proposed method. Section 3
shows the experimental results and a comparison with previous results. Finally, Section 4
summarizes the main conclusions and future work.

2. Exoplanets detection approaches

As mentioned above, the discovery of new exoplanets has taken a high degree of
importance during the last few years. Since the amount of data provided by telescopes
is enormous, it is much better if this is analyzed using Machine Learning techniques. A
significant amount of research can be found in the literature that has focused on the use of
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Machine Learning techniques for exoplanet detection. This section presents a small review
of these approaches.

Table 1 presents a summary of the articles covered in this brief review. The first
column contains the reference to the article in the bibliography. The second column shows
the name of the telescope/catalog from which the data were obtained. The third contains
the name of the data set provided by the telescope/mission and used for the investigation.
The fourth column shows the details about the feature extraction used. The fifth column
shows the machine learning method used for detection. Sixth column shows the dataset
used to train the model. The seventh contains the data used for testing and finally the
eighth shows the results obtained.

In [15], published in 2015, the authors present the Autovetter, a machine learning based
classifier. It is used to produce a catalog of Planet Candidates from the Q1-Q17 DR24
Threshold Crossing Events (TCEs) that are identified in the Kepler Science Operations
Center pipeline. The Autovetter classify TCEs into three classes: 1.- Planet Candidate
(PC), which contains signals that are consistent with transiting planets; 2.- Astrophysical
False Positive (AFP), which contains signals of astrophysical origin that could mimic
planetary transits; and 3.- Non-Transiting Phenomenon (NTP), which contains signals that
are evidently of instrumental origin, or are noise artifacts. A set of 114 atributes calculated
from Kepler pipeline are ultimately used to build a random forest classifier that maps the
attributes of any TCE to a predicted class label of either PC, AFP, or NTP. The results show
the following accuracy/error rate for each class: PC (0.971/2.9%), AFP (0.976/2.4%) and
NTP (0.968/3.2%). As can be seen, the results are very accurate, in fact, the Autovetter
predictions are taken as ground truth for posterior studies.

In [16], the authors present a method for classifying potential signals from planets
using deep learning, specifically convolutional neural networks (CNNs). Feature extraction
is generated by folding each flattended light curve in the TCE period (with the event
centered) and clustering to produce a 1D vector. The training and test sets (PC, AFP and
NTP) were selected from the Autovetter Planet Candidate Catalog for Q1-Q17 DR24. The
result is a CNN model named Astronet that is able to distinguish with good accuracy
the subtle differences between genuine transiting exoplanets and false positives such as
eclipsing binaries, instrumental artifacts, and stellar variability. They also compared models
based on linear logistic regression (LLR) and a fully connected neural network. The results
show a performance of classified real planets with 95 % recall, 90 % of accuracy and 96 %
of precision.

In [17] the authors also present an approach based on CNN named Exonet. They
use a dataset from the same catalog as the previous one (Kepler Q1-Q17 DR24). For the
classification process, they use phase-folded light curves and associated centroid curves
(measured by the Kepler pipeline from the same TPF), for both global and local views.
They also add stellar normalized parameters like: effective temperature, surface gravity,
metallicity, radius, mass, and density to the training set. The results overperformed the
Astronet with an accuracy of 97.5% and 95.5% of precision.

In [18], the first deep neural network trained and tested on real TESS data is presented.
The model is modified based on Astronet and designed to automatically performing triage
and vetting on TESS candidates. In triage mode, it can distinguish transit-like signals
(planet candidates and eclipsing binaries) from stellar variability and instrumental noise
with an average precision of 97.0% and an accuracy of 97.4%. In vetting mode, the model is
trained to identify only planet candidates with the help of newly added scientific domain
knowledge, and achieves an average precision of 69.3% and an accuracy of 97.8%.

