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Multi-Model Medical Image Segmentation Using
Multi-Stage Generative Adversarial Network

Afifa Khaled, Jian-Jun Han

Abstract— Image segmentation is a new challenge prob-
lem in medical application. The use of medical imaging has
become an integral part of research, as it allows us to see
inside the human body without surgical intervention. Many
researcher have studied brain segmentation. One stage
method is used to segment the brain tissues.

In this paper, we proposed the multi-stage generative ad-
versarial network to solve the problem of information loss
in the one-stage. We utilize the coarse-to-fine to improve
brain segmentation using multi-stage generative adversar-
ial networks (GAN). In the first stage, our model generated
a coarse outline for (i) background and (ii) brain tissues.
Then, in the second stage, the model generated outline
for (i) white matter (WM), (ii) gray matter (GM) and (iii)
cerebrospinal fluid (CSF). A good result can be achieved by
fusing the coarse outline and refine outline.

We conclude that our model is more efficient and accu-
rate in practice for both infant and adult brain segmenta-
tion. Moreover, we observe that multi-stage model is faster
than prior models. To be more specific, the main goal of
multi-stage model is to see the performance of the model
in a few shot learning case where a few labeled data are
available. For medical image, this proposed model can
work in a wide range of image segmentation where the
convolution neural networks and one-stage methods have
failed.

Index Terms— Brain segmentation, Coarse-to-fine, Gen-
erative Adversarial Network, Semi-supervised learning,
Multi-stage method.

I. INTRODUCTION

Magnetic resonance imaging (MRI) uses magnetic field
to generate detailed images of tissues without using harmful
radiation [1] [2]. The process of manual segmentation in
clinical is time consuming and expensive [3].

Automated segmentation of infant and adult brain has
received a substantial research attention [4] [5]. Training deep
models need for large sets of labeled images [6]. Due to
the small data sets in the medical application [7] [8], semi
supervisor learning approaches solved this problem by using
unlabeled image [9] [10]. A good segmentation result can
be achieved by adopting unable images [11], or images with
weak annotation like image level tag [12]. In the object
detection, one-stage is used to predict the class probability and
the position information [13] [14]. To take advantage of the
recent success of two-stage method, many models proposed
for semantic segmentation. Xiaohao et al. proposed a two-
Stage image segmentation method using a convex variant of
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the Mumford–Shah model and thresholding. In the computer
vision tasks, two-stage method use to generate global infor-
mation in the first stage and local information in the second
stage [15] [16]. A good result can be achieved by fusing the
global information and local information [17] [18].

In this paper, we utilize the coarse-to-fine to improve
brain segmentation using multi-stage generative adversarial
networks. The main contributions of this paper as follows:

1- In the first stage, our model generated a coarse outline
for (i) background, (ii) brain tissues. The main role of the first
G is to generate coarse segmentation to be used as guidance
information for the third G.

2- In the second generator, the generator takes two input,
image x and random vector z. The main idea is to encourage
the generator to generate as many different values for each x
as there are values of z.

3- The third generator consists of the encoder and decoder.
In the encoder and decoder we also used the dense skip
connection to combine the features from different scales. The
third generator generated outline for (i) white matter (WM),
(ii) gray matter (GM) and (iii) cerebrospinal fluid (CSF ).
Similar with the process of human learning in clinical practice.
To be more specific, the main role of the third G is to generate
more detailed results by using the corase segmentation from
the first G.

We evaluate the proposed multi-stage generative adversarial
model on two datasets of brain tissues, including infant and
adult brain. Empirically, our model achieves a good result
compare with the state-of-the-art models.

The rest of this paper is organized as follows. Section 2
presents prior studies related to brain segmentation. Section
3 presents the methodologies used in our paper. Section 4
presents our experimental results. Section 5 discusses threats
to the validity of our results. Finally, Section 6 concludes the
conclusion and discusses directions for future work.

II. RELATED WORK
The following subsections present the prior studies and

technique related to brain segmentation. We start by giving a
more detailed description of semi supervised learning. In the
subsection B, we introduced generative adversarial network.
Then, we show how developed loss functions for GAN
improved the stability of training GAN model.

A. Semi-supervised learning
Training a deep model by using a small datasets cause

over fitting [11] [19]. Preventing Over-fitting can be achieved
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Fig. 1. The IIIustration of semantic labels

Fig. 2. The IIIustration of semantic classses

by exploiting a large amount of unlabeled data with a small
amount of labeled data [20] [21]. Training the model using
labeled and unlabeled data this encourages the network to have
a similar distribution [22] [23].

