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Abstract:

In recent years, hetero atom incorporated specially structured metal-free carbon nanomaterials
have drawn huge attention among researchers. In comparison to the un-doped carbon
nanomaterials, hetero atoms like nitrogen, sulphur, boron, phosphorous etc. incorporated
nanomaterials become well-accepted as potential electrocatalysts in water splitting,
supercapacitors and dye-sensitized solar cells. This review emphasizes on the mostly popular
synthetic strategies utilized in last two decades and their excellent performance in

electrocatalytic studies.
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1. Introduction:

Energy manipulation cerates the most challenging and critical situation to the mankind in the
last few decades. Energy demand and energy production are continuously establishing a
disproportional relation to each other, which leads into a crucial environmental crisis globally.
The over consumption of fossil fuels and excessive CO, emission results into global warming
and consequently the scientific community is being faced most challenged situation in
mitigating this brutal environmental crisis. The development of potential, cost-effective
technologies with no detrimental effect on environments in the purpose of green and renewable
energy conversion and storage become the most serious requirement in the current scenario [1
— 3]. Moving towards this aim, fuel cells, metal-air batteries, water electrolyzer, rechargeable
batteries, electrochemical capacitors constitute various technologies in respect to energy
production/storage [4]. In recent years, these applications are mainly covered with various
research works on oxygen reduction reaction (ORR), oxygen evolution reaction (OER),
hydrogen evolution reaction (HER) and electro-reduction reaction of carbon dioxide (CO2RR)
[5 — 8]. However, these electrochemical processes are largely restricted to apply due to their
high activation energy barriers, specially in oxygen reduction reaction (ORR) kinetics
performed at the cathode [9, 10]. The much slower cathodic ORR limits the overall output
performance of these useful technologies [11]. Usually, electrocatalysts play a pivotal role in
reducing the activation energy barriers of ORR process. In last two decades, platinum (Pt)
based materials are continuously considered as the most potential electrocatalysts in this regard,
leading to relatively higher current density and lower overpotential value [12 — 15]. Although,
large scale application of these materials is restricted due to their cost ineffectiveness, easy
dissolution of Pt, instability due to CO deactivation and fuel crossover effect. For these reasons,
now-a-days, researchers are more inclined to develop electrocatalysts with following things:

minimization of the Pt metal loading; alloying of Pt with other transition metals to improve

do0i:10.20944/preprints202112.0029.v1


https://doi.org/10.20944/preprints202112.0029.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 December 2021

catalytic performance (Pt-Co, Pt-Ni, Pt-Fe, Pt-Ru, Pt-Pd, Pt-Rh, Pt-TiO, and Pt-Sn
catalysts) [16 — 18]; advanced non-precious metals and metal-oxides [19 — 23]; metal-
incorporated carbon materials [24 — 27]; and even metal-free catalysts [28 — 30] with
remarkable electrocatalytic performance, enhanced durability, greater electrochemical stability
with satisfying cost-effectiveness factor. The non-precious metal-based catalysts always show
lower catalytic activity in comparison to Pt/C and it also shows poor durability due to metal
leaching during application. On the other hand, the metal-free carbon-based materials perform
excellent catalytic activity during ORR. Moreover, their extraordinary chemical stability, cost-
effectiveness, and environmental friendliness [31 — 35]. These remarkable properties make
various carbon nanostructures, viz. graphene, carbon nanotubes (CNTSs) and carbon nanohorns
(CNHSs) huge popular in many potential application fields. The family of carbon allotropes
mainly constituted by huge sp? lattice, which is an extended n conjugation system, results into
greater thermal and electrical conductivity. Moreover, these specially structured materials act
as substrate in various covalent and noncovalent modifications on their lattice structure, which
results into the improvement of their inherent characteristics, and adopts the new ones [36 —

39].

