Supplementary data for

Electrochemical and Mechanistic Study of Structure–Activity Relationship of α -, β -, γ -, and δ -Tocopherol on Superoxide Elimination in *N,N*-Dimethylformamide through Proton-Coupled Electron Transfer

Tatsushi Nakayama ¹*, Ryo Honda ², Kazuo Kuwata ², Shigeyuki Usui ¹, and Bunji Uno ³

Table of contents

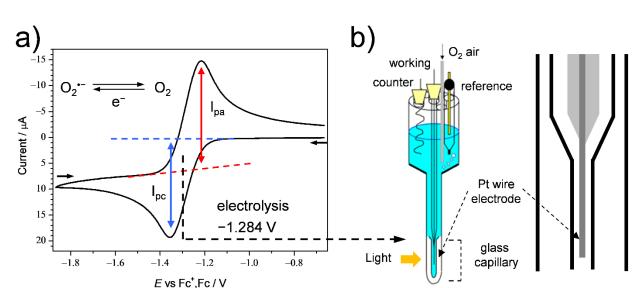
Pages S2	Figure S1; scheme of the in-situ electrolytic ESR spectral system			
	Table S1; comparisons of the ΔG° s for two mechanisms			
Pages S3	Figure S2; change in HOMO-LUMO energies			
Pages S4	Figure S3; energy profiles along ET-PT via TS between TOH and HO ₂ •			
Pages S5	Figure S4: Plausible PCET pathways between O2 ^{•-} and α-TOH			

¹ Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan

² United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan

³ Faculty of Pharmacy, Gifu University of Medical Science, 4-3-3 Nijigaoka, Kani, Gifu 509-0923, Japan

 $[\]hbox{$*$ Correspondence: } tnakayama@gifu-pu.ac.jp$



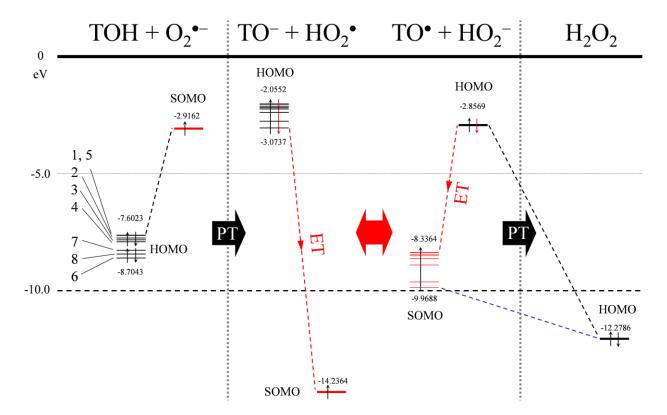
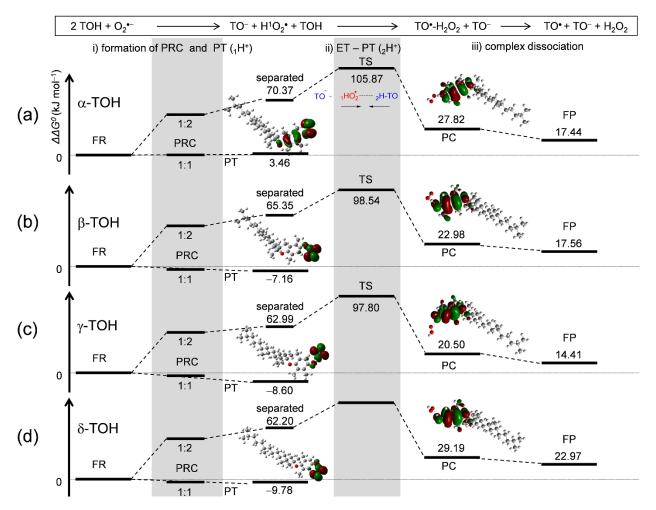
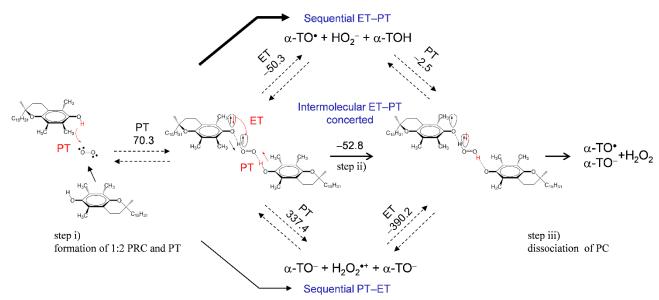

Figure S5: Plausible PCET pathways between $O_2^{\bullet-}$ and γ - TOH.