To be more specific, the idea in the semantic segmentation
is to take a image and output a segmentation map [16] [24].
Then creating the target by one-hot encoding the class [25].
Fig.1 and Fig.2 show the semantic segmentation labeles and
semantic segmentation classes respectively.

Up to date, many researchers applied Semantic segmenta-
tion for brain, and in particular segmentation of brain tissues.
[26] proposed ROAM, a random layer mix up, which allows
the network to be less confident for interpolated data points at
any selected space. [27] proposed two novel architecture for
brain tumor segmentation. Their results have been evaluated
using the pinnacle BraTS confront2017 datasets. Similar to the
above model, [28] proposed rethinking atrous convolution for
semantic image. Different from the above model, rethinking
atrous convolution model targets long range context. The
model does not requires convolution layers. Instead, it utilizes
s atrous convolution with upsampled filters to extract dense
feature maps. The model evaluate on the PASCAL VOC 2012
semantic image segmentation benchmark including the 3475
finely annotated images and the extra 20000 coarsely anno-
tated images. Their experimental results of the sentiment task
show that atrous convolution is necessary when building more
blocks cascadedly. The authors also show that the performance
improves as more blocks are added.

TABLE I. Some models of generative adversarial network
applied to medical applications

Publication Method
Han et al. [32] WGAN
Bowles et al. [33] PGGAN
Andrew et al. [34] LAPGAN
Mondal et al. [35] DCGAN
Kang et al. [36] CycleGAN
Chuquicusma et al. [37] DCGAN
Frid-Adar et al. [38] DCGAN/ACGAN

B. Generative Adversarial Network
Generative adversarial network has shown great promise for

medical image diagnostics [29]. To be more specific, in brain
segmentation [25] [21]. Fig.3 shows an overview of generative
adversarial networks.

Up to date, many researchers applied generative adversarial
network for brain segmentation. [30] proposed a 3D volume-
to-volume generative adversarial network (GAN) for segmen-
tation of brian tumors. Their model achieved a good result
when the generator loss is weighted 5 times higher than the
discriminator loss. The proposed model has been evaluated on
the BraTS 2018 datasets. Their models outperformed previous
models with an overall 0.66%. A Super resolution and segmen-
tation using generative adversarial networks is a framework
introduced by [31] to neonatal brain MRI . It consists training
a generating network that estimates for a given input image
to its corresponding HR, and a discriminator network D is
designed to distinguish real HR and segmentation images. In
Table I, we provide some models of generative adversarial
network applied to medical applications.

C. loss functions
To improve the stability of training GAN model, many

researchers have developed the loss function [39] [40]. Due
to the effectiveness of the loss function for a given model
implemention, in this section we summarize five loss functions
for GAN .

1) Minimax GAN loss:
The discriminator tries to maximize the loss functions and

the generator tries to minimize it.

Generator loss function:

lGAN
D = −Ez∼pd

[logD(x)]− Ex∼pg
[log(1− d(x))][41], (1)

Discriminator loss function:

lGAN
G = −Ez∼pg[log(1−D(X))][41], (2)

In this function:
D(x) denotes to the discriminator’s estimate of the probability
that real data x is real.
E(x) denotes to the expected value over all real data.
G(z) denotes to the generator’s output when given noise z.
D(G(z)) denotes to the discriminator’s estimate of the
probability that a fake data is real.
E(z) denotes to the expected value over all generated fake
data G(z).
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Fig. 3. The IIIustration of Generative Adversarial Networks(GAN )

2) Non-saturating loss (NSGAN):
Non-saturating loss is used to solve the saturation problem.

Generator loss function:

lNSGAN
D = −Ez∼pd

[logD(x)]− Ex∼pg [log(1−D(x))][45],
(3)

Discriminator loss function:

lNSGAN
G = −Ez∼pg

[logD(x)][45], (4)

3) Wassersstein loss (WGAN):
Generative adversarial networks (GANs) are useful in the

area of computer vision [41] [42], but the main problem is
suffering from training instability [28]. Many researchers
have developed loss functions toward stable training of GAN
[35]. Wassersstein (WGAN) achieves a good progress for
training stability of GAN , but still suffer from poor result.
Many researchers have argu that the problems of poor result
due to the use of weight clipping. Hence, [43] proposed a
way to clipping weights. This model is modification of the
standard GAN . The output of the discriminator is a number.
The discriminator training tries to make the output bigger for
real data than for fake data.