The carbon nanomaterials can be functionalized with the alteration of surface, interfacial
structure and their electronic properties and their applicability reached higher level. One of the
most cutting-edge functionalization technologies is chemical doping, when carbon lattice
enriched with hetero atoms and their incorporation can be in the adsorptive form (in case of
metal atoms), and it leaves the sp? lattice intact. However, heteroatoms of similar radius to C,
e.g. N, O, P, S, B etc are used to bind in different configurations, where substantial effect can
be seen through sp® defects. Incorporation of heteroatoms, which is more electronegative than
C, can polarize sp? network accordingly, therefore resulting into novel electrochemical

properties. In last decade, introduction of heteroatoms into the graphitic framework structures
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got huge attention of researchers. Boron, nitrogen, phosphorus, sulphur, fluorine, chlorine,
bromine, iodine, selenium, antimony and tellurium have widely been used as hetero atoms [40
— 49]. Several reviews have been published in last few years on hetero-atom doped nano-
materials applied suitably in ORR, however very few scientists have covered their overall
applicability in other electrochemical reactions also. This review will cover hetero atoms
doping on metal-free carbon nanomaterials as potential electrocatalysts with discussing the
future challenges and perspectives in this rapidly evolving field. In this work, special attention
has also been paid on their synthetic strategies and how their structural orientation could effect

in their applications as electrocatalyst.
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Figure 1: Developments of Hetero-atoms incorporated metal-free carbon nanomaterials

in last decade
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Table 1: Hetero-atom incorporated metal-free carbon nanomaterials, synthesis and

application in last decade

Materials

Synthesis Method

Application

2009
2010

2011

2012

2013

2014

2015

2016

2017

N-doped carbon
nanotubes
N-doped
graphene
N-doped carbon

nanotubes

(i) N-doped
graphene foam
(i) N-doped
graphene
quantum dots
N-doped carbon
nanomaterials
C3sNs@NG

(i) Nitrogen-
doped
graphene/CNT
composite

(i1) N,P-doped
carbon foam
(iii) Carbon
nanocages

N,P-Codoped
Carbon Networks
Carbon-Based
Metal-Free Nano-
materials

Chemical vapor deposition
method

Chemical vapor deposition
method

Chemical vapor deposition
method [52],

Amine Flames [53],
Chemical vapor deposition
method [54]

(i) Post-synthesis annealing
in ammonia

(ii) Solution Chemistry
Solvothermal process
Chemical vapor deposition
method

(i) Modified Hummers’
method for the GO
fabrication [73]

(ii) Pyrolysis of a
polyaniline aerogel

(iii) Hard templating
method

Soft template and Pyrolysis

Solvo thermal process

ORR in fuel cell application [50]

ORR in fuel cell application [51]

ORR in microbial fuel cells [52]

Supercapacitors [53]

(i) Dye sensitized solar cells [55], (ii)
ORR [56]

Water oxidation [57]

HER electrocatalysts [58]

(i) ORR in acidic fuel cell [59]
(if) ORR and OER [60]

(iiii) ORR [61]

ORR and HER [62]

PER, ORR and HER [63]
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(i) N-doped
hierarchical
porous carbon
nanosheets

(ii) N-Doped
Porous Carbon
(iii) MOF-derived
nitrogen-doped
highly disordered
carbon

Nitrogen doped
carbon-based
catalysts

(1) Tellurium- (1)Pyrolysis (ii) Solvo-
Doped, thermal (iii) Solvo-thermal

(i) Template free method, (i) ORR [64], (ii) Electrocatalytic N2

(ii) Pyrolysis Reduction [65], (iii) electrochemical
(iii) Solvo-thermal method  synthesis of ammonia (ESA) through
the nitrogen reduction reaction
(NRR) [66]

Solvo-thermal method Acidic oxygen reduction [67]

(i) Bifacial Dye-Sensitized Solar
Cells [68] (ii) bifunctional oxygen

Mesoporous
Carbon
Nanomaterials (ii)

electrocatalyst for ultrastable zinc-air
batteries [69] (iii) selective catalytic
oxidation of hydrogen sulfide [70]

Nitrogen doped
metal-free nano-
materials (iii)
nitrogen-doped
metal-free nano-
materials

(i) Oxygen and
nitrogen-doped
metal-free
microalgae
carbon
nanoparticles (ii)
nitrogen-doped
graphene/CNT
composite

(i) Potassium hydroxide
(KOH) activation of
Spirulina Platensis
microalgae (ii) Pyrolysis

(i) hydrogen production from sodium
borohydride in methanol [71] (ii)
ORR in acidic fuel cell [72]

2. Nitrogen Doped Metal-Free Carbon Nano-structured

Electrocatalysts:

2.1.Nitrogen-doped carbon nanotube electrocatalysts:

The functionalized nano-tubes grab huge attention in the field of the reinforced and conductive
plastics, sensing materials and photovoltaic materials, as scanning probe microscopy tips and
many more applications. There are two broad ways to synthesize substituted N-doped CNTs:

(@) in-situ process for insertion of nitrogen atom into the CNTs during the reaction only [74 —
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78]; (b) post-functionalization of CNTs with nitrogen by using various precursors and
compounds like organic moieties. However, the post-functionalization method is not well
investigated till now [79 — 81]. Arc discharge, laser ablation and plasma etching are the other
synthetic strategies to develop these nano-materials [82 — 87]. Although, these methodologies
require higher temperature conditions, limited type of nitrogen or carbon precursors. Moreover,
rapid evaporation of precursors and application of nitrogen or ammonia atmosphere is required.
In chemical vapor deposition (CVD) method, the process can be functioned at lower
temperature range with and without presence of organometallic catalyst and by using wide
range of carbon or nitrogen precursors. This method can produce 20-25 g of N-carbon
nanotubes with application of per gram of catalyst and nitrogen atoms are embedded into the
hexagonal carbon network at various ratios with 10 atoms [81]. In the literature, nitrogen
incorporation has been reported with nitrogen contents of <1 atom% to 20 atom% [75, 88].
Highly oriented nanotubes with regular diameter and bond-length are termed in literature as
“carpet-like” structures [90]. In this work, nitrogen is incorporated into the already synthesized
CNT structure, however, this synthesis method is depicted as highly complex and tedious with
multi-step techniques. The first step initiated with chemical oxidation process of tips or
structural defects of CNTs, followed by coupling with other molecules, through carboxylic,
carbonyl, and/or hydroxyl groups. The covalent functionalization via bond formation to the m-
conjugated structure of CNT, leads to the rehybridization of sp? bond. In this type of structure,
nitrogen is attached to carbon following two different manners: (a) pyridine-type nitrogen, in
which each nitrogen atom is bonded to two different carbon atoms, leading to the formation of
cavities within the side-wall of the tube and (b) substitution N, in which nitrogen atom makes
bond with three C atoms, as presented in Figure 2. Nitrogen is containing an additional electron
in its structure, in comparison to the carbon network, therefore nitrogen incorporated CNT

structure usually exhibits metallic properties [90 — 92]. Nitrogen group can also enhance the

do0i:10.20944/preprints202112.0029.v1


https://doi.org/10.20944/preprints202112.0029.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 December 2021

reactivity on the graphene in comparison to the pure CNT structures, which results into the
potential applications of these materials in fast responsive sensing technology, as effective
field-emissions sources, and as polystyrene, epoxy composites, protein and nanoparticle
immobilizers [78, 93 — 96]. The most popular covalent functionalities with application of

plasma etching or by HNO3/H2SO4 treatment, to include carbonyl or carboxyl groups [97].
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Figure 2: Nitrogen doping in the carbon nanomaterial structures [Reproduced with

permission from S. Majeed et al. [89]]

The plasma etching technique is basically applicable when functionalization processes in a
nitrogen atmosphere. In the next step, carboxyl groups get acylated with thionyl chloride to
establish a basis for different amine compounds [98] or to combine with DNA and proteins
[99, 100]. The non-covalent functionalization is mostly conducted by the adsorption or through
the wrapping the CNTs in polymer polynuclear aromatic compounds, surfactants or
biomolecules by Vander Waals forces and © — 7 interactive forces. Other synthetic approaches
of CNTs include arc evaporation method of graphite [82, 101]. The non-covalent methods are
more favourable over covalent, as the chemical functionalization can be performed to the CNTs

without affecting on their structures and electronic networks on the nano-tubular structures.
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2.1.1. Chemical vapour deposition (CVD) method

Chemical vapour deposition (CVD) is a technique to synthesize carbon nano-tubes in bulk
amounts, which involve the pyrolysis of different organic molecules, viz. CHs, CeéHs, CoH> etc.
in inert atmosphere over Ni, Co, Fe etc. catalysts [102, 103]. Due to the simplicity and cost-
effectiveness of CVD, researchers prefer to follow this methodology during the

functionalization process.