In [14], the authors present a study of several classification models (SVM, KNN and
RF) used to assign a probability of an observation being an exoplanet. A Random Forest
Classifier was selected as the optimum machine learning model to classify objects of
interest in the Cumulative Kepler Object of Interest (KOI) catalog using the table attributes
as features. The Random Forest Classifier obtained a cross-validated accuracy score of
98.96%, precision 99.55% and recall of 97.21% on the training set.
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Ref Catalog Feature Extraction ML Method Performance
REAL 114 Attributes Accuracy:
[15] Kepler caleulated RF (3 classes) 0973
Q1-Q17 DR24 g
Accuracy:
0.917,
REAL . LLR 0.94
1D folding curve: /
[16] Kepler global & local view Fully connected NN 0.958
Q1-Q17 DR24 CNN AUC: 0.963,
0.977
0.988
1D folding curve: Accuracy:
REAL global & local view 0.975 y:
[17] Kepler Centroid curves DCNN Pre;:isi(;n'
Q1-Q17 DR24 Stellar 0.955 )
parameters '
Accuracy:
1D folding curve: 0.974.
REAL . )
[18] TESS global & local view CNN for Triage AUC:
1-5 sector Secondary 0.992
secto eclipse view Precision:
0.97
Accuracy:
0.9896.
[14] Kepler Features from SVM,KNNRE 09058
prer interactive table ! ! )
Cumulative Recall:
0.9721
F1: 0.9837
Kepler AUC:
0.948.
Recall:
REAL Pre%iQS?on'
Kepler TSFresh Gradient 0.82 )
[1] Ql_%gSSDRZAL 789 features B?;S:Sed TESS AUC:
0.80.
1-5 sector Recall:
0.82
Precision:
0.81
SIM,[I}{I;AITEP 50000 lightcurves: Acgugrgacy:
201 Y REAL 25000 with transit MLP, CNN Reeall
without transit 25000 without transit 0.99

Table 1: Machine learning approaches for exoplanet detection.
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In [19], the author present an approach based on a tree-based classifier using a popular
machine learning tool ‘lightgbm’, to detect exoplanets using the transit method. They
use time-series analysis library “TSFresh’ to extract 789 features from lightcurves. These
features capture information about the characteristics of each lightcurve. This was tested
on synthetic data which proved it to be more effective than conventional box least squares
fitting (BLS). On Kepler data, the method is able to detect a planet transit with an AUC
of 94.8% of accuracy and Recall of 96%. With the TESS data, the method is able to classify
lightcurves with an accuracy of 98% and is able to identify planets with a Recall of 82%.

In [20] the authors present an approach based on CNN for detecting exoplanet transits.
A 2D phase folding technique is proposed, generating a set of images for training. They
test the method with five different types of deep learning models with or without folding.
Synthetic lightcurves were generated as the input of these models. The results indicate
that a combination of two-dimension convolutional neural network with folding is the best
choice for the future transit analysis. All models with folding have accuracy above 98%.
The accuracy of models without folding can become about 85%. The precision and recall
have a similar trend. This article is based on this approach, the main difference is that it
uses real data with transit for both training and testing.

2.1. Real data description

The dataset consists of Kepler observations of near 200,000 stars started from 2nd May
2009 to 11th May 2013. The data is divided in 18 quarters from QO to Q17. The length of
each quarter is about 90 days, but some quarters are shorter. The data includes long and
short cadence which took data every 30 and 2 minutes respectively. Long cadence data will
be only considered from Q1-Q17 quarters because there are not enough stars observed in
short cadence.

The Transit Planet Search (TPS) module carefully observes the light curves and identi-
fies possible signals called Threshold Crossing Events (TCE). The Data Validation module
creates reports based on the probability of veracity of the signals; then the Robovetter
[21] examines the signals and creates a Kepler Objects of Interest (KOI) catalog. Those
confirmed to have nothing to do with planetary transits are labeled as false positives (EFP).
The remain are called planet candidates (PC). NASA provides the list of all confirmed
planet transits (CP) as well the planet and star properties.

The Cumulative Kepler Objects of Interest (KOI) table provides the most accurate
dispositions and stellar and planetary information for all KOlIs in one place. The KOI
catalog table contains unique object of interest identifiers, exoplanet archive information,
transit properties, among others threshold-crossing events properties. The labels were
sourced from the catalog’s koi_disposition column as the ground truth. The catalog contains
9564 KOlIs, out of which 2358 are confirmed exoplanets, 2366 remain candidates and the rest
(4840 objects) are false positives. The last group of objects was removed from the dataset.
Since since it is searching for signals with planet transits, the candidates and confirmed
exoplanets have both been combined into the transit labelled data presented in the next
sections.

The non-transit labelled data were obtained from the Kepler Data Release 25-Q1
(DR25) table and consists of 43273 KOIs with no transit.