Discriminator Loss:

lWGAN
D = −Ez∼pd

[D(x)]− Ex∼pg
[D(x)][46], (5)

Generator Loss:

lNSGAN
G = −Ez∼pg

[D(x)][46], (6)

In these functions:
D(x) denotes to the discriminator’s output for a real data.
G(z) denotes to the generator’s output when given noise z.
D(G(z)) denotes to the discriminator’s output for a fake data.
To be more specific, the output of the discriminator does not
have to be between 0 and 1. for more information we refer
reader to read [43].

4) Least-squares loss (LSGAN):
This model proposed a − b coding scheme for the

discriminator where a, b denote to the labels of fake and real
data.

Discriminator Loss:

lLSGAN
D = −Ez∼pd

[D(x)− 1]2 − Ex∼pg [D(x2)][47], (7)

Generator Loss:

lLSGAN
G = −Ez∼pg [D(x− 1)2][47], (8)

5) Wassersstein Gradient Penalty loss (AC-GAN):
AC-GAN uses the noise z and sample has class label

c ∼ p. This model is modification of the standard GAN .
In the standard GAN, Xfake= G(Z), but in AC − GAN
Xfake=G(c, z). Moreover, the outputs of standard GAN is a
probability distribution P (s, x) = D(x), but in AC − GAN
the output is two probability distribution. Probability
distribution over source P (s, x) and probability distribution
over the class labels P (c, x).

P (s, x), P (c, x) = D(x).
Arnab et al. introduce a model that use generative adversar-

ial network to brain segmentation. The authors use a dataset
of 43 subjects. First, the authors generat fake images by using
generator. Second, the authors use the labeled data, unlabled
data and fake data to train the discriminator to distinguish
between generated data and true data. While the encoder is
used to compute the predicted noise mean and log-varaince.
The approach proposed by Arnab et al. supports only one-
stage, while our model supports multi-stage. Our paper aims
to solve the problem of loss informations in the one-stage. The
first generator generated coarse outline to be use in the third
generator. Moreover, the encoder and decoder generated fine
outline. We also used dense skip connection to combine the
features from different scales. To validate the idea of multi-
stage, we used Dice coefficient.

III. METHODOLOGY

In this section, we present the design of multi-stage model.
In the subsection A, a more detailed description of the
generative adversarial network approach that is used in our
work. In the subsection B, a more detailed description of the
loss functions for the discriminator and the generator that is
used in our work. Table II shows the list of defined symbols
in the paper.
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TABLE II. List of defined symbols in the paper

Symbols Definition
G Generator
D Discriminator
z Noise
G(z) Generated data
x Real data
WM White matter
GM Gray matter
CSF Cerebrospinal fluid
Conv Convolutional
LeReLU Activation function
GAN Generative adversarial network
E Expected value
DC Dice Coefficient
MRI Magnetic resonance imaging
T1 subject-1-to-subject-10
T subject-11-to-subject-23
NSGAN Non-saturating loss
WGAN Wassersstein loss
lSGAN Least-squares loss
ACGAN Wassersstein Gradient Penalty loss
Vauto Automated segmentation
Vref Reference segmentation

Fig. 4. The proposed Multi-Stage Generative Adversarial Network

A. Generative Adversarial Network (GAN)

Generative adversarial network refers to a network com-
posed of two networks. A generator is used to generate a

