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Abstract:  

Genome-scale metabolic models (GEMs) have been widely used for phenotypic prediction of mi-

croorganisms. However, the lack of other constraints in the stoichiometric model often leads to a 

large metabolic solution space inaccessible. Inspired by previous studies that take allocation of mac-

romolecule resources into account, we developed a simplified Python-based workflow for con-

structing enzymatic constrained metabolic network model (ECMpy) and constructed an enzyme-

constrained model for Escherichia coli (eciML1515) by directly adding a total enzyme amount con-

straint in the latest version of GEM for E. coli (iML1515), considering the protein subunit composi-

tion in the reaction, and automated calibration of enzyme kinetic parameters. Using eciML1515, we 

predicted the overflow metabolism of E. coli and revealed that redox balance was the key reason for 

the difference between E. coli and Saccharomyces cerevisiae in overflow metabolism. The growth rate 

predictions on 24 single-carbon sources were improved significantly when compared with other 

enzyme-constrained models of E. coli. Finally, we revealed the tradeoff between enzyme usage effi-

ciency and biomass yield by exploring the metabolic behaviors under different substrate consump-

tion rates. Enzyme-constrained models can improve simulation accuracy and thus can predict cel-

lular phenotypes under various genetic perturbations more precisely, providing reliable guidance 

for metabolic engineering. 

Keywords: Enzyme-constrained model; Escherichia coli; Enzyme kinetics; Protein subunit; Overflow 

metabolism; 

 

1. Introduction 

Accurate prediction of metabolic phenotypes of an organism is a key goal of compu-

tational biology and has attracted more and more attention from researchers. For this pur-

pose, many genome-scale metabolic models have been developed [1, 2] and successfully 

applied for guiding metabolic engineering based on flux balance analysis (FBA) and other 

stoichiometry-based methods [3, 4]. However, in many cases, a microorganism shows 

suboptimal metabolism [5, 6] that is inconsistent with the optimal solution of FBA [7], 

implying that the metabolic capacity of an organism is also constrained by other factors. 

For example, overflow metabolism, involving incomplete oxidation of glucose to fermen-

tation byproducts such as acetate and ethanol instead of using respiratory pathway even 

in the presence of oxygen [8] cannot be properly explained by models only considering 

reaction stoichiometries. Studies suggested that it is likely to be caused by the limited 

amount of protein molecules within the cell [9]. 

In recent years, researchers proposed several new methods that introduced new con-

straints such as cell volume limitation [10], enzyme activity and total protein mass [11, 

12], thermodynamics [13] into the model along with the stoichiometric constraints. FBA 

with Molecular Crowding (FBAwMC) [10] introduced both the crowding coefficient and 

cell volume constraint to limit the space occupied by enzymes. With the new constraints, 
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the method successfully simulated the substrate hierarchy utilization in E. coli [10]. Adadi 

et al. further extended FBAwMC by introducing known enzyme kinetic parameters and 

proposed a new method called MOMENT (Metabolic modeling with enzyme kinetics), 

which improved the prediction accuracy of intracellular fluxes and enzyme gene expres-

sion values [14]. In 2017, Sanchez et al. proposed a new construction workflow of enzyme-

constrained model (GECKO, Genome-scale model to account for Enzyme Constraints, us-

ing Kinetics and Omics), which used an average enzyme saturation coefficient and deter-

mined the fraction of enzyme proteins from proteomics data [15]. They developed an en-

zyme-constrained model for S. cerevisiae using GECKO and made accurate prediction of 

several metabolic phenotypes [15]. However, introducing the enzyme constraints into the 

original metabolic model using GECKO needs to be extensively revised by modifying 

every metabolic reaction with a pseudo-metabolite representing an enzyme and adding 

hundreds of exchange reactions for enzymes, which is complex and significant increasing 

the model size. Bekiaris et al. further provided an automatic workflow (AutoPACMEN) 

for construction of enzyme-constrained model inspired by MOMENT and GECKO, which 

only introduced one pseudo-reaction and pseudo-metabolite [16]. These two construction 

processes, GECKO and AutoPACMEN, have greatly facilitated the construction of en-

zyme-constrained models for each species, and successfully constructed for S. cerevisiae 

[15], Bacillus subtilis [17], Bacillus coagulans [18], E. coli [19] and Streptomyces coelicolor [20], 

which have successfully applied to target prediction for enhancing the yield of products 

[17, 19, 20].  