Two observed fluxes columns are used from each observation data: one is the simple
aperture photometry (SAP) which is the flux obtained by direct photometry analysis
and can include some other device; the other one is the Pre-search Data Conditioning
(PDC) which represents a processed version of SAP where the devices are removed almost
completely [22]. PDC light curves will be used. Since the unusual values produced by
astrophysics events such as solar flares and micro lenses are not eliminated of the PDC
light curve, all the points over 6 times standard deviation will be removed.

Since many of confirmed planets share star with other planets, the systems with only
one confirmed planet or PC was chosen. Following the approach from [20], the main idea
is to use a light curve with enough samples to represent 10 periods, considering that at
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Parameter Value
T 0.85 to 8.5 [days]
a/rs 2to 35
rp/rS 0.005 to 0.4
i 85 to 90 [deg]
Uy 0.210 to 0.731
Up 0.035 to 0.442

Table 2: Transit parameters

bigger transit period, the higher amount of samples. At Kepler observations case, a curve
has about 4320 samples taken each 30 minutes then the maximum allowed period to cover
the 10 segments is 9 days. Therefore all transits with a period between 0.85 and 8.5 days
were considered. On this point there are 583 light curves of the Q1 quarter, in order to
maintain balance, the same amount of non-transit light curves was selected.

2.2. Synthetic Data generation

The method proposes to include a set of transit synthetic light curves in order to
improve the performance of the classifier. Those are generated using the quadratic model
for the limb darkening laws introduced analytically by Mandel & Agol on [23]. The flux f,
for a transit over a stellar disk with quadratic limb darkening is:

=9k 2) T Ak ) + ok 2)
flez) =1- 1—1,/3—uy/6 )

where k is the radius ratio, z is the projected distance, ¢ = 1y + 2uy, u1 and u; are the
quadratic limb darkening coefficients, and A,, A; and 7, are functions of k and z defined
in [23]. This model is implemented on the PyTransit Python library [24] with related
parameters like the transit period 7, the ratio of planet radius to stellar radius (r,/7s), the
ratio of orbital semimajor axis to stellar radius (a/rs) and the orbit inclination (7). The
values of those parameters were set the same as [20], table 2 gives a summary of them.

2.3. Feature extraction
2.3.1. Lightcurves pre-processing

The main purpose of this method is to find transits, so the light curves are pre-
processed to first remove the empty intervals. The missing values are replaced with the
average of the neighborhood of the empty interval. Noise with less than 10% of magnitude
is added on this new values for a better consistency with reality. The light curves were
interpolated to 4000 points i.e. 10 periods of 400 points each. Finally the data is normalized
to have values between 0 and 1.

2.3.2. 2D Phase folding

Related work on light curve feature extraction includes the phase folding technique
introduced by [11] to take advantage of transit periodicity. It consists on folding each light
curve on the transit period from the catalog and binning it to generate a 1D vector of a
enhanced signal. This method increase the transit detection but the transit period has to be
known in advance, otherwise the folding period can differ from it and the transit will be
undetectable for the model. The above condition represents a difficulty when it is wanted to
search for transits on new released observational data. To solve this problem [20] presents
a phase folding method that generates a 2D representation by folding each light curve
on a period that can be different from the transit period, improving the transit detection
regardless of the transit and folding period. Following this method, the detection model
inputs were generated by folding the light curve in 10 segments using the transit period
from the catalog’s koi_period column, then the values for each period were incorporated as
rows of an image.
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Fig. 1 shows the 2D phase folding proccess on three examples of lightcurves: column
(a) shows a synthetic lightcurve with transit folded on the transit period, column (b) shows
a real lightcurve with unsuitable folding for the actual transit period, and column (c)
presents a real lightcurve without transit. First row of the figure presents the pre-processed
light curve, a 1D signal of 4000 samples normalized to have values between 0 and 1. Ten
folds of 400 samples each are enumerated. Second row of the figure shows a zoom view of
each fold, the transit is visible on (a) at the same phase on each fold, since (b) has a folding
period different from the transit period, the drops on each fold appears to be shifted to
a lightly different phase than in the previous one, on (c) no transit drop is visible on any
fold. Third row of the figure presents the mean of the 10 folds on each case, this would
be the inputs of the [11] proposed model, i.e. a 1D vector of 400 samples. The transit is
visible on (a) closer to the 350 sample, on (b) the mean transit signal becomes unclear and
the model may not give a correct answer on transit detection, confusing it with the one
presented in (c). Finally, fourth row shows the 2D representation of the folded lightcurve, a
10x400 pixels image which is the input of the detection model. The dark bands indicating
the transit are visible on (a) and (b). Therefore, a model may be able to detect transits
successfully and distinguish it from the one in (c).
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Figure 1. 2D Phase folding for three cases: Synthetic lightcurve (left). Real lightcurve with transit
(center). Real lightcurve without transit (right).