Water 0, 2H,0
. s * 4e+4H7
Plasma Metal-Free Catalysts NCNTs Same
CcvD Transfer
I — |— | —
Si10,/Si Glassy Carbon

Figure 3: N-doped metal-free CNTs as ORR electrocatalysts [Reproduced with

permission from Chen et al. [86]]

In 1997, Dai et al. introduced H>O plasma etching technology to generate surface patterns of
polar groups with oxygen [104]. This methodology was further followed by Yu et al. [86] to
develop SiO; nanoparticles as the metal-free catalysts, in which a SiO2/Si wafer with a 30-nm-
thick SiO2 coating was employed with H>O plasma etching at 30 W, 250 kHz, and 0.62 Torr
for 20 mins. This plasma etched substrate further placed into a tube furnace for the synthesis
of CNTs by using CVD method. Figure 3 represents the schematic diagram to represent the
growth of CNTs. These materials acted as potential electrocatalysts in oxygen reduction
reaction analysed in 0.5 M H.SO4 solution saturated with N2 or O2. Figure 4 shows the various
electrochemical studies conducted in this work. All the electrocatalytic studies shown excellent
results and long-term stability in acidic medium in comparison to undoped CNTs. The authors

also claimed that, highly generic nature of the plasma etching technique, this synthetic strategy
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can be well accepted in various field, from energy applications to electronic and biomedical

systems [86]. Kim et al. mentioned a similar synthesis process in Ar atmosphere at 800°C for

1 h duration, in which ferrocene, pyridine or ethylenediamine used as catalyst, carbon and

nitrogen precursor, respectively [50]. TEM images of bamboo structured NCNTSs are presented

in Figure 5. These products are used as excellent electrocatalysts in ORR of fuel cell

applications. The same research group reported synthesis of nitrogen doped CNTs by following

a single step CVD method in which either ferrocene or iron (I1) phthalocyanine as catalyst and

pyridine as the carbon and nitrogen precursor, respectively. These materials have also used

successfully as ORR electrocatalysts [105].
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Figure 4: Electrochemical studies in ORR under acidic medium with N-doped metal-

free CNTs [Reproduced with permission from Yu et al. [86]]

In 2011, Feng et al. [52] reported N-doped CNTSs as effective electrocatalysts in microbial fuel

cells (MFCs) with cost-effectiveness and long durability. Moreover, these materials were

depicted as more effective cathodic catalysts than the commonly used platinum catalyst with
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maximum power density value of 1600 + 50 mW.m2. These N-doped CNTs shown lower drop
percentage of power densities than that with Pt/C over 25 cycles. Another research group
reported the CVD synthesis floating catalyst method of nitrogen doped carbon nanotubes using
ferrocene/aniline together with toluene as added carbon source [106]. Yang et al. synthesized
aligned nitrogen doped CNT bundles over 700-800°C by taking ammonium-exchanged zeolite-
B as substrate material, ferric nitrate as catalyst and acetonitrile as carbon precursor [107]. In
the same year, He et al. reported controllable synthesis of aligned CNx with large surface area
by pyrolyzing CH3CN/Fe(CsHs)2 on SiO2 and Si substrates over the temperature range of 750
—900°C. The specific diameters of CNTs diminished on Si substrates in comparison to a well-
documented rise with temperature on silica, as the growth process followed different
mechanisms of formation of catalyst particles [108]. Kim et al. developed N-doped double
walled CNTs using chemical vapor deposition in which CH4/NHs/Ar mixture was flowed with
the rate of 50/10/500 sccm, on MgO-supported catalyst powders at temperature of 850° C for

10-30 min. of duration [109], the synthesized CNTs are formed with diameter of 10 — 20 nm.

Figure 5: TEM images of Bamboo structured NCNTs [Reproduced with permission

from Chen et al. [50]]
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Figure 6: SEM and HRTEM images of N-doped double-walled CNTs by CVD method

[Reproduced with permission from Kim et al. [109]]