fake images from a noise vector. A discriminator is used to
distinguish between generated data and true data. To be more
specific, G is trained to map a noise vector z ∈ R to a fake
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image. D is trained to differential between true data x and
generated data G(z). The core idea of a GAN is to play a two
player min−max game. minGmaxDEx∼pdata[logD(x)] +
Ez∼noise[1 − D(G(z))] Fig.4 shows an overview of our
proposed network, which mainly consists of three stages: the
three stages generator networks and the discriminator network.
In this work, the first generator G is mainly used to generate
outline for the background and brain tissues from the input
images. The second generator takes two input, image x and
random vector z. The idea is to encourage the generator to
generate as many different values for each x as there are values
of z. To be more specific, training network with random vector
z and image x encourage network to act better in the output.
While the third G is used to generate outline for (i) white
matter (WM ), (ii) gray matter (GM ) and (iii) cerebrospinal
fluid (CSF ). On the other hand, the discriminator is used to
distinguish between true and generated data. The main role
of the first G is to generate coarse segmentation to be used
as guidance information for the third G. The main role of
the third G is to generate more detailed results by using the
coarse segmentation from the first G. The third G consists
of the encoder and decoder. In the encoder and decoder we
also used the dense skip connection to combine the features
from different scales. Fig.5 shows the network architecture of
encoder decoder and the dense skip connection. Zihang et al.
is used to implement the multi-stage model. In order to use
this model in the multi-stage model, we changed this model
as follows:
1-K classes were changed to (K + 1) classes.
2-The segmentation network changed to be fully-convolutions.
Özgün et al. is used to implement the discriminator network. In
order to use this model in the multi-stage model, we changed
this model as follows:
1- ReLUs were changed to leaky ReLUs.
2- Max pooling was changed to average pooling.
For implement the encoder and decoder, in our proposed
model, we use four blocks to implement the encoder where
each block as follows:
The 1st block: consists of conv, LeReLU and concatenation.
The 2nd block: consists of conv, LeReLU and concatenation.
The 3rd block: consists of conv, LeReLU and concatenation.
The 4th block: consists of conv, LeReLU and concatenation.
While four blocks use to implement the decoder where each
block as follows:
The 1st block: consists of deconv, conv, LeReLU and concate-
nation.
The 2nd block: consists of deconv, conv, LeReLU and con-
catenation.
The 3rd block: consists of deconv, conv, LeReLU and con-
catenation.
The 4th block: consists of deconv, conv, LeReLU and con-
catenation.
Furthermore, the dense skip connection is used to combine the
features from different layers and used to help each other.

B. Loss function
Discriminator loss function:

The discriminator in our model has unlabeled data loss, labeled

data loss and refined prediction loss. And the overall loss
function is as follows:

ldiscriminator = llabeled + lunlabeled + lfake, (9)

For labeled data, we use the same loss function in the
standard segmentation network. [35] it was shown that by
using li,k+1 as substracted function, the softmax function
changed as follows:

llabeled = −Ex,y ~pdata(x,y)

H×W×D∑
i=1

log(Pmodel(yi|X), (10)

lunlabeled = −Ex~pdata(x)

H×W×D∑
i=1

log((Zi(x)/Zi(x)) + 1),

(11)

lfake = −Ez ~noise

H×W×D∑
i=1

log[((1/Zi(GΘG(z) + 1)], (12)

Where

Zi =

K∑
k=1

exp[li,k(x)], (13)

To be more specific, the idea is to introduce unlabeled loss
and fake loss, which have analogues to the two components
of discriminator loss in the standard GAN and the labeled
loss is the cross-entropy. for more information we refer reader
to read [35].

Generator loss function:

The loss function of the generator as follows:

minGLG = Ex ~pdata(x)log(1−D(G(x|y))), (14)

IV. EXPERIMENTS

The following subsections present our experimental design
and evaluation. In the subsection A, we present the evaluations
and discussions. We start by giving a more detailed description
of the datasets. Then, we show the experimental setup of
our work. Finally, we explain the Dice coefficient of the
segmentation evaluation.

A. Evaluations and Discussions

1) Datasets:
In our work, we use two different datasets of brain images: the
MICCAIiSEG dataset and MRBrains dataset. We describe
each of these datasets in the following.
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Fig. 5. The IIIustration of Encoder Decoder Network

TABLE III. The parameters used to generate T1 and T2.

Parameter TR/TE Flip angle Resolution
T1 1900/4.38 ms 7 1×1×1
T2 7380/119 ms 150 1.25×1.25×1.25

2) MICCAI iSEG Dataset:
The aim of the evaluation framework introduced by the

MICCAIiSEG organizers is to compare segmentation mod-
els of WM , GM and CSF on T1 and T2. The MICCAI
iSEG dataset contains 10 images, named subject-1 through
subject-10, subject T1 : T1 -weighted image, subject T2 : T2-
weighted, and a manual segmentation label used as a training
set. The dataset also contains 13 images, named subject-11
through subject-23, used as a testing set. An example of
the MICCAIiSEG dataset (T1, T2, and manual reference
contour) is shown in Fig.6. On the other hand, Table II shows
the parameters used to generate T1 and T2. The dataset
has two different times (i.e., longitudinal relaxation time and
transverse relaxation time), which are used to generate T1 and
T2. The dataset has been interpolated, registered, and skull-
removed by the MICCAIiSEG organizers. We present the
evaluation equations in subsection B.