Figure S1. In situ electrolytic ESR spectral system. (a) Cyclic voltammograms of O_2/O_2 for potential determination. (b) In situ ESR system, composed of an electrochemical ESR cell with a glass small tip, air tube for O_2 bubbling, and three electrode system using a 0.5-mm-diameter straight Pt wire sealed in a glass capillary as working electrode.


Table S1. Free energy changes ($\Delta G^{\circ}/\text{kJ mol}^{-1}$, 298.15 K) of ET between (a) TO⁻ and HO₂* (along intermolecular ET–PT), and between (b) TOH and HO₂* (along PCET), in DMF.

	α-ΤΟ-/α-ΤΟΗ	β-ΤΟ ⁻ /β-ΤΟΗ	γ-ΤΟ¯/γ-ΤΟΗ	δ-ΤΟ-/δ-ΤΟΗ
TO ⁻ and HO ₂ •	-50.3	-40.1	-38.6	-28.4
TOH and HO ₂ •	100.7	103.3	111.4	117.1


 $^{^{-1}}$ ΔG° s were calculated using DFT at the (U)B3LYP/PCM/6-311+G(d,p) level. 2 Electron transfer (ET), proton transfer (PT), proton-coupled electron transfer (PCET).

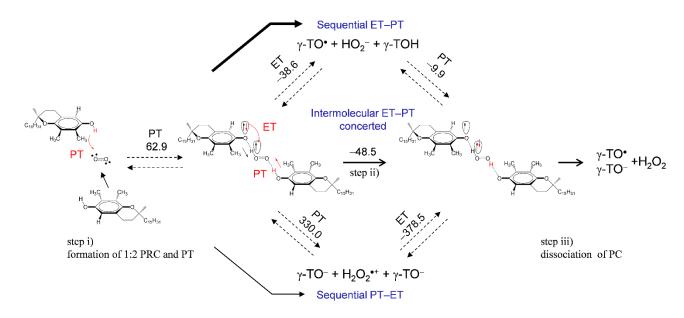

Figure S2. Change in highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO—LUMO) energies (E_h /a.u.) along the O_2 elimination reaction (the first proton transfer (PT), electron transfer (ET), and the second PT) by (a–d) α-, β-, γ-, and δ-TOH, (e) 2,2,5,7,8-pentamethyl-6-chromanol, (f) homogentisic acid γ-lactone, (g) 2,3-dihydro-2,2-dimethyl-7-hydroxybenzofuran, and (h) trans-*para*-coumaric acid, calculated with the HF/6-311+G(d,p) method.

Figure S3. Energy profiles along PCET involving two PTs and one ET between two molecule of TOH (α -, β -, γ -, and δ -TOH) and O₂⁻⁻ in DMF, calculated using DFT-(U)B3LYP/PCM/6-311+G(d,p) method. Activation energies (kJ mol⁻¹) of transition states (TS) were obtained for the 1:1 ET-PT pathway between TOH (α -, β -, and γ -TOH) and HO₂.

Figure S4. Plausible mechanism and the ΔG° s (kJ mol⁻¹, 298.15 K) for the PCET pathways between O₂ and α-TOH involving two PTs and one ET in DMF. The ΔG° s were calculated using DFT-(U)B3LYP/PCM/6-311+G(d,p) method.

Figure S5 Plausible mechanism and the ΔG° s (kJ mol⁻¹, 298.15 K) for the PCET pathways between O₂ and γ -TOH involving two PTs and one ET in DMF. The ΔG° s were calculated using DFT-(U)B3LYP/PCM/6-311+G(d,p) method.