In current study, we propose a simpler workflow called ECMpy by explicitly intro-

ducing an enzyme constraint without modifying existing metabolic reactions or adding 

new reactions. Using ECMpy workflow, we constructed a high-quality enzyme-con-

strained model for E. coli (eciML1515) based on its latest metabolic model iML1515 [21], 

high coverage of enzyme kinetics data gathering from literature [22], and automated en-

zyme kinetic parameter calibration process. We demonstrated that eciML1515 could sim-

ulate the sub-optimal metabolism such as overflow metabolism and the maximal growth 

rates under different carbon sources. The whole process for model construction and sim-

ulation is available at GitHub (https://github.com/tibbdc/ECMpy) for users to easily re-

produce the results and use it as a reference to build enzyme-constrained model for other 

organisms. 

2. Materials and Methods 

2.1. The workflow of ECMpy 

Metabolic network (like iML1515 model in this study) was used as the initial model 

for the construction of enzyme-constrained model according to the workflow shown in 

Figure 1. Firstly, reversible reactions in model were divided into two irreversible reactions 

because of different kcat values. The stoichiometric constraints (Eq. 1) and reversibility con-

straints (Eq. 2) used were the same as in flux balance analysis [23]. A new enzymatic con-

straint (Eq. 3) was introduced into the model, where ptot and f represent the total protein 

fraction in E. coli and the mass fraction of enzymes, respectively. The enzyme mass frac-

tion f was calculated based on Eq. 4 where Ai and Aj represented the abundances (mole 

ratio) of the i-th protein (p_num represented proteins expressed in the model) and j-th 

protein (g_num represented proteins expressed in the whole proteome). MWi and kcat,i were 

molecular weight and turnover number of an enzyme catalyzing reaction i. For reactions 

catalyzed by multiple isoenzymes, a reaction can be split into multiple reactions. For re-

actions catalyzed by enzyme complex, using the minimum value of protein in complex 

(
𝑘𝑐𝑎𝑡,𝑖

MW𝑖
= 𝑚𝑖𝑛(

𝑘𝑐𝑎𝑡,𝑖𝑗

MW𝑖𝑗
, 𝑗 ∈ 𝑚), m is the number of proteins in complex). σi was the saturation 

coefficient of i-th enzyme.  
𝑆 ∙ 𝑣 = 0                                                                      (1) 

𝑣𝑙𝑏  ≤  𝑣 ≤  𝑣𝑢𝑏                                                               (2) 

∑
𝑣𝑖 ∙ 𝑀𝑊𝑖

𝜎𝑖 ∙ 𝑘𝑐𝑎𝑡,𝑖

𝑛

𝑖=1

≤ 𝑝𝑡𝑜𝑡 ∙ 𝑓                                                       (3) 
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𝑓 = ∑ 𝐴𝑖𝑀𝑊𝑖

𝑝_𝑛𝑢𝑚

𝑖=1

∑ 𝐴𝑗𝑀𝑊𝑗

𝑔_𝑛𝑢𝑚

𝑗=1

⁄                                                 (4) 

 

 
Figure 1. The ECMpy workflow for construction of enzyme-constrained model. 

2.2. Calibration of the original kcat values 

Generally, enzyme-constrained models need model validation (e.g. adjust the origi-

nal kcat values to some extent to improve the agreement of model predictions with experi-

mental data), like the way in GECKO and AutoPACMEN [16]. We proposed two princi-

ples (enzyme usage and C13 flux consistency) to adjust the original kcat values, as follows: 

First, a reaction with an enzyme usage exceeding 1% of the total enzyme content requires 

parameter correction; Second, a reaction with the kcat multiplied by 10% of the total en-

zyme amount (𝑣𝑖 =
10%∗𝐸𝑡𝑜𝑡𝑎𝑙∗𝜎𝑖∗𝑘𝑐𝑎𝑡,𝑖

𝑀𝑊𝑖
) is less than the flux determined by C13 experiment 

needs to be corrected. All the kcat data used for correction comes from BREDNA and 

SABIO-RK databases (using the maximum kcat value). 