2.4. Detection model

The classification task consists on sort out every light curve into two categories: Planet
candidate and False positive. Different deep learning approaches have been used for this
application, however convolutional neural network was chosen since they outperform
artificial neural networks in classification tasks where the data is spatially aligned such
as image or audio [25]. It is because CNN leverages the spatial structure of the output
detecting local features which only need to be learned once, therefore the number of
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trainable parameters, the memory usage, and the number of computations of the desired
output will decrease.

Transfer learning takes a large network that has already been trained for a specific
problem and then fits it to a new problem. This adjust is performed at the end of the
network, modifying the number of output neurons to match the number of classes of the
new problem (2 classes). This is a very useful technique since the first stages of the network
usually recognize general features that can be applied to almost every classification problem
[26]. Clearly it is necessary to perform train in order to adapt the last layer to the new
classes, but thanks to transfer learning it is not necessary to train the whole network again.
In fact one can choose which layers to train and which not to train. This is very efficient
when considering the computational cost of training a network of this magnitude.

The proposed neural network architecture is based on Xception developed by Francois
Chollet [27]. The pre-trained network with 71 deep layers has learned rich feature represen-
tations for a wide range of images and. It can classify 1000 categories of objects and has an
image input size of 299x299. It is necessary to modify the input dimension of the network
and the number of output neurons. In this binary classification problem a monocromatic
image input size of 400x10 and one neuron on the output layer with a sigmoid function of
activation were implemented. The output y of the model depends on the neural network
decision threshold T. This threshold determines the minimum classification probability on
which the light curve will be classified as a planet candidate (the probability predicted is
greater than T) or as an false positive (the probability predicted is smaller than T) as shown
Eq. 2 where z is the weighted sum on the inputs.

1 if—L_>T
— 1+e7 % = 2
Y {O otherwise @

2.5. Training the model

In order to see the effect of increasing synthetic data on training, DCNN models were
built with R = 483 real curves and a ratio of synthetic curves S with transit defined by the
A parameter Eq. 3 shows. Additionally, the same number S + R of non transit curves are
added to the training set to maintain balance. Fig. 2.a summarizes the workflow from the
training stage.

®)

1 1
A ic Ligth | I
! Curve Generator | 1 Preprocessing: : Preprocessing:
! - ! R - Replace missing values I - Replace missing values
: H - Interpolate to 4000 simples : - Interpolate to 4000 simples
1 Kepler I - Normailzation I - Normailzation
: Cumulative KOI : \
1 1
1 1
P With Transit !

Phase Folding

A ’
""""" CNN Model

Prediction

Phase Folding

Kepler
DR25 Q1

10x400

Label:
0: No Transit Detected
1: Planet Candidate

Model
Training

CNN Model

a) Training stage b) Validation stage

Figure 2. Training and validation stages of the proposed method.
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With transit Without transit Maetrics
Scenario S R S R T F TPR  Precision
1 0 483 0 483 05 0743 0.740 0.747
2 483 0 0 483 0.5 0206 0.120 0.750

Table 3: Detection performance under proposed scenarios

2.6. Evaluation Metrics
For evaluation purposes, R = 100 real transit light curves and R = 100 non-transit

light curves was selected as test set. This work uses the following metrics to asses the
performance of the CNN model based on the workflow shown in Fig. 2 (b):

e  Accuracy: The portion of correct classifications.

TP+ TN

TP+ FP+TN+FN @

accuracy =

e  Precision: The ratio of lightcurves classified as planet candidates that are true planet
candidates, also known as reliability.

TP

TP+ FP ®)

precision =

o  True Positive Rate (TPR): The ratio of true planet candidates that are classified as
planet candidates, also known as recall.