3) MRBrains Dataset:
The MRBrainsdataset contains 20 subjects for adults for

segmentation of (a) cortical gray matter, (b) basal ganglia,
(c) white matter, (d) white matter lesions, (e) peripheral
cerebrospinal fluid, (f) lateral ventricles, (g) cerebellum, and
(h) brain stem on T1, T2, and FLAIR. Five (i.e., 2 male and
3 female) subjects are provided to the training set and 15
subjects are provided for the testing set. On the evaluation
of the segmentation, these structures merged into gray matter
(a−b), white matter (c−d), and cerebrospinal fluid (e−f ). The
cerebellum and brainstem were excluded from the evaluation.

4) Experimental Setup:
The proposed model was performed on Python on a PC

Fig. 6. Example of the MICCAIiSEG dataset (T1,T2, manual
reference contour)

with GPU with a Ubuntu 16.04 operating system. Training
our model took 30 hours in total. Testing our model took 5
minutes for the images employed for the testing set.

B. Segmentation Evaluation
1) Dice Coefficient (DC):

To better demonstrate the significance of our model, we have
used Dice Coefficient (DC) metric to evaluate our model.
Dice Coefficient (DC) has been considered as a baseline
(i.e., benchmark) to compare segmentation models in the
literature to compare brain segmentation models. We use Vref
for the reference segmentation and Vauto for the automated
segmentation. The DC is given by the following equation:

DC(Vref, Vauto) =
2Vref

⋂
Vauto|

|Vref|+ |Vauto|
[48], (15)

where DC values are given in this range [0, 1]. 1 correspond-
ing to the perfect overlap and 0 indicating the total mismatch.

C. Evaluating the hyper-parameters in multi-stage
To evaluate the effectiveness of our model, we evaluated

different hyper parameters. The model has different hyper
parameters, e.g., batch size, learning Rate, etc. Table III,
Table IV and Table V show training epochs, learning rate
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TABLE IV. Experiments on Training epoch obtained on the
MRBRAINS datasets. The best performance for each tissue
class is highlighted in bold.

Training epoch Dice Coefficient (DC) Accuracy
CSF GM WM

20 67% 69% 60%
40 86% 84% 82%
60 87% 88% 85%
80 95% 94% 92%

TABLE V. Experiments on Learning Rate obtained on the
MRBRAINS datasets. The best performance for each tissue
class is highlighted in bold.

Learning Rate Dice Coefficient (DC) Accuracy
CSF GM WM

1× 10−1 80% 80% 82%
1× 10−2 84% 83% 82.4%
1× 10−3 87% 88% 87%
1× 10−4 95% 94% 92%

and batch size, respectively. We find that the batch size of
30 is 95%, 94% and 92% for CSF GM WM respectively.
A large training epochs caused the over fitting problem and a
small training epochs caused under fitting problem. To mitigate
this problem and validate whether the training epochs will
be significantly impacted the network performance. Training
epoch involving 20, 40, 60, 80 epoch is conducted. In the 80
epochs, we find that the network performance was good. We
followed the same approach to choose the learning rate values.
A large learning rate caused the parameters of network are
updated quickly. A small learning rate caused the parameters
are updated slowly. First, we randomly start with a learning
rate is 1 × 101. Second, we use multiple runs by changing
the learning rate value. Finally, Our experimental results show
that multi-stage model achieves a good result in the learning
rate 1× 10−4.

V. RESULT AND DISCUSSION

To better demonstrate the significance of our model, We
train and test multi-stage GAN model on two datasets of
different ages (i.e., infants and adults). To train multi-stage
GAN model, we used the 13 unlabeled of the testing dataset
to train the GAN and for the 10 labeled subjects of the
iSEG − 2017 dataset, we used two labeled subjects for
training set, one labeled subject used for validation set and
7 labeled subjects used for testing set. Similarly, for the 5
labeled subjects of the MR Brains 2013 dataset, we used
one labeled subject for training set, one labeled subject used

TABLE VI. Experiments on batch size obtained on the
MRBRAINS datasets. The best performance for each tissue
class is highlighted in bold.

Batch size Dice Coefficient (DC) Accuracy
CSF GM WM

10 77% 76% 76%
20 82% 83.2% 82.4%
30 95% 94% 92%
40 89% 88% 87%

TABLE VII. Segmentation performance in Dice Coefficient
(DC) obtained on the MICCAIiSEG dataset. The best
performance for each tissue class is highlighted in bold.