2.3. Simulation 

We stored enzyme constraint information and metabolic network into json format, 

as SBML format cannot save enzyme constraints duo to COBRApy [24] limitations. Then, 

we directly read json file to get enzyme-constrained model using ‘get_enzyme_con-

straint_model’ function written by us. This transformed enzyme-constrained model is 

consistent with classical constraint-based models in format, which means that functions 

in COBRApy can be used directly on this model.  

To evaluate eciML1515's ability to predict growth rates, we compared the predicted 

results of iML1515 and eciML1515 with experimental results performed by Adadi et 

al.[14], respectively. Specially, we set the upper bound of substrate uptake rate to 10 

mmol/gDW/h and measured E. coli's growth rates on 24 single carbon sources (e.g., ace-

tate, fructose, fumarate and et.al.). For comparison of each methods on 24 single carbon 

sources, the model and experimental results were used to calculate estimation error of the 

growth rate (Eq. 5) [25] and normalized flux error (Eq. 6) [26]. 

estimation error =
|𝑣𝑔𝑟𝑜𝑤𝑡ℎ,𝑠𝑖𝑚 − 𝑣𝑔𝑟𝑜𝑤𝑡ℎ,𝑒𝑥𝑝|

𝑣𝑔𝑟𝑜𝑤𝑡ℎ,𝑒𝑥𝑝

                                                  (5) 
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normalized flux error =
√∑ (𝑣𝑔𝑟𝑜𝑤𝑡ℎ,𝑠𝑖𝑚𝑖

− 𝑣𝑔𝑟𝑜𝑤𝑡ℎ,𝑒𝑥𝑝𝑖
)2𝑛

𝑖

∑ (𝑣𝑔𝑟𝑜𝑤𝑡ℎ,𝑒𝑥𝑝𝑖
)2𝑛

𝑖

                                                  (6) 

 

In addition to the maximal growth rates under different carbon sources, we also ex-

plored the overflow metabolic behaviors of E. coli. Specially, the growth rate is fixed (from 

0.1 h-1 to 0.65 h-1) and glucose is supplied infinitely. Besides, we calculated the reaction 

enzyme cost (Eq. 7), energy synthesis enzyme cost (Eq. 8) and oxidative phosphorylation 

ratio (Eq. 9) to explore the adjustment strategy of E. coli's overflow metabolic pathway.  

reaction enzyme cost𝑖 =
𝑣𝑖 ∙ 𝑀𝑊𝑖

𝜎𝑖 ∙ 𝑘𝑐𝑎𝑡,𝑖

                                                  (7) 

energy enzyme cost𝑖 = ∑ reaction enzyme cost𝑖

𝑛

𝑖=1

/𝑣𝐴𝑇𝑃                                                   (8) 

oxidative phosphorylation ratio =
𝑣𝑂2

𝑣𝑔𝑙𝑢𝑐𝑜𝑠𝑒

                                                  (9) 

 

In order to obtain the trade-off between yield (
𝑣𝑏𝑖𝑜𝑚𝑎𝑠𝑠

𝑣𝑔𝑙𝑢𝑐𝑜𝑠𝑒∗𝑀𝑊𝑔𝑙𝑢𝑐𝑜𝑠𝑒
) and enzyme usage 

efficiency (
𝑣𝑏𝑖𝑜𝑚𝑎𝑠𝑠

𝐸𝑚𝑖𝑛
), we developed a new method (Eq. 10-14) to calculate the minimum 

enzyme amount (𝐸𝑚𝑖𝑛) inspired by pFBA (Parsimonious FBA) [27]. When simulation, we 

set the concentration of glucose from 1 mmol/gDW/h to 10 mmol/gDW/h). 