In recent years, Li et al. reported a one-step CVD method to synthesize 3-dimension nitrogen
doped CNT/graphene hybrid material on nickel foam [110]. In this study, nickel foam and
melamine was mixed with the mass ratio of 1:5 kept in horizontal quartz tube reactor and heated
in the temperature range of 600 — 800°C in hydrogen atmosphere for around 20 min at a flow
rate of 70 sccm. In 2020, another research group mentioned a two-step synthetic strategy to
develop Nitrogen-doped Carbon Nanotubes Derived from g-C3Na4 [111]. In this case, exfoliated
graphitic carbon nitride functionalized with nickel oxides and placed in the ceramic boat to
keep in the tubular furnace at temperature range of 900°C in nitrogen atmosphere. Hydrogen
was introduced further for 3 h in the first step, and ethylene for 10 min for reduction process.
The synthesis of N-doped MWCNTSs with straight structure was reported by Xu et al by using
phthalocyanine derivatives [112] and the mixture of ethylene/hydrogen and ammonia at around
680°C in presence of alumina supported iron catalysts in CVD furnace [113]. The amount of
nitrogen incorporated into CNT can be controlled by using different amount of nitrogen
precursors [80, 114]. The rate in which nanotubes grow during synthesis, can be enhanced with
increase in its precursor significantly, resulting into the increase in intensity ratio of the D to G
bands in Raman spectra. The inner structure of N-doped CNTs constitute regular

morphological transformation from the straight and smoother walls (0 atom% N) to 1.5 atom%
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N containing bamboo structured CNTs, further it changes to corrugated structures with 3.1
atom% and above nitrogen [115]. It has been analysed by Wang et al that, during the synthesis
of N-doped CNTSs, when melamine uses as C/N initiator can incorporate 20 atom% nitrogen.
In this type of synthesis method, N atom present in reaction medium self-assemble with
gaseous carbon without taking any assistance from metal [116]. This N-doped CNTs were

utilized successfully as ORR electrocatalysts in methanol fuel cells measured in alkaline

media.
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Figure 7: (a) i-t chronoamperometric studies with NCNT/GC and Pt-C/GC electrodes in
oxygen saturated 0.1M KOH (b) i-t responses after the introduction of 10% CO. (c) Cyclic
voltammograms of Pt/GC and (d) Cyclic voltammograms of NCNT/GC electrodes oxygen
saturated 0.1 M KOH, with and without 3 M methanol solution [Reproduced with
permission from Wang et al. [116]]

The incorporation of nitrogen atoms usually shows very strong ability to promote the self-
assembled CNTSs. Nitrogen can create highly active sites in carbon networks, which results into

remarkable result in electrocatalytic performance comparable to traditional Pt-based materials
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as electrocatalysts. Their high activity with excellent stability and selectivity always make N-
doped CNTs better electrocatalysts in this purpose. These materials are also strong resistant to
CO poisoning with robust structure and economically favourable. Due to doping on CNT
structures, basic shape can be transformed from hollow cylinders to bamboo-shaped structure.
The resultant doped materials contain plenty number of compartments whose lengths gradually

decreases with variation in N concentration [117].

2.1.2. Chemical and Electrochemical modification method:

The chemical modification methods to synthesize nitrogen doped CNTSs include two different
approaches, viz. covalent and non-covalent. During the covalent modification, oxygen
containing functional groups, viz. carboxyl and hydroxyl are formed and generated on the
surface. Among the functional groups, carboxylic acid groups are chosen best options, as they
can easily proceed a variety of reactions in modification process and easily can be developed
using different oxidizing treatments, e.g., ozonolysis, sonication in nitric and sulfuric acid,
refluxing in nitric acid etc. In the next step, carboxyl functionalized CNTSs are grafted with the
functional moieties by using terminal oxidation process following various mechanisms from
the defect site chemistry oxidation reactions and esterification/amidation processes to the
already oxidized CNTs [118, 119], mechano-chemical modification [120, 121], ionic liquids,
cycloaddition reactions [122, 123], electrochemical modification reactions, diazotization [124]

and radical additions [125].