Model Dice Coefficient (DC) Accuracy
CSF GM WM

U-net 86.2% 80.1% 81.1%
Standard-GAN 87.5% 89.2% 82.4%
One-stage 91.3% 93.8% 90.3%
Multi-stage 95% 94% 92%

TABLE VIII. Segmentation performance in Dice Coefficient
(DC) obtained on the MRBrains dataset. The best perfor-
mance for each tissue class is highlighted in bold.

Model Dice Coefficient (DC) Accuracy
CSF GM WM

U-net 86.2% 80.1% 81.1%
Standard-GAN 87.5% 89.2% 82.4%
One-stage 91.3% 93.8% 90.3%
Multi-stage 95% 94% 92%

for validation set and 3 labeled subjects used for testing
set. And 15 unlabeled of the testing dataset used to train
the multi-stage GAN model. The main goal of multi-stage
GAN model is to see the performance in a few-shot learning
case. Table VI presents the results of our model to segment
CSF ,GM , and WM using the MICCAIiSEG dataset. Our
model obtains a DC values of 95% in CSF segmentation. The
DC values obtained from segmenting CSF by state-of-the-art
models range between 86% and 91%. In addition, our model
obtains a DC values of 94% and 92% in segmenting GM and
WM , respectively. The state-of-the-art models, on the other
hand, obtain DC values in the ranges of 80%- 93% for GM
segmentation and 81%- 90% for WM segmentation. Such
results highlight the remarkable efficiency gained by using
multi-stage GAN . Table VII compares the results obtained
using the MRBrains dataset. We observe that our model
achieves a DC value of 93% on CSF segmentation, 93%
on GM segmentation, and 88% on WM segmentation. Such
results are superior to the results obtained using the state-of-
the-art models. Therefore, we argue that our mode can perform
better in a few-shot learning case. Fig. 7 shows Visualization
results of our models on the subject used as a validation set.
We observe that segmentation results obtained by multi-stage
model is fairly close to the manual reference contour provided
by the MICCAI iSEG organizers.

VI. THREATS TO VALIDITY

Threats to external validity are related to the generalizability
of our results. In our work, we used the two datasets that
belong to two organizers. The total number of the subjects

TABLE IX. Average execution time (in minutes) and standard
deviation (SD) in the MRBrains dataset

Model Time (SD)
U-net 36.54(0.12)
Standard-GAN 30.52(0.31)
One-stage 25.30(0.16)
Multi-stage 22.61(0.21)
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Fig. 7. Visualization results on MRBrains dataset

in the two datasets are 43 subjects. One could argue that the
datasets do not have enough samples. We mitigate such threat
by using two datasets that (a) contain both infant and adult
brain data and (b) were previously used by prior studies.

Our model obtains higher performance than prior models.
We believe that our model similar with the process of human
learning in clinical practice. Moreover, we have only targeted
three tissues in our work. However, our proposed model can
be easily extended to more tissues segmentation as it does not
require more labeled data.

The intuition behind this model is that multi-stage compares
the perform in a few-shot learning case where a few labeled
data are available.

Threats to internal validity are related to experimental
errors and bias. Our model is constructed using data extracted
from medical images in which contracts might be low. We
use the small-size kernels, deconvolution layer (to upsample
the input), PReLU, dropout and normalization methods to
reduce the risk of overfitting. Hence, any potential deficiency
in the data should deficiency all the implemented models.
Nevertheless, our model obtains higher performance than prior
models.

VII. CONCLUSION

In this study, we propose multi-stage generative adversarial
networks(GAN ) model for brain segmentation supported by
(i) generate a coarse outline for (i) background and (ii) brain
tissues. Then, generate outline for (i) white matter (WM), (ii)
gray matter (GM ) and (iii) cerebrospinal fluid (CSF ).

Our results are evaluated by using the infant and adult data
sets and found to be fairly close to the manual reference. In

addition, we compare our model with three baseline state-
of-the-art models and observe that our model achieves an
improvement of up to 4%. In particular, we obtain dice coeffi-
cients that range between 88% and 95%. Such results indicate
that the adoption of the multi-stage generative adversarial
networks has significantly improved segmentation results. We
argue that our model is more efficient and accurate in practice
for both infant and adult brain segmentation.

Despite the promising results obtained from our proposed
model, we believe that further improvements can be achieved
in the future. We aim in the future to include more datasets
in our study. Furthermore, we aim to expand our multi-stage
model to investigate more number of brain tissues. Lastly,
we would like to point out that, we will expand our model
and look how multi-stage model can segment brain tissues.
In addition, the adoption of multi-stage generative adversarial
network in medical imaging is still in its infancy.
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