TP
TPR= TP+ FN ©
o False Positive Rate (FPR): The ratio of non transit lightcurves misclassified as planet
candidates. £p
FPR= ———— 7
FP+TN @

e  Finally, Fj-Score is calculated as shown in Eq. 8 and is used to evaluate in a single
value the combination of both precision and recall.

precision X recall
X s
precision + recall

F =2 ®)

3. Experimental results

The values of the accuracy, precision and TPR depend on the the neural network
threshold T chosen for the model see Eq. 2. The main hypothesis of this work is that the
performance of the model can be also improved using a ratio A of synthetic lightcurves on
the training stage.This section presents the ratio selection of synthetic lightcurves using a
coarse and a fine tunning, also a comparison between the proposed method and the ones
reported in the literature is presented.

3.1. Best A ratio selection

The detection performance was tested on a test set of R = 100 real curves with transit
and the same amount of real curves without transit, on two extreme scenarios:

1.  Training with only real lightcurves with transit (S = 0, R = 483) and S + R real
lightcurves without transit.

2. Training with only synthetic lightcurves with transit (5 = 483, R = 0) and S + R real
lightcurves without transit.
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Parameter Description Value

Encode S 11 bits

Encode U Two decimals 7 bits

Chromosome size Encoded S and U concatenated 18 bits
Population size Number of chromosomes in one generation 10
Number of generations Iterations 50
Selection Tournament between parents 3
Crossover type and rate Single point at the middle 0.9
Mutation type and rate Random bit flip 0.1
Fitness function Determines members that survives F

Table 4: GA implementation details

On both scenarios the neural network threshold is fixed on T = 0.5 due to the fact that this
is a binary classification problem where 0 is a predicted lightcurve without transit and 1 is
a predicted planet candidate.

Table 3 shows the performance of the models built for each scenario. It is observed
that the model trained with only real curves can detect the 74% of the transit light curves
from the test set with a precision of 74.7%; this is a good rate however underperform the
reported metrics from the literature. On the other hand when the model is trained with
synthetic curves it can detect the transit lightcurves with a similar level of precision than
the model trained with real curves, but clearly it does not have all the variability of curves
with transit.

Therefore, it can be concluded that training with real curves provides variability to the
model on transit lightcurves detection but incorporate synthetic light curves can improve
the precision of the prediction. In order to find the best ratio of A and T, a coarse tunning
with an heuristic optimization method and a sensibility analysis are proposed.

3.2. Heuristic search of optimal parameters

The optimization problem is described on Eq. 9, the amount of synthetic lightcurves S
and the neural network threshold T are the decision variables.

imi Fi(A, T
maximize 1(A,T)

’

subjectto 0 < A < 80% )
0<T<1

The fitness function is the balanced F;-score, which is the harmonic mean between
precision and TPR calculated on Eq. 5 and 6 respectively where:

True Positive (TP): lightcurve with transit detected as planet candidate.
False Positive (FP): lightcurve without transit detected as planet candidate.
True Negative (TN): lightcurve without transit detected as false positive.
False Negative (FN): lightcurve with transit detected as false positive.

Genetic algorithms have been widely used in the last decades, because they are con-
sidered a tool to solve complex optimization problems managing the influence of the
uncertainties of typical design engineering scenarios. The main idea behind GA is to evolve
a population of chromosomes (possible candidate solutions of the problem), in several
iterations (also called generations), using operators such as crossover and mutation and
evaluated under a fitness function. In this context, this article uses GA as an optimiza-
tion tool to determine the optimal ratio of artificial curves and the optimal value of the
neural network threshold. Table 4 summarizes the parameters settings used for the GA
implementation.

Table 5 shows the results of GA applied on different settings. The first column contains
the population size. The second column shows the number of generations/iterations of
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the algorithm. The third contains the amount of synthetic curves with transit used on
training stage. The fourth column shows the neural network decision threshold. The
fifth column contains the values of F; on each experiment and finally the sixth column
shows the number of F; calculations i.e the amount of models trained in order to get that
Fj score value. The best value of F; (0.9801) is obtained for three different configurations:
1) 10 chromosomes and 50 generations, 2) 20 chromosomes and 20 generations and 3) 50
chromosomes and 10 generations. The three of them have the same value of S (1403), this
value corresponds to A = 74.3% of synthetic lightcurves and 27.7% real curves with transit
on training stage. The value of T varies between 0.21 and 0.23 so there is no big difference
between the three of them. The configuration 1) was chosen because it is the one that trains
the fewest models to obtain the same result and it also has the highest threshold T.