The efficient and successful doping and tailoring technologies in CNTs involves the controlling
of redox properties of the dopant. Nitrogen-doped CNTs excellent electrocatalytic activity
comparable to Pt electrodes, can be acclaimed by the formation of additional active sites on the
surface of the materials, leads to the better dispersion of the Pt particles over the N-CNT and

performs better in methanol oxidation [126]. From the results, it is analysed that, doped CNTs
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as electrode materials always enhances the output power of the thermo-electrochemical cells.
Doping enhances the electrochemical active surface area (ESCA) values in the CNT electrodes
in proportional way. Wei et al. reported doped CNTs mixed with glutaraldehyde functionalized
chitosan (GCS), which depicted an improved bio-compatibility and higher conductivity in
enzyme immobilization process, due to the enhanced kinetics from the N-CNTs [127]. The
electrochemical modification process was carried out through two types of coupling reactions,
working under oxidative or reductive conditions. In 2002, Kooi et al. worked on anodic
coupling reaction to the SWCNTs by using two different aromatic amines, viz. 4-
aminobenzylamine and 4-aminobenzoic acid [128]. The non-covalent functionalization
process can be carried out through the porphyrin assembled on the N-doped MWCNTS, via the
Fe-N coordination. Tu et al. reported this non-covalent modification by porphyrin, which led

the MWNTSs insoluble in water, however, performed well as catalysts and biosensors [129].

2.2. Nitrogen-doped carbon hollow spheres:

The carbon spheres usually refer to the spherical shaped carbon in semi-crystalline or
crystalline form, constituted in solid, hollow or core-shell morphological structures.
Researchers are paying huge attention on nitrogen-doped hollow spherical structures in recent
years, due to their lower density, greater surface area values, better electrical conductivity with
excellent structural stability. In 2012, Zhu et al. developed a hierarchical porous hollow carbon
nanospheres as an oxygen reduction electrocatalyst for zinc—air batteries, which was containing
active pyridinic-N and graphitic-N by using polystyrene spheres and aniline as the
corresponding template and precursor [130]. Gu et al. reported N-doped porous carbon spheres
with excellent porosity characteristics, which was used as potential electrocatalyst in ORR. The
unique spherical structures with remarkable stability and recyclability makes these materials
most promising ORR electrocatalysts [131]. Hydrothermal carbonization method was adopted

to make these materials by using biomass glucose, followed by the treatment in ammonia and
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by subsequent activation treatment. Another research group reported the development of N-
doped carbon nanodots @ nanospheres, which were applied as efficient electrocatalyst in ORR,
in which high electrocatalytic activity was shown with an onset potential of —0.08 V, greater
durability and greater resistance to methanol cross-over effect; these results were comparable
to commercially available Pt/C electrocatalyst. These N-doped carbon nanodots with sizes of
2-6 nm were successfully formed by using hydrothermal method from natural biomass (e.g.,
fresh grass) at temperature of 180 °C for 10 h duration. Further these carbon nanodots were
subsequently immobilized onto functionalized microporous carbon nanospheres (MCNSS)
with an average diameter of ~100 nm and a surface area of 241 m? g! via a simple
hydrothermal process to self-assemble form a carbon-based nanocomposite (N-
CNDs@MCNSs) owing to the presence of oxygen (O)-containing surface functional groups
[132]. Now-a-days, maximum number of research works are carried out on nitrogen
encapsulation on metal/metal oxides/carbon nano-spheres materials potentially applied as
electrodes or electrocatalysts [133 — 140]. In the current review, those works are not considered,

as they are not metal-free nano-structured materials.
2.3. Nitrogen-doped Graphene Electrocatalysts:

Graphene is 2D structured with sp? hybridized carbon with interesting physical and chemical
characteristics. To achieve desired performance in electrochemical and biochemical
applications, nitrogen enriched graphene materials are synthesized using wide range of
methodologies [141 — 151]. In 2011, Zhang et al. developed N-doped graphene by thermal
annealing of graphene oxide in presence ammonia [152]. Another research group reported
facile and catalyst-free method to develop large-scale synthesis of nitrogen doped graphene
with 10.1 wt% nitrogen content by using economically favourable industrial material melamine
as nitrogen source [153]. Sheng et al. synthesized nitrogen-doped graphene using solvothermal

method with the reaction between tetrachloromethane with lithium nitride under mild condition
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[154]. Figure 8 and 9 are presenting the schematic diagram to synthesize these materials and
their potential electrocatalytic applications in ORR under alkaline media, respectively. Another
simple way to produce N-doped graphene nanosheets following solvothermal route by reaction
between graphene oxide and urea with nitrogen content of 10.13 atom% [155]. Temperature
plays a pivotal role in solvothermal process during the doping of nitrogen in the graphene
network [152, 153]. Another research group developed pyrrolic and pyridinic type nitrogen
incorporation in graphene structure at 300 and 500 °C, respectively with the annealing
treatment of graphene oxide in presence of glycine and AgNOs [156]. This particular
methodology produced N-doped graphene with 13.5 atom% of nitrogen into the materials.
CVD method had also been adopted by using methane and ammonia, in which these materials
were utilized as metal-free electrocatalysts in ORR applied in fuel cells [157]. Many research
groups had also applied arc discharge method in H. ad He atmosphere and under pyridine

vapour to produce nitrogen doped graphene structure [158, 159].