 

𝑜𝑏𝑗: 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑
𝑣𝑖 ∙ 𝑀𝑊𝑖

𝜎𝑖 ∙ 𝑘𝑐𝑎𝑡,𝑖

𝑛

𝑖=1

                                                                      (10) 

𝑆 ∙ 𝑣 = 0                                                                      (11) 
𝑣𝑙𝑏  ≤  𝑣 ≤  𝑣𝑢𝑏                                                               (12) 

∑
𝑣𝑖 ∙ 𝑀𝑊𝑖

𝜎𝑖 ∙ 𝑘𝑐𝑎𝑡,𝑖

𝑛

𝑖=1

≤ 𝑝𝑡𝑜𝑡 ∙ 𝑓                                                       (13) 

𝑣𝑏𝑖𝑜𝑚𝑎𝑠𝑠 = max (𝑔𝑟𝑜𝑤𝑡ℎ 𝑟𝑎𝑡𝑒)                                                   (14) 

3. Results 

3.1. Construction of enzyme-constrained model of iML1515 by ECMpy 

The iML1515 model was used as the initial model for the construction of enzyme-

constrained model. During the process we observed that some errors in iML1515 (e.g., 

GPR relationships, reaction direction and EC number, et al.) and corrected based on in-

formation from EcoCyc (See Table S1 for details). Then, we divided reversible reactions in 

iML1515 into two irreversible reactions and split reactions catalyzed by multiple isoen-

zymes into different reactions (append num in reaction id, e.g., ALATA_D2_num1). The 

molecular weights and subunit composition of enzymes in iML1515 were obtained from 

EcoCyc database [28]. GECKO and sMOMENT (AutoPACMEN for E. coli) used the in 

vitro kcat which obtained in labor-intensive, low-throughput in vitro assays and resulted 

in only a small fraction of cellular enzymes has a measured kcat even in model organisms 

[29]. That is why we used the kcat values derived from machine learning methods per-

formed by Heckmann et al. [22]. In the model, kcat values were assigned to 2432 enzymatic 

reactions, and the coverage exceeds 60% (including isozyme split reaction and reversible 

split reaction, exclude exchange reaction), which is larger than the GECKO and 

sMOMENT (the number of reactions that matched EC number and substrate at the same 

time was only about 387). The protein fraction ptot was set at 0.56 g protein /gDW based 

on experimentally measured macromolecular composition of E. coli cells [30, 31]. The E. 

coli protein abundance values were obtained from PAXdb database [32] and the ‘Whole 

organism (Integrated)’ dataset with the highest coverage and credibility was selected. Ac-

cording to Eq. 4, f was calculated to be 0.406 g enzyme /g protein. However, the flux of 

growth rate predicted by this initial model is low and the conversion of phosphoenolpy-

ruvate to TCA pathway is abnormal (Figure S1). We first calibrated the reaction according 
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to the enzyme usage, and totally changed 14 reactions (See Table S2 for details). The flux 

of growth rate predicted by the calibrated model increased to 0.5594 h-1, but the conversion 

of phosphoenolpyruvate to TCA pathway was still abnormal (Figure S1). Subsequently, 

we compared with the C13 experimental data [33] and found that the kcat value of two re-

actions (PDH: pyruvate to acetyl-CoA and AKGDH: 2-oxoglutarate to succinyl-CoA) is 

low, which mainly caused by the subunit composition of these two reactions is compli-

cated and the protein molecular weight is very large. After calibration using C13 data 

(changed 2 reactions, Table S2), the growth rate increased to 0.6802 h-1, and the consistency 

with the pathway obtained by C13 data reached 92.1% (Figure S2). Different from other 

methods for constructing enzyme-constrained models, our method considers the compo-

sition of protein subunits and realizes enzyme constraint by simply adding the total en-

zyme amount equation (Table 1). Therefore, the enzyme-constrained model we con-

structed does not change the stoichiometric matrix format (because the isoenzyme reac-

tion and reversible reaction were split, the number of reactions increased), and the solu-

tion and subsequent operations of the entire model are consistent with the classical con-

straint-based model. We used AutoPACMEN to build the GECKO and sMOMENT model 

of iML1515, and compared them with ECMpy. We found that when considering the sub-

unit composition of protein, the growth rate predicted by GECKO and sMOMENT model 

is lower, and the flux distribution of the pathway is obviously abnormal from the C13 data, 

especially the TCA pathway (Figure 2). 