Population #Generations S T F, #Fq calc.

5 1633 0.09 0.9607 80
10 1173 0.07 0.9371 160

10 15 1334 041 0.9591 240
20 759  0.28 0.9607 320
50 1403 0.23  0.9801 800
5 1794 0.10 0.9560 180
10 1403 0.28 0.9751 380

20 15 1403 0.19 0.9753 540
20 1403 0.22 0.9801 820
50 1794 0.1  9.5609 1800
5 1334 0.23 0.9651 440
10 1403 0.21 0.9801 880

50 15 1403 0.19 0.9753 1320
20 1403 0.18 0.9705 1760
50 1403 0.2 09753 4400

Table 5: GA results for different parameter settings.

3.3. Sensitivity analysis

A fine tunning is performed by analyzing the dependence of the F; score value on the
values of A and T. The A value is ranged between 0 and 80%, increasing S from 0 to 1932
in steps of 23. This provides more resolution between 60 < A < 80% since the best ratio
according to the previous section is between this range. The threshold value T is ranged
from 0 to 1 using two decimals. Each model is trained using R = 483 real lightcurves
with transit, S synthetic lightcurves and S + R real lightcurves without transit to mantain
balance. The value of F; is calculated for each model with 200 real lightcurves, half of them
with transit and the other half without transit. Fig. 3 presents a 3D plot of the F; score for
each pair of A and T values. It can be observed that for A greater than 50% the value of F;
is higher, which proves the hypothesis that increasing the number of synthetic lightcurves
improves detection performance. It can also be observed that for A between 72% and 77%
and for T between 0.1 and 0.4 the highest F; values are obtained, with the maximum visible
value in A = 74% and T =~ 0.2, which is consistent with the optimum value found in the
previous section.

To get a broader view of the effect of the decision threshold T, models were trained in
the same way as the above by ranging the value of A between 0 and 80% in steps of 5%.
For each ratio, the threshold T was varied and TPR and FPR were calculated to construct
the Receiver Operating Characteristic Curve (ROC) in Fig. 4.

It shows that increasing the threshold T increases the rate of true positives, but tends
to misclassify negative instances, so the threshold value for which the roc curve is closest
to the ideal case (FPR = 0, TPR = 1) must be found, this value will be denoted as the best
threshold . It can be seen that the curve of ratio A = 70% has the point (0.050,0.970) that


https://doi.org/10.20944/preprints202112.0070.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 December 2021 d0i:10.20944/preprints202112.0070.v1

12 0f 15

1.00

0.95

0.90

Figure 3. 3D plot of F; against ratio A and threshold T

is the closest to the ideal one, which is consistent with the value presented in the coarse
adjustment with GA.

Table 6 shows the results obtained for each ratio. First column presents the ratio A in
percentage. The second column shows the respective number of synthetic light curves S.
Third column presents the value of the threshold T closer to the ideal ROC curve point.
Columns 4 to 9 show the evaluation metrics described on section 2.6.

It can be observed that from first limit scenario where A = 0 (see table 3), increasing
only the threshold T from 0.5 to 0.608, the precision is improved from 0.747 to 0.923 and
thus the F; value from 0.743 to 0.808.

The TPR value, i.e. those light curves with transit that are correctly detected, starts
to increase from A = 25%. This means that adding synthetic curves add knowledge to
the model and helps it to more easily identify real curves with transit. On the other hand,
the precision starts to increase from A = 60%. This implies that adding synthetic curves
can improve the detection precision, however this generates a bias in the model since it is
difficult for it to detect the real light curves with transit, so it is necessary to decrease the
decision threshold T that separates the two classes.

3.4. Comparison with related work

The best model was obtained with A = 74.3% and T = 0.23 (See section 3.2). To
evaluate the model R = 200 real lightcurves (100 with transit, 100 without transit) were
used, achieving a precision of 0.9705, a TPR of 0.99, a F; of 0.9801, a FPR of 0.03 and an
accuracy of 0.98. Given the wide range of databases, the comparison between the presented
approach and the related work will be centered on two works from the table 1: The one
presented in [14] in order to compare two different approaches on the same dataset and the
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one presented in [20], in order to compare the effect of the same approach on both real and
synthetic data.