—-
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Figure 8: Schematic diagram of nitrogen doping method with melamine into GO layer

[Reproduced with permission from Sheng et al. [154]]
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Figure 9: Cyclic voltametric results with N-doped graphene in ORR under alkaline

media [Reproduced with permission from Sheng et al. [154]]

Yang et al. reported synthesis of N-doped graphene, which successfully demonstrated as
highly efficient metal-free bi-functional electrocatalysts in oxygen reduction and evolution
reaction [160]. In this report, e- donating quaternary nitrogen sites were responsible for ORR,
on the other hand, e- withdrawing pyridinic nitrogen acted as active sites in OER, resulting

into greater transports of electrons and electrolyte [160].
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Figure 10: Synthesis of SEM image of N-doped Graphene materials [Reproduced with

permission from Yang et al. [160]]

Liu et al. synthesized pyrrolic-nitrogen doped graphene which was successfully adapted as
carbon free electrocatalysts in electrocatalytic reduction of carbon dioxide to formic acid and
their comparative study with computational method [161]. Earlier, Ju et al. developed nitrogen-
doped graphene nanoplatelets as potential metal-free counter electrode materials used in
organic dye-sensitized solar cells [162]. Rahsepar et al. followed a hybrid hydrothermal-
microwave process to synthesize N-doped graphene, which exhibited remarkable

electrocatalytic activity in ORR [163]. The number of catalytic sites were enhanced due to the
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incorporation of N-atom into graphene. Maouche et al. developed nitrogen doped graphene
with porous structures, which was successfully employed as ORR electrocatalyst [164]. In this
work, a facile fabrication technology was carried out with graphitic carbon nitride (g-CaNa)
and graphene oxide (GO) as raw materials. Another research group utilized N-doped graphene
as electrocatalyst in ORR under alkaline medium and in anion exchange membrane fuel cells

[165].

3. Sulphur and Sulphur-Nitrogen Co-Doped Metal-Free Carbon Nano-materials as

Electrocatalysts:

Nitrogen doped carbon nano-materials are accepted as potential electrocatalysts in ORR by
researchers due to their charge transfer induced performance using N contained in graphitic
framework, which further induce oxygen adsorption and reduction process at comparatively
lower overpotential value, which has briefly explained in previous paragraph. In recent studies,
other hetero-atoms, viz. sulphur, phosphorus, boron and fluorine have also been studied to
incorporate in carbon materials to promote their electrocatalytic activity in ORR as metal-free
electrocatalysts in comparison to the undoped carbon nanomaterials [166 — 169]. Although,
dual doping of hetero atoms has been believed as more effective electrocatalysts due to the
synergistic effect between hetero atoms during ORR proceed in electrochemical performance
and also in theoretical calculations. Their excellent synergistic effects induced the formation
of higher numbers of catalytic sites with remarkable reactant transport effect due to their
hierarchical pore structures and greater electron transfer rate, which is generated by their three-
dimensional continuous networked structures [170]. Li et al. mentioned that optimal doping
level could be the pivotal factor to control doping density and maximum catalytic performance
in resultant materials [171]. In these types of nanomaterials, the total difference in
electronegativity (d) generated from nitrogen and sulphur in comparison to carbon might have

generated more robust contribution in generation of innovative non-electroneutral sites in

do0i:10.20944/preprints202112.0029.v1
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comparison to the mono hetero atom doped structure (dc = 2.55, dny = 3.04 and ds = 2.58).
These special types of materials were reported to be more favourable to positively charged sites
in oxygen surface adsorption process, resulting into better ORR activity [172]. However, the
reported works are mostly on doping of hetero atoms on CNTs and/or graphene, which can not

be that much effective for their high cost and complicated synthesis methodologies.