 

Table 1. Comparison of the construction methods of enzyme-constrained model 

 MOMENT GECKO AutoPACMEN ECMpy 

Subunit number × √ × (provide inter-

face) 

√ 

Proteomics × √ √ √ 

Saturation 1 0.46 1 1 

Initial model iAF1260 Yeast7 iJO1366 iML1515 

Mass fraction of 

enzymes 

0.56 0.448 0.095 0.227 

Total enzyme con-

straint method 

add enzyme con-

centrations for 

each reaction and 

add the enzymes 

solvent capacity 

constraint 

change stoichio-

metric matrix, and 

introduce a large 

number of 

pseudo-reaction 

and pseudo-me-

tabolite 

change stoichio-

metric matrix, and 

introduce one 

pseudo-reaction 

and pseudo-me-

tabolite 

only add a total 

enzyme constraint  

Reaction reversi-

bility 

not split split part split split 

Isozyme a reaction can be 

catalyzed by mul-

tiple enzymes 

a reaction can be 

catalyzed by mul-

tiple enzymes 

always assumes 

that the enzyme 

with the minimal 

cost is used 

a reaction can be 

catalyzed by mul-

tiple enzymes 

If Missing kcat median turnover 

number across all 

reactions 

match the kcat 

value to other sub-

strates, organisms, 

or even introduc-

ing wild cards in 

the EC number. 

similar to GECKO enzyme cost=0 

Model calibration × √ √ √ 

Model type Not given XML XML Json 
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Figure 2. Flux comparison of iML1515, ECMpy, GECKO and sMOMENT. From left 

to right: C13 experimental data, prediction results of iML1515 model, prediction results of 

eciML1515 constructed by ECMpy, prediction results of eciML1515 constructed by 

GECKO, and prediction results of eciML1515 constructed by sMOMENT. 

3.2. Overflow metabolism of E. coli 

Overflow metabolism describes a phenomenon in which cells produce fermentation 

products even in the presence of oxygen that led to waste of carbon sources [9]. Enzyme-

constrained metabolic models have been used to simulate the overflow metabolism in S. 

cerevisiae [15, 34]. To test our model, we applied it to simulate the overflow metabolism 

reported by literature [35], in which E. coli secreted acetate at high growth rates (above 0.5 

h-1). As shown in Figure 3a and b, eciML1515 model (the kinetic parameters for each reac-

tion see Table S3) could precisely simulate the switch point where acetate production 

started. The simulation results indicated that at high growth rates, the acetate producing 

fermentation pathway was activated due to its low enzyme cost in comparison with the 

energetically-efficient oxidative respiratory pathway (0.62 g vs 2.38 g enzyme for 1 mol 

ATP /h, Table S4).  

The model also predicted a notable difference in the overflow metabolism between 

E. coli and S. cerevisiae (Figure 3c). In S. cerevisiae, the oxygen-consuming high-yield res-

piratory pathway was decreased to a very low value [36], whereas in E. coli the respiratory 

pathway was maintained at a high level (Figure 3a) even though the acetate production 

pathway was activated. A logical explanation for this is that the fermentation products of 

these two organisms are different. In S. cerevisiae ethanol was produced and NADH was 

balanced in the fermentation pathway. In E. coli, however, acetate was produced and the 

excess NADH produced in the fermentation pathway needs to be balanced through the 

oxidative respiratory pathway (Figure 3d). This result was in agreement with the finding 

of a previous study [37]. 
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Figure 3. Comparison of simulation results of the enzyme-constrained model ec-

iML1515 and the stoichiometric model iML1515. Simulation of overflow metabolism at 

different growth rates using eciML1515 (a) and iML1515 (b). c. Simulated different over-

flow metabolism of E. coli and S. cerevisiae. d. The different overflow metabolic pathways 

of E. coli and S. cerevisiae. 