Table 7 presents the metrics comparison between the proposed approach and the
related work described. Column 2 to 5 show the metrics obtained during training ans the
rest of them show the metrics obtained during test stage. In the case of [14] which uses real
data to train the model, the metrics available correspond only to the training stage; this
approach does not allow to properly analyse the performance of the model with new data.
The expected performance of this model evaluated on unknown real lightcurves should be
the one from first scenario presented on Table 3.

On the other hand, the article [20] presented validation metrics but the model is
trained and evaluated on synthetic light curves only. In order to perform a fair comparison
between our approach and this work, the model in [20] has been reproduced and evaluated
with real lightcurves, obtaining a precision of 0.5, a TPR of 0.01, a F; of 0.0196, a FPR of
0.01, and an accuracy of 0.5. This performance is very similar than the second scenario
presented on Table 3 where the model is unable to detect a real lightcurve with transit
since the real transits may not have such a relevant drop in the flux. However the higher
value of the precision shows that adding synthetic lightcurves to the training stage brings
knowledge to the model. In this case the method proposed outperforms the ones reported
on the literature and demonstrate that combining real and synthetic lightcurves on the
training stage can improve the detection metrics.

4. Conclusion

In this paper, the development of a deep learning system for detecting planetary
transits in Kepler Telescope lightcurves is presented. The approach is based on related
work from the literature and enhanced to validation with real lightcurves. 2D phase
folding is used as a feature extraction method that allows real and synthetic lightcurves
with transit to be described by an image distinguishable from those without transit. The
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A%) S T  Accuracy Precision TPR FPR F; FNR

0 0 0.608 0.860 0.923 0.720 0.060 0.808 0.280

5 25  0.639 0.825 0.825 0.850 0.210 0.837 0.150

10 60  0.953 0.835 0.818 0.900 0.130 0.857 0.100

15 85  0.394 0.840 0.876 0.920 0.210 0.897 0.080

20 121 0.631 0.870 0.922 0.830 0.080 0.873 0.170

25 161 0.999 0.885 0.824 0.940 0.030 0.878 0.060

30 207 0.608 0.710 0.810 0.940 0.370 0.870 0.060

35 260  0.456 0.850 0.873 0.970 0.070 0.919 0.030

40 322 0.963 0.945 0.873 0.970 0.080 0.919 0.030

45 395 0.685 0.895 0.882 0.900 0.130 0.891 0.100

50 483  0.578 0.840 0.897 0.880 0.040 0.888 0.120

55 590 0.727 0.910 0.782 0.720 0.130 0.750 0.280

60 730  0.765 0.855 0.932 0.970 0.090 0.950 0.030

65 897  0.444 0.905 0.938 0910 0.140 0.923 0.090

70 1127 0.234 0.960 0.950 0.970 0.050 0.960 0.030

75 1450 0.561 0.940 0.940 0.950 0.060 0945 0.050

80 1932 0.141 0.945 0.872 0.960 0.090 0.914 0.040

Table 6: Sensivity analysis results
Training Test

Ref Accuracy Precision TPR F Accuracy Precision Recall F
[14] 0.989 0.995 0.972  0.983
[20] 0.500 0.500 0.010 0.019 0.500 0.500 0.010 0.019
Our 0.980 0.970 0.990 0.980 0.980 0.970 0.990  0.980

Table 7: Comparison of the proposed approach with related work

model parameters are adjusted to improve the performance of the classification. The
method is evaluated on real lightcurves from the Kepler’s catalog and demonstrates
superior performance against other approaches presented on the state of art.

The main contribution of this work is the enhance of a detection model including the
generation of synthetic lightcurves with transit from estimated parameters. The best ratio
of synthetic data is founded using a coarse tunning with Genetic algorithms and evidenced
with a sensibility analysis. The evaluated metrics demonstrate that the combination of real
and synthetic lightcurves with transit on the training stage add knowledge to the model
and improve the performance on real light curves.

Future work will consider extend the study to systems with more than one confirmed
planet or planetary candidate dealing with multi-transit detection on the same lightcurve.
Also the implementation of the method on a different database like the NASA'’s Transitig
Exoplanet Survey Satellite (TESS), mission that has discover already 166 exoplanets and
has 4604 planet candidates.
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