In 2012, Wohlgemuth et al. reported the one-pot hydrothermal synthesis of sulfur and nitrogen
doped carbon aerogels which were utilized as potential electrocatalysts ORR [173, 174]. In this
method, two co-monomers, viz. S-(2-thienyl)-L-cysteine (TC) and 2-thienyl carboxaldehyde
(TCA) were used in S incorporation using typical solvothermal method. Further, the samples
were placed inside furnace under N> atmosphere and flushed them for half an hour before
heting to 9000C at heating rate of 10 K min™. This secondary pyrolysis step was applied in
tuning carbon aerogel conductivity and heteroatom binding states. They had also conducted
comparative electrocatalytic studies of these materials with solely N-doped aerogels in ORR
both in acidic and alkaline medium. They found co-doped materials as more potential candidate
in electrocatalytic study, which might be affirmed due to synergistic effect between nitrogen

and sulphur [173].

Figure 11: Scanning Electron Microscope images of products after hydrothermal

carbonization method (a) pure glucose, (b) glucose with cysteine (Cys0.2) and (c) glucose
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with thienyl-cysteine (TCys0.2) [Reproduced with permission from Wohlgemuth et al.

[174]]

Initially in 2002, the incorporation of sulphur into electrocatalytic performance was introduced
by Wu et al. They had reported development of sulphur doped amorphous carbon as potential
cathode material by heat-treatment of a mixture of polyacrylonitrile (PAN) and sulfuric acid
[175]. Sulphur incorporation in the system enhanced the charge capacity value in close
correlation with increase in the size of graphite crystallites, inter-layer distance and number of
micro-pores. Choi et al. developed sulphur doped carbons by using pyrolysis method of bio-
derived amino acids, viz. alanine, cysteine, glycine, niacine and valine and utilized the
materials as ORR electrocatalysts successfully in fuel cell applications. They had also
synthesized nitrogen and sulphur co-doped catalyst by using cysteine, which performed best in
acidic media in comparison to the commercially available Pt/C catalysts [176]. Previously, in
2006, Inamdar et al. introduced a new flame technology to synthesize spherical iron oxide
nanoparticles by burning ferrocene solution using a spirit lamp [177]. The same research group
synthesized carbon soot with various configuration using flame pyrolysis method [178].
Thiophene was selected as sulphur precursor material and these nano-materials were utilized
as ORR electrocatalysts successfully. Park et al. reported high quality S-graphene by using
lower content of oxygen — containing sulphur groups, with fluorinated graphite intercalation
compounds (FGIC) derived graphene as the starting material. This synthesis process was
conducted at comparatively lower temperature of 850°C [179]. Zhang et al. developed
graphene doped N-S using cysteine as a nitrogen/sulphur source material, which were
potentially utilized in ORR with better performance than Pt/C. [180]. Similar work was
reported by Zhao et al. to synthesize N/S co-doped hollow carbon micro-spheres with great
electrocatalytic performance in alkaline media [181]. Wang et al. used residues from banana-

peel to develop porous carbons, which were co-doped with N/S [182]. These materials were
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used as ORR electrocatalysts tested in alkaline medium. As we know that, carbon can be
derived from various sources by following simple methods. Among which, Cassava (Manihot
esculenta) is a crop which can generate large amount of waste material as peel and pulp. It
almost contributes over 700 MT waste materials in the global upstream food waste [183].
Duran et al. used cassava residues in preparation of sulphur doped metal-free electrocatalysts
through a thermal functionalization with sulfuric acid which were used in ORR under alkaline

media [184].

4. Conclusions:

The hetero-atom doped nanomaterials have drawn huge attention recently in the field of
nanoscience and nanotechnology due to their synthetic methodologies, unique properties and
potential electrochemical performances. In comparison to the undoped carbon nanomaterials,
these specially disordered doped and co-doped materials perform remarkably well as
electrocatalysts due to their larger functional surface area value and greater ratio of surface
active groups to volume. These review article cover different synthetic methodologies of N, S
and N/S co-doped metal-free carbon nanomaterials and discusses about their electrocatalytic
activity in various electrochemical studies. The co-doping enhanced electrocatalytic activity
more due to synergistic effect between them. Despite of various challenges, these specially
structured nano-materials exist with many avenues and requires more progress in carbon-based

nanotechnology with applications in energy field.
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