3.3. Maximum growth rate of E. coli on different carbon sources 

We simulated the maximum growth rates of E. coli on 24 different carbon sources, 

and observed that certain other fermentation byproducts (e.g., pyruvate and fumarate) in 

addition to acetate could also be produced at the maximal growth rates. The predicted 

results were in good agreement with previously reported experimental results [14] as 

shown in Figure 4a (the normalized flux error is 0.062) and Table S5. On the other hand, 

the calculated growth rates using iML1515 (the substrate uptake rates were set as same 

with those for eciML1515) were significantly higher than the measured values (the stand-

ard flux error is 0.205, Figure 4b). The prediction results for most of substrates (e.g., N-

Acetyl-D-glucosamine and glucose) from eciML1515 were closer to (estimation error is 

0.01 and 0.03) experimental values than those from iML1515 model. In stoichiometric 

model like iML1515, the substrate uptake rate needs to be preset to calculate the growth 

rate and there is a linear relationship between the growth rate and substrate consumption 

rate. Whereas in the enzyme-constrained model, the maximal growth rate is limited by 

enzyme resources and thus there is no need to preset a substrate consumption rate. This 

means that at the maximal growth rate, a considerable quantity of substrates was actually 

utilized through the fermentation pathways with the secretion of fermentation products. 

Therefore, the predicted growth rates from the enzyme-constrained model were signifi-

cantly lower than those from iML1515 but much closer to the experimental findings. One 

exception for acetate as the carbon source is that the predicted results were same for both 

models as no acetate producing fermentation pathway was activated in this case. From 

the results shown in Figure 4a, we can also see that for most carbon sources the predicted 

growth rates were still higher than the experimentally measured rates. This may imply 

that there are other constraints along with enzyme constraints limiting cellular growth, 

such as the regulatory or thermodynamic constraints. New models integrating these new 

constraints in proper formula can further improve the prediction accuracy [38]. For xylose 
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and glycerol, the predicted rates were smaller than the experimental values, implying that 

the kcat values of enzymes in the uptake pathways of these two substrates may be under-

estimated. Besides, we found that ECMpy is better than GECKO and sMOMENT for the 

simulation of growth rate on 24 different carbon sources (all consider protein subunits, 

but ECMpy corrected for enzyme kinetic parameters), and the simulation results of all 

enzyme-constrained models are also better than non-enzyme-constrained models (Figure 

4a-d). This may also mean more precise measurement of the enzyme kinetic parameters 

could improve model prediction. 

 

 
Figure 4. Predicted E. coli growth rates on different carbon sources using ECMpy (a), 

iML1515 (b), GECKO and sMOMENT (c). d. Estimation fluxes error of different model 

(GECKO and sMOMENT consider protein subunits). 

3.4. Simulation of trade-off between enzyme usage efficiency and biomass yield 

In addition to the maximal growth rates under different carbon sources, we also ex-

plored the metabolic behaviors of E. coli at different substrate (glucose as an example) 

uptake rates. As shown in Figure 5a and b, the metabolism processes can be divided into 

three stages: substrate-limited stage, overflow switching phase and overflow stage. At the 

first stage, the glucose uptake rate is low and has a linear relationship with growth rates. 

The biomass yield is almost constant (not exactly the same as a small number of substrates 

are used for non-growth-related maintenance). At the second stage, the cell redistributes 

the intracellular fluxes toward pathways with high enzyme usage efficiency but low bio-

mass yield, and acetate gradually becomes a byproduct of the newly activated pathways. 

In contrast, at the overflow stage, the organism has to activate the less energy efficient but 

higher enzyme usage efficiency fermentation pathway to produce energy required for 

growth, leading to a sharp drop of biomass yield due to a big fraction of substrates used 

in the fermentation pathway. There was a clear trade-off between yield and enzyme usage 

efficiency (Figure 5b). These predicted metabolic behaviors were consistent with long-

standing empirical models of microbial growth [39]. This trade-off phenomenon was also 

predicted by the E. coli ME-model [40], indicating that the enzyme-constrained model 
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could accurately predict the same phenomenon as ME-model but without introducing 

thousands of new reactions involved in transcription and translation process in the model. 

 

 
Figure 5. (a) Simulated growth rates at different glucose uptake rates. (b) The trade-off 

between biomass yield and enzyme efficiency. 

4. Discussion 

We constructed a genome scale enzyme-constrained model eciML1515 for E. coli us-

ing the simplified Python-based ECMpy workflow. The new model was validated with 

various experimental data from literature including metabolic overflow data and the 

growth rates under different carbon sources. The prediction results were better than 

GECKO and sMOMENT, and those enzyme-constrained models also better than original 

iML1515, indicating in these conditions enzyme availability rather than network stoichi-

ometry is the key constraints. The enzyme-constrained model also showed a clear trade-

off between biomass yield and enzyme usage efficiency. Switching from a high yield path-

way to a high-rate pathway could be a general principal in metabolic regulation. This pro-

vides new insight in engineering organisms for production of valuable biochemicals. In 

organism using a high yield and high enzyme cost biosynthesis pathway, improving en-

zyme specific activity could be more effective than enzyme overexpression. 

Different from GECKO and sMOMENT, our method for enzyme constrained model 

construction just adding a constraint on the total amount of enzyme does not need to 

modify the reaction equations (e.g., introduce enzyme as reactants) and introduce over a 

thousand new enzyme exchange reactions (like GECKO). This greatly reduces the com-

plexity in model construction and the model can be solved using COBRApy or other freely 

available python packages for constrained optimization. The whole model construction 

and simulation processes were written in Jupyter Notebook files available from internet. 

This enables people from anywhere to reproduce the work and construct their own en-

zyme constrained models for other organisms. 

As we have shown that the quality of enzyme constrained model depended largely 

on the quantity and accuracy of enzyme parameters. Even for E. coli, the enzyme kinetic 

data coverage is low in databases such as BRENDA and kinetic parameters from different 

researches are often inconsistent. In this study, we make use of the predicted data from 

machine learning [22] to improve the data coverage. Besides, enzyme-constrained models 

need model validation to adjust the original kcat values to some extent to improve the 

agreement of model predictions with experimental data [16]. A system kinetic parameter 

correction method has been presented in the sMOMENT workflow [16], which is helpful 

in identifying such unreliable parameters and improving model predication accuracy. 

However, this calibration workflow is time consuming, going through protein pool cali-

bration, manual kcat adjustment and automated kcat calibration, and there are some unrea-

sonable places, such as the manual correction is simply expanded by 10 times or reduced 

by 10 times. In recently, GECKO 2.0 provided an automatic procedure, in which the top 

enzymatic limitation on growth rate is identified and its correspondent kcat is then itera-

tively replaced by the highest one available in BRENDA for the given enzyme class until 

the growth rate fit is normal [41]. Currently, we propose a simpler calibration process that 
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requires only two steps (enzyme usage and C13 flux consistency, see method) to update 

the kcat for a small number of reactions to achieve a better growth rate fit. This new cali-

bration process will facilitate the construction of high-quality enzyme constraint models. 

5. Conclusions 

We presented ECMpy, a simple open-source Python-based workflow, for construct-

ing enzyme-constrained models based on enzyme kinetic parameters and proteomics 

data. Using this method, we constructed an enzyme constrained model eciML1515 for E. 

coli. By introducing the enzyme constraints, the model can predict the overflow metabo-

lism and growth under different carbon sources more precisely than the stoichiometric 

model iML1515. The construction method can be applied to construct enzyme constrained 

models for other organisms and optimization framework can be extended to integrate 

other constraints such as thermodynamic feasibility to further reduce the solution space 

and subsequently improve model prediction accuracy. 
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